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 NONABSOLUTELY CONVERGENT INTEGRALS

 Interesting generalizations of the descriptive definition for nonabsolutely

 convergent integrals were given by H.W. Ellis [3], J. Foran [6], and C.M. Lee

 [11]. The most remarkable one is that of Foran, which is a classical

 generalization of the Denjoy integral in the wide sense, i.e., Foran's class of

 primitives is a class of continuous functions which contains strictly the ACG

 functions. The classes of primitives for the integrals of Ellis and the

 integrals of Lee are not classes of continuous functions and restricted to the

 class of continuous functions one obtains at most the class of ACG functions.

 In this paper we give various extensions for each of these integrals. The

 classes of primitives for our generalizations are not classes of continuous

 functions. However, if one restricts these primitives to the continuous

 functions, some of these classes contain strictly the primitives in the Foran

 sense.

 The uniqueness of the integration for the Foran integral follows by a

 corollary of Theorem 7.7 of [12] (p. 285).

 To assure the uniqueness of our integrations we give some monotonicity

 theorems among which Theorem 3 is the most important. Theorem 3

 generalizes Theorem 7.7 of [12] (p. 285) and its corollaries are both

 intrinsically interesting and useful.

 For convenience if P is a well-defined property for functions defined on

 a certain domain, we will also use P to denote the class of all functions

 having the property P. The conditions (N), T2, VB^, VBG^, VB, VBG, AC^,
 ACGj, AC, ACG are defined in [12]. In [6] Foran introduced conditions a(N)
 and B(N) and in [5] V. Ene has introduced condition E(N). If in the

 definition of A(N) the intervals Iķ are allowed to overlap, a more
 restrictive condition results which we call condition A*(N).

 We denote by ? (respectively ?*, B, £) the class of all continuous
 functions F defined on a closed interval I for which there exist a

 sequence {En} of sets and a sequence {Nn} of natural numbers such

 that I = U En and F is A(Nn) (respectively A*(Nn), B(Nn), E(Nn)) on
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 En. If the functions are not supposed -to be - continuous, we define

 analogously the class /?/ (respectively /?*/» /B/, /£/, /ACG/). If in

 addition each ®n *s closed and ^ļEn continuous, we define in the same
 way the class [?] (respectively [?*], [B], [£], [ACG]).

 We denote by b/7/ the class of all functions F € /?/ such that F is

 bounded on each En. Condition [CG] is defined in [3], condition N in [9],

 condition (M) in [8], condition CM in [11], conditions Cn and ACn in [1],

 and conditions DB u DBiT2 in [2]. If the condition Baire 1 (Bj) is replaced

 by O'Malley's condition Baire* 1 (A function F defined on [0,1] is B* if
 every closed set has a portion on which the restriction of F is continuous.),

 we obtain conditions DBf and DB|t2. Let 0.1 © a2 denote the linear space
 generated by the classes of functions and d2 . Let . 0 (respectively

 ^ap) be an additive class of functions, differentiate in a sense which is
 compatible with the ordinary derivative (respectively approximate derivative).

 We denote this derivative of F by DF (respectively DapF).

 Definition. A function F is said to satisfy condition [M] (respectively

 [Mj,]) on a closed set E if F is AC (respectively AC,) on each closed
 subset of E on which it is continuous and VB (respectively VB^).

 Remark 1. a) /B/ c T2. This follows by [6] ((iv), p. 360) and [7]

 (Corollary 2, p. 35).

 b) (N) c [M]. This follows by the Banach-Zarecki theorem ([12], p. 227).

 c) If F € ACG and G e [M], then F+G e [M]. (See the Banach-Zarecki

 theorem.)

 d) Conditions Baire* 1 and [CG] are equivalent on a closed set E. This
 follows by the proof of Theorem 9.1 ([12], p. 234).

 e) /ACG/ n Baire* 1 = [ACG] on a closed set E, and if F € [ACG] and

 G € [M] n [CG], then F+G e [M] n [CG]. This follows by the Banach-Zarecki

 theorem and our Remark l,d).

 f) If F € ACG, and G € [M,], then F+G e [M,].
 g) If Fe?, Ge ÁC and G is strictly increasing, Then F*G e J.

 h) [M] c [Mg]. This follows by Theorem 8.8, p. 233 of [12].
 i) There exists a continuous function F e B n (M) such that F i (N). (See

 [4].) There exists a continuous function G c (M) such that G i T2. (See

 [8], p. 84.)
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 j) /?/ c /£/. (See [6], (iii), p. 360). If -F e /?/- and G c /£/, then

 F+G e /£/.

 k) b/7/ c /B/. (See the proof of (v), p. 362 of [6].)

 Lemma 1. a) If F e /?*/ and G € N, then F+G + N. Moreover, if
 both F and G are bounded, then F*G € N.

 0 -

 b) There exist continuous functions F e ? and G € N such that

 F+G c (M).

 c) ī' and /?*/ are additive classes of functions.

 Proof. a) The proof is analogous to that of Theorem 2, p. 33 of [9].

 b) Let F and G be the two continuous functions defined in [4]. Then

 F+G = ♦ (♦ is the Cantor ternary function). F satisfies A* (2) on C

 (C is the Cantor ternary set) and G € (N) on [0,1]. By [9] (Lemma 1)

 there exists a function H strictly monotone on [0,1] such that H . and

 H-1 are AC and A(B(G«H-1,)H(C)) = 0. (A is linear measure and B(F,S)

 is the graph of F restricted to S.) Then G»H-1 is linear on each interval

 contiguous to H(C) and G*H~l satisfies N on [0,1], By Remark 1, g)

 F»H-1 € ? on [0,1]. But on each interval contiguous to H(C), ♦•H~1 is

 constant and ♦•H~1(H(C)) = *(C) = [0,1]. Therefore ♦•H~1 does not satisfy

 (M).

 c) The proof is analogous to that of (vi), p. 361 of [6].

 Theorem 1. a) In the sequence of classes /?*/, /J/, /£/, N, (N), [M]
 each class is strictly contained in all those following it.

 b) ACG f J' and J' f ACG.

 c) £ n 8*0, B / £, £ / B.

 d) There exists a continuous function F defined on a closed interval I,

 F € ? and a continuous function G e N with F' = G' a.e. such that F-G

 is not constant on I.

 Proof, a) It is clear that each class is contained in all those following it.

 It remains to show that these inclusions are strict. That /?*/ is contained

 strictly in /1/ follows by Lemma 1, a), b). That /7/ is strictly contained

 in /£/ follows by Theorem 5, b) of [5]. By Remark 1, j) and Lemma 1, b) it

 follows that /£/ is strictly contained in N. That N is strictly contained
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 in (N) follows by [9] (p. 35). That (N) is strictly contained in [M] follows

 by [8] (p. 84).

 b) By [9] (p. 35-36) if F € AC and G € N, then F+G is not necessarily

 in (N). Now by Lemma 1, a) ACG f ?*. Clearly if Fe ACG and G c (M),
 then F+G c (M). By the proof of Lemma 1, b) we have that if F € 2' and

 G e (N), then F+G is not necessarily in (M). Therefore f ACG.

 c) Since J c £ n B, £ n B * 0. Since ♦ € B and ♦ i £, B ft. (♦ is

 the Cantor ternary function.) - We show now that £ <f B. Let K = {x : x =

 Z cķ/fžk+ljk where cķ = 0,2,. ..,2k only} and let a = inf K, b = sup K.
 Let UkJk be a strictly increasing sequence of nonnegative integers with

 j0 = 0. For each x € K we define

 <9

 F(x) = E cj, K (x)/(2jk+l)Jk 1. k=l K

 Extending F linearly on each interval contiguous to K we have F defined

 and continuous on the interval [a,b]. Clearly the graph on the set K can

 be covered by (jjç)! rectangles

 ^ Ci c. « OÍ
 Z
 Li=l (2i+l) i=l (2Í+1)1 i=jk+l (2i+l) 1 . J

 Z Cji j cJj + * cJj
 i=1 (2ji+l)Ji"1 i=l (2ji+l)Ji~1 i=k+l (2ji+l)Ji"1 ■

 and

 CO

 I 2i/(2i+l)i < (3/2)/(2jk+3)Jk;
 i=Jk+l

 0 • t • ļ
 1 2ji/(2ji+l)Ji-1 t < (3/2)/(2jk+i+l)Jk~ ļ .

 i=k+l

 Now it follows easily that F is E(l) on K arid F e £.
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 In what follows we show that F is B(N) - on no- portion of K for no

 natural number N. Let k be a natural number. Then for each set

 r Jk c. Jk c. « o- 2 1
 « _ Y» K r
 « E - _ Y» K n J) r

 .i=l (2Í+1)1 . , i=i (2Í+1)1 i=jk+1 ¿ (2i+l) 1 J

 = 0,2,...,2i the intervals Ic . , , . . . c. i =
 Cjk+ļ, . , , . . . ,cJk+i c. i

 Jk+1-1 e-: Jk+1-1 C4 o-i
 Z - - - ' 2 - = - + X - - -
 . i=i (2i+l)i ' i=1 (2i+l)i i=jk+1(2i+l)i .

 are nonoverlapping and have points in common with E. If jk+1 = 3Jk + 1»
 then we have

 C Jk+1) * C Jk+2) • . ♦ • • ( Jk+1- !) > [(Jk+1) (Jk+1-1)]

 such intervals. If we cover the set F(K n Ic . c. ) with
 cJk+l'"'' . c. Jk+1-1

 Jk+1 intervals, then at least one of these intervals has length greater

 than l/(2j]t+i+l)^^. Since

 (Jk+D '(Jk+l-D
 2jkłl + 1

 d) the functions F»H-1 and G»H-1 given in the proof of Lemma 1, b) have

 the desired properties.

 Lemma 2. Suppose that F is continuous and satisfies condition (M) on

 [a,b]. Let P = {x : +® > F¿p(x) > 0} ; N = {x : 0 > F¿p(x) > -«}. Then
 P u N is nondenumerable. If F(a) < F(b), then |F(P)| > F(b) - F(a). If

 F(a) > F(b), then |F(N)| > F(a) - F(b).
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 Proof« Suppose that F(a) < F(b). For each y e [F(a),F(b)], let Xy =
 min{x e [a,b] : F(x) = y}. Let E = C<{xy : y € [F(a),F(b)]} (C< A is the
 closure of A). Clearly F is nondecreasing on E and F(E) = [F(a),F(b)].

 Since F satisfies (M), f1ę is AC, |E| >0 and F¿p(x) > 0 a.e. on E.
 Hence |F(P)| > |F(E)| = F(b) - F(a).

 Lemma 3. If a function F is continuous and satisfies condition (M) on

 [0,1] and if F¿p(x) >0 at almost every point x where F¿p(x) exists,
 then F is montone nondecreasing on [0,1].

 Proof« Suppose that there exist a,b € [0,1], a < b, such that F(b) <
 F(a). Let N be the set defined in Lemma 2. Then N = N u N , where N 0-0

 = {x : = 0} and N_ = {x : 0 > > -»}. But |F(No)| = 0 and
 |N_| =0. By Theorem 10.8, p. 257 of [12] F is VBG on N_. Since F

 satisfies (M), F is ACG on N_ and |F(N_)| = 0. By Lemma 2 |F(N)| =
 0 > F(a) - F(b).

 Theorem 2. Let F be a function belonging to CM and B* on a closed

 interval [a,b] which satisfies [M]. If F¿p(x) > 0 a.e. where F¿p exists,
 then F is nondecreasing on [a,b].

 Proof. Let U(F) = int{x : F is continuous at x} (int A is the interior

 of the set A). Suppose that U(F) * (a,b). Let {In } be the components of

 the open set U(F). Since F is CM, by Lemma 3 ^|ln *s monotone
 nondecreasing and P = [a,b] - U(F) is perfect set. Since F is B?, there

 exists an interval I such that Fļpnl is continuous. Hence F | j is
 continuous and by Lemma 3 F is monotone nondecreasing on I. But this is

 impossible since I contains points of P.

 Lemma 4. Let F be a function belonging to D oņ [0,1] and let P

 be a closed subset of [0,1] such that F is VB* oņ P. Then F is

 continuous on P. (D is the class of all Darboux continuous functions. )

 Proof. Let a = inf P, b = sup P and let (a^b^) be the intervals

 contiguous to P. Let Mķ = sup F^a^b^]) and m^ = inf Fitaķjbķ]). Let

 ck>dk e R be such that a^ < c^ < dķ < b^. Let
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 F(x) , X € P

 Mv - Fiai,)

 c, ck _ a, ak * (x-ak) + F(ak) > x « [ak> ck] c, ck _ a, ak

 Fi(x) =
 mk - Mu
 dk _ Ck * (x-ck) + Mk , X € (ck.dk)

 Ffakk~ d'P< * (x"dk) + mk ' x € fdk»bk]

 Since a function in D can have no jump discontinuities while a function in

 VBjj, can have only jump discontinuities, Fj is continuous on [a,b]. Hence
 F is continuous on P.

 Lemma 5. (A generalization of Theorem 6.9. p. 281 of [12].) Let F be

 DBîTa oņ [a,b] and let g be a finite summable function. Suppose further

 that F'(x) < g(x) at each point x at which the derivative F'(x) exists,

 except perhaps those of an enumerable set or, more generally, those of a set

 E such that |F(E)| - 0. Then the function F is VB and we have

 fb
 F(b) - F(a) < J F'(x)dx.

 a

 Proof. The proof is identical to that of [12] except that instead of

 Theorem 6.6 ([12], p. 280), we apply Theorem 2.2, p. 178 of [2].

 Theorem 3. (A generalization of Theorem 7.7, p. 285 of [12]). In order

 that a DBxT2 function F be AC on an interval I0 it is necessary and

 sufficient that the function F satisfy condition [M ] and the condition

 f F' (x)dx < +®
 JP

 where P = {x : 0 < F'(x) < +«} .
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 Proof. By Theorem 6.1, p. 225 of [12] and Remark l,b)h) AC implies,

 condition [M^]. By Theorem IV, p. 473 of [3] AC implies condition Ta< Now
 the necessity is evident. Conversely suppose that F e DBJT2 n [M^]. Let

 F' (x) , X € P

 g(x) =

 .0 , X € I0-P.

 If E = {x : F'(x) = +«}, we shall have F'(x) < g(x) at every point

 X e I0-E at which the derivative F'(x) exists. By Theorem 10.1, p. 234 of

 [12] F is VBGj on E. Let E = U En such that F|eh *s Then F
 is VB± ♦ on E . (See [12], Theorem 7.1, p. 229.) Now Lemma 4 and ♦ xl

 condition [M^] imply that F is AC^, on En< Hence F is ACG^ on E.
 But |E| =0. (See [12], p. 236.) and so |F(E)| = 0. By Lemma 5 F is BV

 on IQ. Since conditions VB and VB^, are equivalent on an interval (See
 [12], p. 228.) and since F € [M^], F is AC on IQ.

 Corollary 1. Every DBiT2 function F on [a,b] which satisfies the

 condition [M*] and whose derivative is nonnegative at almost every point

 where F is derivable is montone, nondecreasing and continuous on I0.

 Remark 2. Corollary 1 can also be obtained by Theorem 2, p. 63 of CIO]
 and the fact that F is ACG^ on E = {x : -® < F'(x) < 0). (This fact can
 be verified using a proof similar to that of our Theorem 3.)

 Corollary 2. ([10], Theorem 2, p. 61.) Let F be a real-valued function

 having the following properties on an interval: i) F is DBt; ii) F fulfills

 Lusin's condition (N); iii) F'(x) >0 at almost every point x at which F

 is derivable. Then F is monotone nondecreasing and continuous on the

 interval.

 Proof. The. assertion follows from Corollary 1, Remark l,b),h) and

 Theorem IV, p. 473 of [3].

 Corollary 3. If F € CM n BÎ n [MJ on [a,b] and F'(x) > 0 a.e.
 where F is derivable, then F is monotone nondecreasing on [a,b].
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 Proof. Using Corollary 1, the result follows by an argument analogous to

 the proof of Theorem 2.

 Corollary 4. If F and G are two real-valued functions defined on

 [0,1], FD e DB! n /B/ n [M] n 0, G € ACG and DF = G' a.e. on E, E =

 {x : G'(x) is finite}, then G-F is constant on [0,1].

 Proof. Let K(x) = G(x) - F(x). Clearly K € DBi n /8/ n [M]. Since

 G e ACG, there exists a sequence {In} of intervals whose union is dense in

 [0,1] and on each of which G is AC. Hence G is derivable a.e. on In.

 Clearly DF = G' a.e. on In. It follows that DK = 0 a.e. on In. By

 Corollary I, K is constant on In and since K e D, K is constant on In.

 The intervals In can be chosen to be maximal open intervals of constancy of

 K. We show that there exists only one such maximal interval, namely the

 interior of [0,1]. Suppose there is more than one such maximal interval and

 let P = [0,1] -U In. Clearly the set P is perfect. Now K is in Baire class

 one. Hence there exists a dense G$ - subset H c P on which K|p is
 continuous. Clearly K e /B/ on H. Write H = U Hn where F is B(Nn)

 on Hn for each n. Since H is a residual subset of the complete metric

 space P, there exists an interval J i containing points of H, together

 with a positive integer p such that Hp is dense in H n Jj. Now since
 k|p is continuous on H, K(I n Hp) 3 K(I n H) for each interval I c
 On p. 182 of [2] it is shown that K(H n I) => K(P n I) for each interval

 I c Jļ. Hence K is B(Np) on Jx n P. Since K is constant on each In
 and since K has the Darboux property on [0,1], K is VB on Jt. Because

 K satisfies condition [M], K is AC on Jt. Hence K is constant on Jt.

 Contradiction.

 Theorem 4. Any linear subclass S of /£/ n DB! n ů on [0,1] can be

 taken as a class of primitives with the following properties: a) order, i.e.,

 if F,G e S and DF > DG a.e., then F(l) - F(0) > G(l) - G(0); b)

 compatibility with the primitives, i.e., if FeS, G £ ? n i and DF =

 DG a.e. on [0,1], then F-G is constant on [0,1].

 Proof. The statement follows from Theorem l,a), Corollary 2 and Remark

 l,k).
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 Theorem 5. Any linear subclass S of DBX n N n û on [0,1] can be

 taken as a class of primitives with the following properties: a) order;

 b) compatibility with the n Q primitives.

 Proof. The theorem follows from Lemma 1, a), Theorem 1, a), and

 Corollary 2.

 Theorem 6. Any linear subclass S of DB? n [M] n £ap on [0,1] can
 be taken as a class of primitives with the following properties: a) order;

 b) compatibility with the ACG primitives.

 Proof. Since the Darboux property implies condition CM ([11], p. 69),

 the assertion follows from Theorem 2.

 Theorem 7. Any linear subclass S of DB! n [M^] n /B/ n û oņ [0,1]
 can be taken as a class of primitives with the following properties: a) order;

 b) compatibility with the ACG primitives.

 Proof. The proof is accomplished by Corollary 1 and Remark 1, a), f).

 Theorem 8. Any linear subclass S of DBj n [M] n /B/ n jjap on [0,1]
 can be taken as a class of primitives with the following properties: a) order;

 b) compatibility with the ACG primitives.

 Proof. Use Corollary 1 and Remark 1, a), c).

 Theorem 9. Any linear subclass S of DBj n [M] n /B/ n g oņ [0,1]

 can be taken as a class of primitives with the following properties: a) order:

 b) if F € S, Ge ACG and DF = G' a.e. on E, E = {x : G'(x) is finite},

 then F-G is constant on [0,1].

 Proof. The assertion follows from Corollary 1, Remark 1, a), c) and

 Corollary 4.

 Theorem 10. Any linear subclass S of CM n B* n [M] n j?ap oņ [0,1]
 can be taken as a class of primitives with the order property.
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 Proof. The Theorem follows from Theorem 2.

 Theorem 11. Any linear subclass S of CM n B* n [M ] <"> T2 n ů can be
 taken as a class of primitives with the order property on [0,1].

 Proof. Apply Corollary 3.

 In all these cases the S - integral of DF (respectively DapF) on
 [0,1] is defined to be F(l) - F(0).

 Remark 3. a) Theorems 5,6,7,8,9 are generalizations of Theorem XII of

 [3].

 b) Theorems 10 and 11 are generalizations of Lee's LDG - integrals ([11],

 p. 72).

 Examples and Remarks. By Theorem l,a) it follows that /£/ n DB Ł 0

 c DBX n N n i, by Remark l,b) we have DB! n [M] n /B/ n 0& p e dbx n [M]
 n /B/ n 0 e DBt n [M*] n /B/ n ß and by [11] (p. 69) DBf n [M] n £ap c
 CM n BÎ n [M] n J)ap.
 Let Ft,F2 c £ - ? with Fj + F2 = ♦. (See [5].)

 Let Hj c N - such that Hx is a.e. differentiate on [0,1]. (See the

 proof of Lemma l,b).)

 Let Hj e (M) - ACG such that H2 is approximately differentiate a.e. on

 [0,1]. (See [4], Remark 3.)

 Let H3 € DB j n [M^] n /B/ n 0 such that H3 i ACG^. (See [4], Remark 3.)

 Let H4 e DB] n [M] n /B/ n ßap such that H4 i ACG. (See [4], Remark 3.)
 Let Hs € DBt n [M] n /B/ n 0 such that Hs i ACG. (See [4], Remark 3.)

 Let {Gn} be a strictly increasing, unbounded sequence of continuous

 functions, Gn € (N), Gn(0) = 0 and let G be a continuous function,

 G c such that G¿(x) = G'(x) a.e. on [0,1]. (See [5].)

 a) Cn ^ /?/ ^ Õ) ACn ^ /?/ i ßj (Cn ^ /? / i Õ) © Fļ,

 (Cn n /2/ ni?)® F,, (ACn n /"}/ n S) 0 Fx and (ACn n /?/ n û) © F2 are

 linear subclasses of /£/ n DBx n 0. Moreover, the (Cn n /J/ n £) e Fj

 and (Cn n /?/ n ß) © F2 - integrals are not compatible. Also the

 (ACn n /"}/ n Q) © Fi and (ACn n /3F/ n B) © F2 - integrals are not
 compatible with "each other.
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 b) (Cri n n ® Hi and (ACn <"> /?*/ n -D) © H! - are linear subclases of
 DBX n N n 0.

 c) Cn ^ [?] n pj ACn n [7] ^ ¿gpj [ACG] © H21 ACG © G and ACG © Gjj
 are linear subclasses of DB* n [M] n Sap. Moreover, the ACG © G and ACG
 © Gn - integrals are not compatible with each other.

 d) Cjj r* b/J/ ^ ACn b/? / ^ ^ap t ACG © H41 ACG © G and
 ACG © Gn are linear subclasses of DB[ n [M] n /B/ n jga p.
 e) Cn n b/?/ n B, ACn n h/J/ <"> ß and (ACG n Aae) © Hs are linear
 subclasses of DBX n [M] n /S/ n Ů. (Aae i® ^be class of all functions

 derivable a.e.)

 f) ACGj © H3 is a linear subclass of DBt n [M^] n /B/ n 0.
 g) Cn n [?] n 0 and ACn <"> [?] n 0 are linear subclasses of

 CM n Bf n [M ] n Tj n Í.

 We are indebted to Professor Solomon Marcus for his help in preparing

 this article and to the referees for their comments which led to an

 improvement of this paper.
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