
 Den joy1 s Index and Porosity

 P. S. Bullen

 Section 1: Den joy* s Index

 1. Introduction# This section is an exposition of Den joy* s work on a

 concept closely related to porosity. Porosity has been found to play an

 important role in differentiation theory and it is of some interest to see

 that over sixty years ago Denjoy had introduced a similar idea for the study

 of the second order symmetric derivative.

 Denjoy's work appeared in three papers, [1-3, see also 14], published

 in 1920-21, but a more complete account appears in his book, [11, vol.11],

 published in 1941. All the results of this section can be found in these

 references, but they seem little known, even to workers in the field. Later

 sections will discuss how Denjoy applied his concepts, in particular to the

 second order symmetric derivative.

 2. Some Notation. Everything in this note occurs on a bounded closed

 interval [a,b] , and will usually be related to a non-empty perfect subset of

 This paper is based on a talk given to the Fifth Summer Symposium in Real

 Analysis, University of Missouri-Kansas City, June 1982. It was written

 while the author was a visiting professor at the National University of

 Singapore, 1982/83; it is a modification of research reports written there,

 Bullen [1,2] .
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 [a,b] , P, with a, b £ P. It will easily seen that this is not essential but

 it makes for ease of exposition.

 If Q = ] c, d [ P t <(> then Q is called a portion of P. The closed

 interval K = [inf Q, sup Q] is the containing segment of Q.

 Remark (1) In Denjoy's work a portion means ]c, d[^P(* (1)), what we will call

 a closed portion; it is a non-empty perfect subset of P.

 If neither c, nor d, lies in P then the perfect set Q is called an

 isolated portion, and K an isolated segment, of P; of course, it is also a

 closed portion of P. In this case Q is flanked, on both sides, by contiguous

 intervals of P, called the isolating intervals of Q, or K.

 Example (1) If e = {e4,e_,...} = (e }, where 0 < e < 1, n > 1, then
 - i 2 n n -

 C = C([a,b]; e_) is the symmetric perfect set constructed as follows.

 Let K = [a,b] , Ik 1 1 I = p = (b-a); remove from K the central open o , 1 o 1 o o

 interval of length e p . This leaves two symmetrically situated closed
 1 o

 intervals, K , K , say, each of length p., where, 2 p„ = p (1-e„). Now
 1112 1 1o1

 remove the central open intervals of and of length

 Proceeding in this way we arrive at the nth stage of the construction with 2n

 symmetrically situated closed intervals, 1 £ i £ 2n, each of length p^,
 where

 2"Pn " Po (1"V- <1>

 2n

 If C = K . , then C = r' C ; clearly, from ( 1 ) ,
 i=1 n=1
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 co

 |c| = p n (1-e ).•
 k=1

 Certain conditions on are of interest.

 (а) e < 2e , n > 1; this ensures that at each stage the proportion
 n+1 n

 removed gets smaller.
 CO

 (ß) E < ® implies that |c| > 0; (in which case C is thick-in-
 k=1 n

 itself) .

 (б) ej.<e,n>1; (note that this implies (a)).
 n+1 - n -

 (e) lim e - 0 •
 n

 n-*»

 (u) ~ e e ^4 W (note that this implies (a)). 2 n - n+1 ^4

 (v) lim e =1.
 n

 n+<*>

 Remarks (2) C([0,1]; -j, -j, •••}) Cantor ternary set.
 2

 (3) If 0 < 0 < n, £ = , n - > 1, then ļcļ = (b-a)^^ - . n 2 2 - ü
 n n

 So that if 0 <_ 'x < b-a, there is a C with |c| = 'x.

 3 . The Index of a Point

 Definition 1. Let h > 0, x, x+h £ P then we define
 o o

 o (P}x,h ) = a. (x,h )
 + O + O

 = inf{oj jh,0<ti. <h < a h , lim h =0,
 n n+1 - n - n+1 , n

 n-H»

 x + h e P, n > 0} ;
 n -

 then the right index of P at x is
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 a (P,x) = a (x) = a = inf a (x,h ) = lim a(x,h ).
 + + + , . ^ + o . . + o

 , h >0 . ^ . h ->»0 .
 o o

 Remarks (4) Clearly 1 <_ a+ <_ ®, and the larger a+(x), the rarer P is on the

 right of x.

 (5) If x = b, or is the left end point of a contiguous interval of P,

 a (x) = In general, a (x) = « means that Vx + h £ P, h > 0, n > 1,
 + + n n -

 hn+1
 lim x+h = x, we have lim sup - ;
 n h

 n+<® n-*» n

 In a similar way we can consider the left index, defining a (x,h ),
 - o

 a (x), and also the (bilateral) index of x by allowing the h to be both
 ~ n

 positive and negative:

 h

 a(P,x) = a(x) = a = inf{a; J h , h M, 1 < I n 1 < a, x+h e P, n > 1 , and
 n n 'n' n -

 n+1

 lim x + h = x} .
 n

 n+®

 In fact a(P,x) is equal to either a+(x) or a (x), for the set obtained by

 symmetrizing P around x. Clearly,

 /V

 a a = min(a+/ a_). (2)

 Lemma 1. If the contiguous intervals of P, in [a,b], are ]a,b [,n> 1,
 n n -

 and we write, (using the above notation)

 b -x

 Y+(P?x,hQ) = y+(x,hQ) = sup{y; an_xJan,bft[ C. ] x,x+hQ[}
 n

 then 3 h ,0<h <Y(x,h)hJ«, lim h =0, x+h e P, n > 0
 n n - + o n+ 1 n n -

 n-*»

 and a (x,h ) = y (x,h ); in particular,
 + o + o

 a+(x) = Y + (x) = lim y+(x,h ).
 n-*®

 Proof • See [11, pp. 109-111].
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 Remark (6) This means that a (x,h ) > 1 and is in fact an attained value of
 + o

 the a in Definition 1; equivalently the inf could be replaced by min there

 Corollary 1. If P has unit right density at x then a+(x) = 1 ? in particular,
 a(x) = 1 a.e. on P.

 Example (2). It is possible for (2) to be strict. In fact a(x) can be

 finite with a(x) infinite as the following example shows? (but see Remark

 (20)). Let a set on [-1,1] consist of {0} together with the closed

 intervals:

 ri 1] rl_ l_i rJL _J
 L2' 4J' he' 64J' '-512' 4096J'*"L

 Then a+(0) = a (0) = <*>; but on symmetrizing about 0 the set contains

 [- j, ^], SO a(0) = 1.
 Lemma 1 shows the connection between Den joy1 s index and porosity.

 Definition 2. With the above notation put

 b -a

 p+(P;x,hQ) = p+(x,hQ) = sup{p? p = - - - ,] an»bn[c] x,x+hQ[};
 o

 then the right porosity of P at x is

 p , ( P / x ) = p ( x ) = px = lim p ( x,h ).
 + , + + , ^ + o

 , h ->0 ^
 o

 Remark (7). Clearly, Ū <_ p+ <_ 1,; if p+(x) = 1, then P is said to be right

 porous at x.

 In a similar way we can define left porosity, p (x,h ), p (x) . Then
 - o -

 the porosity of P at x is

 P ( P, x ) = p(x) = inf { p+ ( x ) , p_(x)},

 and if p(x) = 1 then P is said to be porous at x.
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 1 1
 Corollary 2. (a) a. =

 - 1 " PJ. 4 • ~
 ± 4 1 - p

 Remark (8). It follows from Corollary 2(b), (2) and Example (2) that a set

 with infinite index at x is rarer than a set that is porous at x.

 Theorem 1. If P is nowhere dense and A+= {x?a+(x) = «>} , A = A+ O A_, then

 all these sets are residual subsets of P.

 Proof. See [11, pp. 195-196].

 4. The Coefficient of Isolation.

 Definition 3. (a) Let Q be an isolated portion of P, with K its containing

 segment, I, J its isolating intervals, then the coefficient

 of isolation of Q, or K, in P, is '(Q,P) = MC)) = '(K,P) =

 '(K) = rain {-" "£■"} '
 (b) With the usual notation write

 '(P;x,h ) = '(x,h ) = sup{X ;'=' (K) , x e K, Kc] x-h , x+h [}
 o o o o

 then the coefficient of isolation of x in P is

 Mx,P) = X(x) = X = lim '(x,h ).
 h ->0 °

 o

 Remark (9). In the definitions of '(x,h ), and a(x,h ), we only require that
 o o

 either x+h or x-h be in P.
 o o

 (10) Clearly 0 X ®, and the larger ', the rarer P is near to x.

 2e

 Example (3). In C( [a,b] ? e), '(K .) = n , 1 < i < 2n. - ni 1-e , - - ■
 n

 The following result gives the fundamental relation between a and '.

 Theorem 2. Max{ 1 , '(x,h )} < a(x,h ) < 1 + 2X(x,h ),
 o ~ o - o

 and the inequality on the right is strict if '(x,h^) is not an

 attained value; in particular max(1,') <_ a _< 1+2X.
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 Proof. See [11, pp. 113-115].

 Remark (11) Although a(x) = 1 means that P is thick near to x, it is possible

 to have ļ P ļ = 0 , but a = 1 on P .

 Example (4). Take the P of Definition 3 to be C = C( [a,b] ? e) with e
 o - -

 satisfying (a), (ß) and (e); let K, I, and J be as in Definition 3, and

 assume |j| |l|. For some n > 1, |j| = enPn J being the central removed
 open interval of some K . . Hence, from (a),

 n- 1 , i

 It EP 4 eP 1 2e

 X(K) - K ■ -FTP K - < p = TT 1-e "MR.). m (4) K -FTP 1 K 1 - p TT 1-e m 1 1 1 rn n

 From (4), and (e),'/xeP, X(x) = 0, and so, by (3), a(x) = 1. Finally,

 from (ß), I P I = 0.

 Two simple facts concerning isolated segments are useful.

 Lemma 2. (a) Let K be an isolated segment of P, c, d e P, K C [c,d] ,

 X(K) _> X? then (d-c) 2l (1+X)|k|.

 (b) l |k| <_ (b-a) ( 1 + f)2.
 X(K)>X

 Proof. See [11, pp. 11 6- 118].

 Remark (12). Since X(K) = ® only when K = [a,b] , (b) is equivalent to

 I |k| < (b-a) ^±1 .
 X<X(K)<® X

 Lemma 3. If are isolated segments with X(K^) J> 1/ k(K ) - 1' then

 either C k^, or K^C K^, or C' * 0.
 Proof. See [4, p. 118].

 Definition 4. An isolated segment K is called X-maximal provided

 (a) K £ [a,b] , (b) X(K) X, (c) K is not contained in another
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 isolated segment satisfying (a) and (b); the portion of which K

 is the containing segment is also called X-maximal.

 Example (5). By (4) for the Cantor ternary set C we see that for all

 1 2

 isolated segments K, of C, X(K) <_ 1 ; so = [0, -j] , = 1] are
 maximal.

 Remarks (13). If K is an isolated segment , X <_ X(K) < °°, and if K is not X-

 maximal then 3 isolated segment K^^pK, X <^X(K^) < ®. Hence, by Lemma

 2(a), |ki I 2l + X ) I K I ; This implies that after a finite number of such

 inclusions, K C K Ç* ... Ç-K , K must be X-maximal. W 1 * 2 * ... * n , n

 (14). If X _> 1 , then by Lemma 3, all X-maximal segments are disjoint.

 Lemma 4. If X >_ 1 let be the set of X-maximal segments, then

 Proof. By Remark (14), is a disjoint family ; let be collection of

 intervals between the elements of this family.

 Clearly ü'<=- [a,b], and since all of these sets are disjoint,

 ?|ixl + 1''' < b"a-
 However |k^| _< ļ I^ ļ , where I^ is either of the isolating intervals

 of ? hence 2 )! 1 1^1 >. X 1 1 KjJ •

 These two inequalities give the result.

 Remark (15). Example (5) shows that (5) cannot be improved.

 We now define some subsets of P that are crucial for Den joy1 s

 applications of the index of a set.

 Definition 5. For each X, 0 <_ X < we define

 (a) J(P,X) = J(M = (x,'3 K, X ér K and X(K) X} ;

 (b) I(P,X) = I(X) = P - J( X ) ;
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 (c) 0(P) = 0 -HJ(X);
 '

 (d) Q (P) =Q=P-9=V I(').
 A.

 Remarks (16). If x e J(X) then x is in a X-maximal portion of P. So"J(X) is

 the union of all such portions, that are, when X >_ 1, disjoint, (Remark

 (14)). In particular J(P,X) is open in P, and I(P,X) is a closed set.

 (17). If x is a point of accumulation of X-maximal portions,

 x J(X) or

 (18). Remarks (16), (17) allow us to give a simple description of

 J(X), X 2l 1 • lies in the contiguous intervals of I(X), and on each such

 contiguous interval consists of a countable number of disjoint X-maximal

 portions of P; if these are infinite in number they can only accumulate at

 the end points of the contiguous interval

 (19). Obviously if X <_X' then J(X) D J ( X * ) .

 Lemma 5 (a) If X >_ 1 then |j(X)| <_ *

 (b) 1 0 (P) I = 0.

 (c) If x e I(P,X), x+h e p3 x+h e P, lim x+h = x, such that
 on n

 n-H»

 Ih 1 l<|h|<(1+2X)|h 1 1 1 l,n>0;in 1 particular 1 n+1 1 1 n1 1 n+1 1 -

 a (x) _< 1+2X.

 Proof. (a) Immediate from (5).

 (b) Immediate from (a).

 (c) If x e I(X) and x e K, K an isolated segment, then X(K) < X.

 The result follows from Theorem 2 and Remark (6).

 Corollary. Q(P) = {x; a(x) = ®} ; Q(P) = {x;a(x) < »} .

 Proof. If x e Q then, Lemma 5(c), a(x) <®.

 On the other hand if x e fi then Vx, x e J('), and so '(x) = <*>, which,
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 by Theorem 2, means that a(x) = ®.

 5. Den joy1 s Classification of Perfect Sets.

 Definition 6. If P is a non-empty perfect set then?

 (a) P is of type one, P ^ D^, if 3 such that if ' > then
 J(P,') = <t>.

 ( b ) P is of type two , P £ D^ , if 9(P) = <f> ;

 (c) P is of type three, P£ D^, if Q(P) and Q(P) are both
 everywhere dense in P;

 (d) P is of type four, P¿ D^ , if P f. D^ 'j D^ 'j D^;

 (e) if P g D^ ^ D^, P is said to be of definite type.

 Lemma 6. If P ft D^, then a is bounded on P, but not conversely.

 Proof. If P t then P = I(P,'); for ' > X , with ' defined by Definition
 i o o

 6(a). Hence if x ft P, a(x) < 1+2' , by Lemma 5(c). That the converse is
 - o

 false can be seen by the following example. Let I , n > 1 , denote the
 n

 contiguous intervals of C , (in [a,b]); on each I place a copy of C on the

 I1 n I it œ, n it œ,
 central closed interval of length - - - , P say. 1 Now let P = C w u v P ; 2n+1 , n say. 1 o u w v , n

 n=1 ,

 since 'f x£ C , a(x) = 1, it follows that for all xg P, a(x) = 1. However

 '(P ) > n and so ^ P ť J(P/M; in other words J (P,X) * <ļ> so P ¿D., P n >X n P 1
 Let us give some examples of sets of the various types.

 Example (6) Let = C ( [a,b] ; e) where e_ satisfies (6). Then, by (4), if K

 2Cn 2ei 2ei
 is an isolated segment of C , '(K) <_ i I G 1 £ - O i G 4

 n 1 - 4 1

 that C & D. . Further, from Lemma 2, or Lemma 5(c) ' tr x, x+h C„ T~x+h f- C. i ' ' o wn*"!
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 (1+3^)
 n > O, lim x+h = x with Ih ■ J < Ih 1 I < - - ri ■ n+11 1 n1 1-e„ 1 n+1 . 1
 n-x» 1

 1+3e

 ct(x) -

 ei

 Remark (19). If P £. then since Q(P) = P, ļpļ = 0, (Lemma 5(b)).

 Example (7). Let = C([a,b]; e_) with e_ satisfying ('i) and (v). Now given

 2ei
 any X let n be the smallest integer for which > X. Then, by (4), the

 n

 K . , 1 < i < 2nm are X-maximal and so J(P,X) = C_; hence C_ AD., ni . , - - 2 2 2

 Remark (20). If thenj^X, J(P,X) is everywhere dense in P, while I(P,X )

 is nowhere dense in P.

 Example (8). Let C = C( [a,b] ? e) , with satisfying (y ) and (6), and let the

 contiguous intervals of C on [a,b] be I , n > 1 . On each I place a central
 n - n

 00

 closed interval J of length o(|l I), as n + « and put P = C u j .
 n n 1 . „ n

 i=1 . „

 Replace, in P^, each by a copy of P^, to obtain a set P^r y T^e

 set P2 consists, as did P^, of a nowhere dense, thick-in-itself , perfect set,

 together with a set of central closed intervals on certain of its contiguous

 intervals. Replace, in P^/ each of these central closed intervals by a copy
 00

 of P , to obtain P.., P0 C Repeating this define C_ = f ' ' P . Then I 3 3 2 3 ' n
 n=1

 and is thick-in-itself, see [11, pp. 123-125].

 (9) On [a,b] place the points a with a <a <a . < b, n £ ^ Z , and n n n+ 1 ^

 lim a = a, lim a = b. If n = i (mod 3), place on [a , a J a copy of C ,
 n n n , n+ 1 i

 n*-® n-HD

 GO

 1 < i < 3, P say; if then C. = {a)o(b}o^ P , C. t D ..
 n 4 n 4 4

 n=-<®

 Denjoy proves two theorems that elucidate the structure of certain
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 perfect sets.

 Theorem 3. If P = Q(P) and x 6 P define

 a'(x) = max{a', y h ,x+h £ P T x+h €• p/ lini/ x+h = x and
 o o ° n n

 n->oo

 Ivj < |h„l
 then either a' is bounded on P or 3 a closed nowhere dense subset

 of P, H, such that if Q is closed portion of P, Q ^ H = <b , then

 a1 is bounded on Q.

 Corollary 1. If P = Q(P) and P^ then 3 a closed nowhere dense set H such

 that if Q is an isolated portion of P, Q/^ H = (1), then Q £ .

 Proof. See [11, pp. 148-149].

 Corollary 2. If a is a finite on P then at some point of P both a+ and a
 are finite.

 Proof. From Corollary 1 it is sufficient to prove this for sets P^ .

 Let us suppose then that for some ', P = I(P,') and further assume

 that V x either a+(x) or a (x) is infinite.
 Choose x £ P isolated on the left, by an interval I say, and assume

 that arbitrarily near to x, on the right, all points of P of the second type,

 y say, have a+(y) = °°. Choose one x+h, say, so that > X* If K is an

 isolated segment [x,x*] in [x,x+2h], with J its right isolating segment then

 X > '(K) = min { .

 Consider a sequence of contiguous intervals of P in [x+h, x+2h]

 converging to x+h; since a+(x+h) = ® there is one, J = [x+h^ , x+hQ] say, with
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 ^ > X + 1? but then if we take K = [x,x+h^] we have that X > X(K) = -j^j- =
 h - h
 Ol.

 - T

 h1

 If all the points of second type near to x on the right have

 a+(y) ® they must have a_(y) = ®. Then we can choose an x', isolated on

 the right , with all points y arbitrarily near to it, of the second type

 having a (y) = ®, and we can proceed as above.

 Remark (20). In particular this shows that while a point can be a point of

 porosity and have a finite index, this cannot happen at all points of a set.

 Theorem 4. If P e D. and
 4

 H = {x; x is not in a closed portion of definite type}

 then H is a closed nowhere dense subset of P.

 Proof. Suppose P contains a portion Q , no closed sub-portion of which is of

 definite type. Then clearly Q is nowhere dense since intervals are of type

 one. If then Q is an isolated portion of Q and if yx e Q a(P,x) is finite,

 /V »V

 then a(Q,x) is finite, and so by Theorem 3 either Q e or Q contains an

 isolated portion of type one.
 li łKt r*j

 If 7x e Q, a(P,x) = ® then Q e So finally, if Q contains no portions of

 definite type then ß(P) and 0(P) meet every portion of Q and so Q e D^.

 Remark (21). If then P is nowhere dense, P z and x j, H then x belongs to

 an isolated portion of definite type. However if Q is an isolated portion of

 P, QC' H = it need not be of definite type; but it is the finite union of

 disjoint isolated portions of definite type.

 (22). A contiguous interval of H can contain infinitely many isolated

 portions of definite type; any two are either neighbours of different type,

 or one separated by at least one portion of different type.
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 Section 2: Applications of Den joy' s Index - I.

 1. Introduction. In this section a survey is given of Den joy1 s use of his

 index to obtain deep properties of the second symmetric derivative. While

 some of the results have been proved, and extended, by other methods, (see

 the papers of Marcinkiewicz and Zygmund* Bullen and Mukhopadhy ay ) , Den joy' s

 techniques are more elementary, very closely connected to interesting

 properties of the real line, and give some very precise results not obtained

 by the other methods. His arguments being based on his concept of index

 should be of interest to workers in differentiation, and deserve to be more

 widely known. Denjoy himself considered this work to be second only to his

 fundamental research on primitives, (see the article by Cartan in Denjoy

 [13]), but his papers are too short, and his book, (Denjoy [11]), contains

 such a wealth of detail, and is so general that the main line of reasoning is

 sometimes obscured.

 2
 2. Preliminaries. If F : [a,b] •> R is continuous and such that D F = f

 s

 exists, (finite), at all points of ]a,b[, where

 2 A^F(x,h)
 D F(x) = lim

 s h+0 h2
 2

 A F(x,h) = F ( x+h ) + F(x-h) - 2F(x),
 s

 2 2
 then we will say f is N -integrable, f e N , with F, unique up to an affine

 s s

 2 2 r
 function, ein N -primitive of f, F = N - Jf. The unique such primitive that

 s s

 is zero at a and at b is
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 F(x) = F(x) - F(a) + ^ (F(b) - F(a)); (1) D"~SL

 and we will write

 2 fX ~
 N - J f = -F(x) = (x-a)(b-x)V (F;a,x,b), (2)
 S (a,b)

 where

 TT 0.x _ F(a) F(x) F(b)
 2 'a'X/ _ (x-a)(b-a) (b-x) (x-a) (b-a)(b-x) '

 = 1 1 rF(b)-F(x) F(x)-F(a)| b-a 1 b-x x-a ' '

 is the second divided difference of F at a, x, b.

 2
 If also f e L then an N -primitive is

 x u

 F(x) = / / f(t)dtdu
 a a

 and

 x x b

 N -/ f = 77- (b-x) / J (t-a)f(t)dt + (x-a) J J (b-t)f(t)dt . (4) s , , x 77- b-a J J , (a,b) , x a x

 (Integral signs not prefixed will always denote Lebesgue integrals , unless

 the context makes another meaning obvious. )

 2

 Remark (1). DgF(x) is called the second symmetric derivative of F at x; the

 upper and lower second symmetric derivatives of F at x are easily defined,

 - 2 2
 and are written D F(x), D F(x) respectively,

 s s

 2
 The object of this paper is obtain differential properties of N -

 s

 primitives, or more generally of F : [a,b] R that are continuous and

 satisfy

 2 -2
 -«<DF<DF<®. (5)

 - S - s
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 2 ~~2 .2
 If then f is a function such at D F(x) < f(x) < D F(x) let us say f is N

 - s - - s s, g

 2 . .
 integrable , and that F is a N -primitive. . .

 s , g
 2

 Remarks (2). If F is a N -primitive it is smooth. If we require F to be a
 s , g

 smooth then we need only require (5) to hold n.e.

 (3). Den joy obtains the results in such a precise form that given a

 2 2 X f 2 it is possible to calculate N 2 - / f. This topic will be taken up
 S,g S (a,b)

 in section 3.

 By familiar arguments, see for instance Saks, pp. 238-240, [a,b] can be

 expressed as a countable union of closed sets E = E(A) = E(A,e), A > 0,

 e > 0, for which

 Vx^E, 0 _< h _< e, |A2F(x,h) | £ Ah2. (A)
 So we first consider what can be deduced about an F defined on [a,b] that

 satisfies (A) on a set E that consists of one, two, three, four, any finite

 number of points, is an interval, is perfect.

 3. The Process of Successive Symmetries [11, III, pp. 231-244]

 If in (A), A = 0 and 0^ £ E then P^ (0^ ,F(0 ) ) is a centre for the graph

 of F; that is if (u,v) lies on the graph so does (s,t) where 0^ = -j(u+s),

 F (0 1 ) = also 02^ E p<| an(* P2^2' are centres
 and the graph of F is periodic about the line through period

 2|PiP2|. oscillating equally on both sides of this line; (if further 0^ £ E
 then and P (0 ,F(0 )) are collinear). Suppose u * 0-/A then from
 I O W I ta

 M(u/F(u)) we can construct a doubly infinite sequence of points on the graph
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 by taking images alternatively through P^ and P^ , starting with either P^ , or

 P^. Thus is the image of M through P^, the image of through P^f

 etc; while M is the image of M through P^f M_2 the image of M through P^

 etc. We will call this the process of successive symmetries (SS). Let us

 write 0^ = 0„ + k, and assume k > 0, u = u = 0„ + h; if / for m £ Z, u is
 2 1 oi m

 the first coordinate of M then:
 m

 u^ = u + 2mk,
 2m

 u_ _ = 20_ - u_ = 20 - u - 2mk;
 2m-1 _ 2 2m 2

 or ( SS )

 "2m-6! " B1 " u2m+1 = h ł 2"*'

 a2^2 • " * h * ,2m"1)k-
 (In (11, p.232) there is a diagram that illustrates (SS).)

 If A > 0 the above remarks are only approximately true, but (A) can be

 used to estimate the error in these approximations.

 Remark (4). Throughout ô, Ô1, 6^ etc. will always denote numbers, not

 necessarily the same, between -1 and 1.

 Lemma 1. (a) If (A) holds at 0 , F finite, and if u + u^ =20
 then

 F(u^) = - F(u) + 2F(0) + 6 A ( u-u ) ^

 (b) If (A) holds at 0., 0 with 0 „ < 0-, F finite and if u , 12 „ 12 m

 m ^Z, is defined by (SS), and D is the largest of the

 distances of u and u_ from {0«,0_} then
 2m 1 2

 F (u ) = F(u) + 2m{F(0_) - F(e.) + 6 AD }, (6)
 zm 2 1

 or
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 F (u )-F(u) F(0_)-F(G ) 2
 2m 2 1.. o AD , _ . ,

 v^r,«71
 (c) If (A) holds at F measurable, (or bounded),

 1^2 " ß1 1 - lñ3 ~ 01 1 ' D = <ìiameterifì1/®2'03^ ' then

 F(fì3)-F(Q1) F(V-F(V 36AD2
 03-0, * 02-0, "e,-*,

 (d) If (A) holds ^1^2/(^3/^4/ F measurable, (or bounded),

 I^-gJ £ |03-04|, ¡04-01 1 = max|0^-0 j 1 1 then

 F(0/i 4 )-F(0_ 3 ) F(ft 2 )- F(0.) 1 (0,- 4 0.)2 1 4 3 2 1 4 1

 or

 F(fl ) - F(0 ) 2(0 -ft )

 r'V-"1,) ■ 'W 9 -B
 4 3 4 3

 Proof . See [11, III, pp. 235-244] .

 Remarks (5) While (c) can be proved directly it is also a consequence of

 (d), putting 0^ = G ^ , or = G .

 (6) If 2 1 © 2"^ 1 1 < 1^3~ ®4 1 the coefficient 3 in <7)/ and (8)/ can be

 improved to 2 .

 4. Variational Properties. If now F is finite measurable, (or bounded), and

 satisfies (A) at n + 1 points u^, 0 i n, ordered as
 c=u < u_,... <u = d then from (81) and for 1 < i < n,
 o 1 n - -

 u. - u. 1 2
 F(u . ) - F(u 1-1 . .) = (-Ą d 1 . 1-1 . d - c 1 1

 which on adding gives

 102



 n 2
 J |f(u.) - F(u . 1 .)| ' < | ' F ( d) - F( c) I ' + 3nA( d-c) 2 . (9) .'l 1- . 1 ' ' '

 1=1

 However , when n > 3, (9) can be improved •

 Lemma 2. If F is finite measurable, (or bounded), and satisfies

 (A) at u, , 0 < k < n, c = u <...<u = d, then
 k - - o n

 n 2
 y " |f(u.) ■ - F(u ,)! 1 < I 1 F ( d) - F( c ) I 1 + 18A(d-c) 2 . (10) , " ■ i n-1 1 1 1

 , k=1

 Proof. If a is the partition of [c,d] given above we will arrive at a by a

 finite number of intermediary subdivisions, a ,...,a = a, by adding the
 o m

 points in a particular way; we will renumber u0* • • • 'un ^ n orc*er in which

 they are used, calling them v ,...,v .
 o n

 (i) a is just v = c, vA = d; let S = |f(v.) 1 - F(v )|. 0 o 1 o 1 1 o'

 (ii) aA is formed by adding, to a , the two consecutive points of a
 1 o

 c+d c+d
 that straddle , or if - is a point of a, by just adding this point to

 a . Thus a is either v ,v^,v„,v., or v ,v -v„7 in either case K = [c,d]
 o o o231o21 o

 can be considered as the union of two closed intervals K.. = [v ,v,J ,
 II O 2

 = tv3'v^ anc^ a' possibly empty, open interval 1^/ anc* -^2^'
 i = 1,2. Applying (9) to we get

 s, = |f(v2)-F(vq) I + |F(v )-F(v )| + |F(v )-F(v )| < I F(a)- F(c)| + 9A(d-c)2
 (iii) Now add points to same way as P°^-nts were added

 to K ; this gives a . Then [c,d] is the union of four closed intervals, K ,
 o a 2 1

 |k I _< 1 £ i 4, and at most three open intervals I , I , 1 <. i <. 2.

 Applying (9) to both and we get the sum over this partition, ,

 satisfies
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 S2 < Sļ + 9A( I K1 1 I 2 + I K12 I 2 ) <_ I F ( d) - F( c ) I + A(d-c)2.

 Continuing in this way we find that at the qth stage , [c,d] is the

 Q i i b- a cr cr
 union of 2 closed intervals K . , K . <

 ql ql 2q "" ~~
 p- 1

 1-open intervals I.,1<p<q, 1<q, 1<i<2^ . Further the sum over
 pi - - - - -

 this partition is S and
 q

 q-1 2
 S < I F ( d ) -F ( c ) I + 9a y yP Ik .I2 < I F ( d ) -F { c ) I + 18A(d-c)2(1 - - ) (11)
 q p=0 j=1 P] 2q

 Since for some q, a = a this completes the proof.
 q

 Remarks (7). If F, finite measurable/ or bounded, satisfies (A) at all

 points of a nowhere dense perfect set P with extremities c, d then (11) holds

 for all q since we can use the contiguous intervals to perform the above

 c+d

 construction. Let 1^ be the contiguous interval whose closure contains ,
 c+d

 or take 1^ =4) it - - is a point of P of the second type : in either case we

 can write [c,d] as the union of two closed intervals ^ 2 '
 containing P, and a, possibly empty, open interval I ; this procedure can be

 repeated in definitely.

 (8) Clearly from Lemma 2 if F, finite measurable, satisfies (A) at all

 points of an interval [c,d] then F £ BV and its variation is bounded by the

 right hand side of (10).

 However more is true.

 Theorem 1. If F is continuous and satisfies (A) at all points of a perfect

 set P then (a) F£ B V (P), (b) if |p| = 0, F AC(P).

 Proof. It suffices to consider P a nowhere dense perfect set.
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 Let a=b < a. < b. < . . . < b < a , _ = b, where [a, , b ] , 1 < k < n, o11 nn+1 , k , k , ~ ■

 are the first n of the closed contiguous intervals of P enumerated in any

 order. Then, by (10)

 n n+1

 y ļ F (b ) - F(a )| + y |F(a ) - F(b ) |
 k=1 K K k=1 K * 1

 < I F(b) - F(a) I + 18A(b-a)2.

 This suffices to prove (a). Further if

 n+1

 VT(F,P) = lim y I F(a ) - F(b )|,
 k=1 K

 (Denjoy's total variation of F on P, see Denjoy [11, §45] ), then

 VT(F,P) £ ļ F ( b) - F(a) I + 18A(b-a)2.

 If we apply this inequality to

 F (x) = F(x) - F(a) - { F ( b ) - F(a)} ,
 i D-a

 we get

 2

 VT ( F ļ , P ) £ 18A(b-a) ;

 and of course for any c, d, a. <_ c < d £ b

 I F ( d ) - F(c ) I <_ ļ F 1 (d) - F 1 ( C ) ļ + ļ F(b) - F(a)|

 Hence

 VT(F,P) <_ VT( F^ ,P ) + p I F( b) - F(a)|

 <_ p ļ F(b) - F(a)ļ + 18A(b-a)2,
 n+1

 where p = 1im 1 J (av~ K K~ I ' = avera9e density of P on [a,b] . In , , « K K~ I
 n-*» , b-a , k=1 «

 particular if ļ P | = 0,
 2

 VT(F,P) _< 18A(b-a) •

 Clearly this inequality can be applied with a, b, P replaced by any c,

 d £ P, P^ [c,d] respectively. Hence
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 11+ 1

 VT(F,P) = J VT(F,P n [b • ,a ] )
 k=1 K_1 K

 n+1 2
 £ 18A I (b - a ) 2 ;

 k=1 k 1 K

 letting n 00 implies VT(F,P) = 0, which completes the proof of (b).

 2
 Corollary 1. If F is a N -primitive then F ACG; in particular F' exists

 s,g ap

 a.e. and is D-integrable .

 Proof. This is an immediate consequence of Theorem 1(b) and an important

 result of Den joy; see Lebesgue, p. 234.

 5. Differential Properties

 Remarks (9), If a(P,x) = a(x) < <*>, (see section 1), then

 a 1 > a 3 X + h e P, with 1 Ih _ I ' < ļh 1 I ' < oc • ' ! h I ' , n > 1 , and lim h = 0 . n 1 n+ 1 _ ' 1 n ' ' n+ 1 ' , - , n
 n-*œ

 It is possible, by choosing a suitable subsequence if necessary , to assume

 that J? x + h e P, such that 2 1 1 h J < Ih 1 I < 2a1 Ih 1 J, ' n> 1 , lim h = ()• n 1 n+11 - 1 n1 1 n+1 ' - , n
 n-*®

 (10) If 2 1 1 k I ' - < Ik 1 I 1 < ß I k | 1 , n - > 0 then 1 n+ 1 ' - 1 n 1 'n+1 1 , -

 k2

 u" * ,1 1>n TîTTTT 1 1+1 ' * pIVil- " i '• 1>n 1 1+1 '

 Lemma 3. Let F be continuous at x and satisfy (A) at x and at x + k^, where

 2 1 k „|<|k|<ß|kJ,n>1, and lim k = 0, then F'(x) 'n+11- 'n' 'n+1' - n
 n-*»

 exists.

 Proof. We may assume, by omitting some points if necessary, that 2 1 k ^ | < e ,
 F ( x+k )-F(x)

 (e in (A))? let Q =

 n k n
 n n*®>

 Apply (7), (with Remark (6)), to 9 = x, 0 = x+k 0_ = x+k , when
 1 2 n+1 3 n

 N < l*„l + l*nł,l < 2lkJ'
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 k2.

 c„+, - 1 8V iirb" 1 ' ' 1 n+1 '

 and so

 2
 n+p- 1 k .

 Q , = ß *n + 8A I 6. tt~ n+p , *n .-J i 1 k i=n 1 1+1 1

 So, by Remark (10), lim Q exists, Q say, and with the notation of Remark
 n->°°

 (10).

 Q = Q + 8AÔ 0) . (12)
 n n n

 We now want to estimate F ^ ^ F ( x ) _ an(j f±rst assume 2 | k^ ļ < h < e.

 Apply (SS) with UQ = x+h and A ^ as x' in some order; (Q^ = x, 0^ =

 x+k if k4 > 0, the other way if k„ < 0). Write u„ = x+h = u ? where
 11 1 11 - 2nij

 m^ > 0 is given by m^ < - j- <_ + 1 .

 Suppose now u = x+h ,...,u, „ = x+h. „ have been obtained, together
 11 j-1 „ 3-1 „

 with the positive integers m . ; apply (SS) with u = u. „ and 0 . Q
 1 j-1 o j-1 „ 1 2

 as X, x+k. in some order; write u. = x+h. = u Ä where m. > 0 is given by
 3 3 3 -2m.. Ä :

 h-i
 iUj < ^ i _< irij+ 1. Then we can easily verify the following:

 0 < h <2|k I, » < ^ 1 1 < ļiķl I , J > 1, 1 D' : (13)

 h = V 2m. ļk. I, h = J 2m . I k . I , n > 1 . J V J t' n J n . n J . , - jVI J V J n j_>n+1 J n n J
 Now , by ( 6 ) , j >_ 2 ,

 h2

 F ( x+h ) - F ( x+h 1 ) = 2m1|kļ|(Q1 + 6^ ļļ^j) /
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 b2_1
 F ( x+h . ) - F( x+h . ) = 2m . Ih . I (p . + 6 . A - r ;

 3-1 . : . D . D' . J . J . |k I

 or using (12) and (13),

 h3

 F (x+h) - F ( x+h ^ + 86 ļ At*> ļ ) + Ô^A ļļ^~ļ"

 *•-1
 F(x+h . . ) - F( x+h . ) = 2m|k . I (0 + 86 .Ato .+ 46 !A )

 D-1 . . 3 . r . 3 3 J k

 = 2m . I k . I ( Q + 46 . Au . + 46 Alo . )
 J' . D' . J . J . J D-1 .

 = 2m I k j I (Q + SÔAti^).

 Adding these results, noting that lim F(x+h.) = F(x), we get, by (13),
 j-Mo ^

 that

 h3

 F ( x+h ) - F ( x) = hQ + 8ßAhO)1 + 6 'A y (14)

 Hence if we assume that h < ß|k | < e, by Remark (10),

 F ( x+h ) - F ( x) = hQ + 166 Aßh2; (15)

 and by a similar argument (14) and (15) hold if 2 | | < |h| <ß|k^| < e.

 If we now assume that 2|k^| < | h | <_ 2|k^ ^ | we can also prove that
 h3

 F ( x+h ) - F ( x) = hQ + 166 AhO)^ + 6 'A -jļ^ - p ? (14-q)

 and if in addition 2 < |~-| < ß then (15) again holds.
 h

 q

 This proves that F*(x) exists, with value Q.

 Remark (11). Let P be a perfect set, P ^E(A), and suppose} a such that x,

 x+k^ £P ^x+k^£- P with kR ■* 0 and |^n+-ļ| < l^nl < al^cn+'ļl/ by Remark
 (9) we can apply (15) to any two points of P with ß = 2a . Hence if x,

 x+h £ P
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 F ( x+h ) - F ( x) = hF'(x) + 32ÔAah2/

 = hF 1 ( x+h ) + 326'Aah2;

 which gives that |F'(x+h) - F1 (x) ļ < 64Aa|h|: or F1 is continuous on P.

 (12). The above remarks applies in particular to any P e D ^ , and to

 I(') = I(E,'), when a = 2' + 1 , (Lemma 5(c) of Section 1). In the latter

 case, if D is the diameter of I(X), then Vx e I(X)/ |h| < (2' + 1 )D

 F ( x+h ) - F(x) = hF'(x) + 32ÔA(2' + 1)h2; (15-X)

 and if x, y are on I(')

 F(y) - F(x) = (y-x)F' (x) + 326a(2' + 1)(y-x)2,

 = (y-x)F'(y) + 32Ô'A(2' + 1)(y-x)2, (16)
 and so

 F'(y) - F 1 ( x) = 64ÔA(2X + 1)(y-x). (17)

 Corollary 2. Let P be a perfect subset of E (A) for which 0(P) is nowhere

 dense. Then, except at the points of nowhere dense subset of

 V, F 1 exists and is continuous relative to P.

 Proof. By theorem 2 of section 1 this is an immediate consequence of Remark

 (11).

 Corollary 3. On I(') , F1 is continuous and satisfies a Lipschitz condition;

 further (F1)' exists a.e.
 I ( A. )

 Proof. The first part is an immediate consequence of Remarks (11) and (12).

 Let c, d, c < d, be the extremities of I(') and define $ to be F' on

 I('), linear on the contiguous intervals, and continuous. Then ö satisfies

 the same Lipschitz condition as F* and so $>' exists a.e. on [c,d] . Clearly

 at all non-isolated points of I(') where $'(x) exists we have
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 « . , , , . F (y)-F' 1 (x)
 $'(x) « . , , = lim , .

 y - x I (X )
 y+x

 yel( ' )

 Remark (13). In particular ( F 1 ) * exists a. e. on I('), and so, by Lemma 5(b)
 ap

 of section 1 , a. e. on E(A).

 (14). Let us write

 <t> ( x ) = (F1)*,- (x)# whenever this exists, I ( A. ; (18)

 = 0, elsewhere on [c,d]

 Further denote by ]c ,d [, n > 1 , the contiguous intervals of I('), on [c,d] ;
 n n -

 and for n >_ 1 ,

 F(d ) - F(c )

 s =
 / a« »

 n n (19) / a« »

 t = F 1 ( d ) - F (c ).
 n n p n

 From (16),

 Is I < 32A( 2X+1 ) ( d -c ) ;
 'n' n n

 from (17) (20)

 It 1 I < 64a( 2'+1 ) (d -c ). 1 n1 n n

 Corollary 4. Let

 H = {x; x e I ( X ) , exists, and a+(x) = a_(x) = 1},

 then if x e H, F(2)^x^ exists# precisely
 h2 2

 F ( 2 ) ( x) = *(x)^ F<x+h) - F ( x ) = hF'(x) + j- (J) (x) + o(h ).

 Proof. We introduce two auxiliary functions; G, being the simplest function

 agreeing with F on I(') and having the same derivatives as F at c , d ,
 n n

 n > 1; and M = F - G. Simple calculations show that if c < x < d , then
 - n n

 x-c (x-c )(d -x )

 G ' (x) = F'(c ) + . n (F'(d )- F'(c )) + 'i
 nd-c . n n n d - c
 n n n n
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 ( x-c ) 2
 G(x) = F(c ) + (x-c )F'(c ) + , n n n n 2 , ( a -c ) n n

 n ri

 2 3
 (x-c ) (d -x) (x-c )

 n n __n_> #
 2(d -c ) 6(d -c )
 n n n n

 where

 6s
 n

 *'i ~ d -c '*
 n n

 F* (d )-F' (c ) d -x

 M(x) = F (x) -F(c n )- ( x-c n ) - ( x-c n ) F * (c n )-( x-c n ) { n n n n n 2 ryr ( d -c ) n 2 ( a -c )
 n n n n

 x-c

 ł % 6{d -c )'•
 n n

 From (20)/ we have |n I < 192A(2'+1), and so from the above definitions , and
 n

 G» (x)-F' (c^)
 (17), if c < x < d ,

 n n x - c I n
 n

 replaced * by 2 d . Further from (20), and (16), if c < x < d * 2 n . n - - n
 2

 |m(x) I < 160A(2'+1 ) (x-c^) , and similarly with c^ replaced by d^.

 Suppose now 0 e H and consider

 M(x)-M(0) M(x) ^ ^ „
 - r 0 - x 0- x , n n

 = 0, otherwise.

 x-c d -x

 From hypothesis, a, (x) = 1, it follows that both - - and - - tend to zero
 ± x-0 x-0

 as x -> 0, (see section 1). Hence M*(x) = 0 and M/~v(x) = 0*
 V ^ /

 We now show that G" (x) = ())(x), which will complete the proof. From the

 above definitions and estimates, if x, y are any two points of [c,d]

 |G'(x) - G 1 ( y ) I < 256A(2'+1 ) ļ x-y | . (21)

 Suppose then 0 e H and x e I(') then

 G ' (0 ) - G'(x) = F ' (9 ) - F ' (x )
 0 - x 0 - x
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 which tends to <t> (0 ) as x •* 0 . If however c < x < d , then
 n n

 „ł#A, G' - G1 , G 1 (x) - F(c ) x - c F1 (c ) - F 1 (0 ) c - 0
 „ł#A, G' (0 ) - G1 (x) ,

 O - x x - c 0 - x c - 0 0 - x
 n n

 From the above estimates the first term on the right hand side tends to zero

 since a+(x) = 1; in the second term the limit is <t>(x), and the lemma is

 proved.

 Remark (14). From Corollary 3 and Corollary 1 of section 1 , F (x) exists
 ' ¿ )

 а.e. on I(')/ and so a.e. on E ( A) .

 2
 Theorem 2. If F is a N -primitive, ^ F' exists a.e., as does (F1)1 which

 s , g ^ ap

 is, a.e., equal to F^)*
 Proof. This follows from Remarks (1), (12), (13) and (14).

 б. Some Generalizations. Much of the above discussion can be carried out

 with (A) replaced by

 4 E, 0 _< h £ e, |A^F(n,h) | <_ <Mh) (Y)
 where <Ļ is an even function, increasing with |h|. Thus lemma 1 remains valid

 2 2

 if expressions such as A(u-u^ ) , AD (in (6), (61), (7)) etc. are replaced by

 (Ku-u^), (MD) etc.
 2

 Similarly we can prove Lemma 2, but in (11) the expressions AlKpjl

 become (M|k .|)/ and so the last term on the right hand side of (9) can only

 q"1 b-a
 be written as 9 £ 2*>(M

 p=0 2P
 However to obtain Theorem 1 , <Ļ must be required to be continuous and

 zero at the origin, and satisfy the important condition (B). The following

 lemma gives four equivalent forms of condition (B).
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 Lemma 4. The following four conditions are equivalent:

 3 u,ul<t<u,n>1, lim u = 0 such that 00 / u u,ul<t<u,n>1, lim u = 0 such that / u n n+1 - n - n u . u , „ n-H» n=1 . n+1 , „
 œ

 (b) if a > 0 J ) < ®?
 n=1 n

 00

 (c) if d > 1, a > 0 T d" 4» (- ) < ®;
 n=1

 (d) / du <
 0 u

 Proof. See [11, II, pp. 225-227].

 Note that the convergence of the series in (a) does not imply the

 œ cp ( 2u )
 r n

 convergence of the series ¿

 n=1 Un+1

 required to prove Lemma 3, when (15) becomes

 4h <h(t) ^ F(x+h) - F(x) = hF*(x) + 46ß / ^ <h(t) dt.
 0 t

 2
 It is trivial to remark that the function Au satisfies condition (B).

 Section 3. Applications of Den joy1 s Index - II

 1. Introduction. In this section the results from section 2 are used to

 2

 calculate N^-primitives . Finally some applications of Den joy1 s index to

 first order symmetric derivative, and certain higher order derivatives, will

 be discussed.

 2 2
 2. Some Elementary Properties of the N -integral. Given f e N , (or more

 s s
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 2 2 ~
 generally, f e N ), with N -primitive F, indefinite integral F, (section

 s / g s
 2

 2(1)) then the N -integral of f will be defined by Section 2(2) whatever the
 s

 order of a, x and b, and will be zero if any two are equal. So if

 2
 f e N (a,b) and c, d, e are any points of [a,b] ,

 s

 26 6
 N - / f = / f = (e-c) (d-e)V (F;c,e,d) , c,d,e distinct
 S ( c , d) (c,d)

 = 0, otherwise (1)

 Remarks (1). V^(F?c/e/d)/ the second divided difference, is independent of

 the order of c, d and e.

 (2). In Den joy* s notation VR(F;c,e,d) = 2V2(F;c,e,d) and V(F;c,e,d)
 e

 = (e-c) (d-e) (d-c)V (F?c,e,d) , and so (d-c) / f = V(F;c,e,d) =
 (c,d)

 F(c)(d-e) + F(e)(c-d) + F(d)(e-c).

 Simple properties of give the following identities; let x,y,z, u and

 v be points of [a,b];

 y z u

 (z-x)(u-x) / f + (y-x ) (u-x) / f + ( y-x ) ( z-x) / f = 0; (2)
 (x,z) (x,u) ( x,y )

 y u u

 (v-u)(z-x) / f = ( z-y ) ( v-x) / f + (x-z) (v-y ) / f
 (x,z) (x,v) (y/V)

 u (3)

 + (y-x ) ( v-z ) / f.
 (z,v)

 Remark (3). If / f is known VceC, deD, eeE then using (2) and (3)
 (c,d)

 we can evaluate / f Vx,y,z e C V D O e.
 (x,y)
 2 2 2

 If f e N (a,b) and f e N (b,c) it does not follow that f e N (a,c), as
 ss s
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 2 2 rts
 the following example shows. Define f: [- - , - ] -► H' by,

 71 7t

 f(x) = 0, - - <x<0
 7t - -

 -3 -2 2
 = X cos ( X ) , 0 < X < - ;

 - 71

 v
 O O 9 *5 *5

 f eN ( sil , ,2„. 1 11 - - sit
 . 0)

 ū -1 2
 with J _ f = F„(x) = X cos(x ), 0 - < x - < - , 2, _ 2 - - 1t

 (0, -)

 = 0, X = 0.

 If then f e N2(- - , - ) , and F(x) = J 0 f, - - < x < - , then F would be S 71 , 71 , f Ł.' 0 71 - - 71
 71 ' 71

 smooth and, for some A, B, C and D,

 2
 F (x) = F 4 ( x) + Ax + B, 4 1 71 - -

 2
 = F0(x) + Cx + D, 0 < x < - ;
 2 - - 71

 2 2
 simple calculations show that this is not possible; so f / N (- - r - ) •

 ' s 71 71

 2 2
 Lemma 1. If f e N (a,b) with indefinite integral F4 and f e N (b,c) with

 s is

 2 F1 (b-h) + F2(b+h)
 indefinite integral F_, then f e (a,c) iff lim

 2 s , „ . h
 , b*0+ „ .

 exists, ' say; and then the indefinite integral on [a,c] is F

 where,

 x _ , X . ( c-b ) (x-a ) „ „ ,
 F (x) x = F„ _ (x) , X + . X 1 c-a , - -

 _ # % . ^ (b-a) ( c-x) , ^
 = _ F_ ( # x) % + . ' ^
 2 c-a

 Remarks. (4) The proof is by straightforward calculations; see Skvorcov

 [3] .

 (5) If Fj(b), F^ib) exist then X = F^ib) - Fj(b).
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 (6) If: f:[a,b] ■> IR is extended by periodicity to [b,c] , c = 2b-a,
 2

 (and still called f), and if f e N (a,b), with indefinite integral F, then
 s

 _ 2 , x . _ . F( a+h ) +F ( b-h ) p ^ ,
 f £ _ N (a,c) , x iff . _ lim .

 s , h
 , h+0+

 2
 (7) We say f: [a,b] > R is M-integrable iff f e N (a,b), and the

 s

 b

 limit in Remark (6) exists , X say; then M - / f = -X, (= F'ibJ-F'Ca), if the
 a

 derivatives exist); see Marik.

 2 X
 (8) IffeN 2 n L(a,b) then / f is given by (4) of section 2.

 S (a ,b)

 3. Some Extensions of Some Elementary Formulas. Let y , • • • ,y be any p+1
 o p

 points at which F is defined; the definition of easily gives the

 following:

 F(y^ )-F(y )
 (y -y-)(y 1 -y )V 2 (F;y ,yĄ,y ) = F(y )-F(y )-(y -y ) P 1 P ° 2 ° 1 p p o p o y. - y

 1 o

 p-1
 = ), (y -y ■ )u. ; (4)

 i=i p 1 1

 F (y )-F(y _ )
 ~(y_ .-y.Xy-y.tvJř.-y ,y . ,y ) = F(y)-F(y)-(y-y)-- 2 - - - E

 p ' o p o 2 o p . i p p o p ° y - y„ , p p-1 ,

 p-1
 = / ' (y -y . )u. ; (5) ' o 1 . 1

 1=1

 where 1 <_ i <_ p-1 ,

 ui ° (yi+l"yi-1,V2(F,yi-1'lri'yi+1)

 riy.^1 1+1 >"F(y . ) F(y.)-F(y. 1-1 ) 1+1 1 . 1 1-1

 yi+r yi yi " yi-i
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 Now consider a subdivision of [u,v] , u=y< ... < y - y < ... < y = v,
 o m m

 apply (5) to y , . . . ,y / and (4) to y , . . . ,y and add to get:
 o m in n

 v - y 2 J y - u y-u . i i v-y . -* , . i i m y 2 y J 1=1 . i=m+1 . , .

 Remark (9). If z^, are two further points where F' exists then from (6)

 we easily get:

 V
 F ' ( ) - F'iz.j) = w^z^ + ; uļ + w2(z2), (8)

 where

 F (y )-F(z )
 w (z ) =

 11 yo - z, 1
 F(z )-F(y )

 w2U ) - P'lr l - P •
 2 *P

 For later applications it is important to extend (4), (5) and (7) to

 obtain expressions where the terms on the various left hand sides are

 evaluated not at points of yQ'###'yp kut at limit points of such a sequence.

 Let u < y^ < v, y^ ^ < y^ , i ą Z, lim y^ = u, lim y. = v; (the case where
 i-»-- œ i-X»

 only one of u, v is a limit point can be considered similarly. ) Choose three

 other points y', y, y" with y^ < y' < y^+1 < yg < y < yg+1 < y < y" < yfc+1?

 (as we want to let y' -► u, y" v, missing the terms of the sequence avoids

 minor difficulties . )

 Define C (y',y) by the right hand side of (5) using y', y . , . . . ,y ,y,
 ~ r+1 s

 and C ( y , y " ) by the right hand side of (4) using y, y , . . . ,y ,y" :
 + s+1 t

 s-1

 C_(y',y) = (y'~yr+1 )u+(y' ) + J (y'-yi)ui+ (y'-yg)u_(y); (9)
 i=r+2

 t-1

 C+(y,y") = (y"-ys+1)u+(y) + I (y"-yi)ui+ 11 (y"-y )u_(y"); (10) i=s+2 11
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 where u (y1) ^ is u „ with y replaced by y', u (y) is u with y , . replaced + ^ r+1 „ r - s s+1 , .

 by y, u (y) is u . with y replaced by y, u (yH) is u with y replaced by
 + s+1 s - t t+i

 y" . (The suffix in C indicates the left point y' occurs in the expression;

 in u it indicates that in (6) the first term is altered, etc.)

 From (5), and (4),

 F(y)-F(y )

 C_(y',y) = F(y) - (y-y')

 y ys

 F(y )-F(y)
 C.(y»y") = F(y") - F(y) - (y"-y)

 ys+1~ y

 Assume now that F is left continuous at v, and right continuous at u

 then (11) and (12) show that the following limits exist; a fact that is not

 obvious from the definitions of C+/ (9) and (10);

 H+(u,y) = lim C_ ( y ' , y ) ,
 y '-*U+ (13)

 H_(y/V) = lim C+(y,y").
 y"-*v-

 From (11), (12) and (13)

 F( Ky> v)-F(u) F(y) - F(u) - (y-u) F( Ky> v)-F(u) = |i.(ufy) J (14)
 y - U + J

 F ( v) - F(y ) - ( v-y ) ^ = ^^(y-v) (15)

 Remark (10). (14) and (15) can be regarded as extensions of (4) and (5).

 The left hand sides, given the definitions of ļi+ , (13), can be found once all

 the u^ are known, i e Z, as well as u+(y), u < y < v, provided F is right
 continuous at u, and left continuous at v.

 Now define

 (y , v ) (u, y )
 c(u,y,v)

 v-y y-u
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 where

 F(y L,)-F(y) F(y)-F(y )
 u(y, , Sł1

 ys+r y " • ys

 then from (14) and (15)

 F(v)-F(y) * F ( y * ) -F ( u ) , ,
 v - y y - u

 Remark (11). This is the required generalization of (7), The left hand side

 of (17) is (v-u)V^ (F;u,y , v) , and (17) shows how this quantity, (or

 equivalently J f,) can be calculated from the knowledge of similar
 (u,v)

 quantities in ]u,v[, provided the limits (13) can be calculated; and for this

 the continuity of F at u and v will suffice.

 If we now assume the existence of F^(u) and F'(v) then, from (17) the

 following limits exist:

 'x('i,v) = lim c(u,u,v),
 y->u+ (18)

 v (u,v) = lim c(u,y,v) ,
 y+v-

 and have the values,

 F(v)-F(u) %
 H(u,v)

 v - u

 v F(v)-F(u)
 v(u,v) = F (v) v -

 v - u

 Hence the quantities

 s ( u , v ) = J(li(u,v) - v(u,v)),

 = F(v^ ^(u) - ""{f1 ( u ) +F ' (v)} ,

 (19)

 t(u,v) = H(u,v) + V ( U , V ) ,

 = F' ( v ) - F' (u) ,
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 can be calculated, as suggested in Remarks (10) and (11), from knowledge of

 various quantities in ]u,v[, subject to the extra condition that F^(u), F1 (v)

 exist. The quantities (19) are of importance for our calculation; see

 section 8 below.

 Remark (12). It should be emphasized that in all cases the limits need to be

 evaluated; they cannot be found by suitable substitutions into the

 definitions. Thus |i+(u,y) is given by (16) from (11) and not from (11) as

 C (U/y): see Denjoy [11, pp. 293-305] .

 X

 4. The First Set of Calculations. The process whereby / f can be
 ( c , d )

 2
 calculated, a<c<x<d<b, for a given f e N is called the second

 - - - - s , g

 order symmetric totalisation of f. If, given f: [a,b] R the process works

 2 2 X
 we will say that f e T 2 (a,b), and write the total as T 2 - / f, or just

 S 3 (C,d)
 x

 / f when there is no ambiguity. We wish to give the conditions under
 (c,d)

 2
 which this totalisation is possible, and then check that if f e N (a,b) the

 s,g
 X X

 2 r 2 f
 conditions hold and N-J f = T - J f. If, at any stage of the

 S (c,d) S ( c , d)
 process, this is the case then the process will be said to be satisfactory,

 at that stage.

 2

 Remark (13). This approach to T^-totalisation is modelled on that for the

 first order totalisations, see for instance Bullen [3] . However we will have

 2

 to change our approach and redefine what we mean by f e Tg(a,b); see
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 paragraph 5.

 Condition 0: (C.0). Let S = {x?a _< x _< b / f is not L-integrable at x} , then

 S, which is closed, is nowhere dense in [a,b] .

 2 x
 Operation 1: (0.1). If a<_c£x<_d<^b and f e L(c,d ) then T 2 -/ f is

 s (c, d)
 given by the right hand side of (4), section 2, (with,

 of course, a,b replaced by c,d).

 This operation calculates the total, by repeated Lebesgue integration,

 on any [c,d] with [c,d] Pi S = <ļ> .

 Remarks (14). (C.0) is made unnecessary by (C.3) below: see Remark (18).

 2
 (15). If f e N , P * <(>, perfect, then the set of points x e P, in

 s,g

 |AgF(x,h) I
 the neighbourhood of which A(x) = max

 h h

 a closed nowhere dense subset of P. If then [c,d] O S(P) = (ķ, A(x) is

 bounded on P H [c,d] . This shows that (C.0) is satisfied, and that at this

 stage (0.1) makes the process satisfactory.

 2 x
 Condition 1: (C.I). If T 2 - / fis known for all c,d,x, u < c_<x<^d < v,

 S (c,d)

 then Vy, u y v the limit as x + y, c u+, d v- of

 X

 / f exists.
 (c,d)

 2 fY
 Operation 2: (0.2). Evaluate the limit in (C.1) as T - J f.

 S (u / v )

 This operation will give the total on all closed contiguous intervals

 2
 of the set S of (C.0); further since N -primitives ť are continuous the sřg ť
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 process is satisfactory.

 X 2 X Condition 2: (C.2). If F„(x) = T J f, c < x < d, F.(x) = T 2 - / f,
 (c,d) (d,e)

 F 1 ( d-h ) +F 0 ( d+h )
 d < x < e, then lim

 - - , h
 , h+0+

 Operation 3: (0.3). Evaluate the limit in (C.2) as ', say, and define

 t2_ jd (e-axa-o _
 s (c.) <e"c)

 X

 Once (0.3) has been performed then / f,c<^x<^e can be found from
 (c,e)

 à 2 F., F. and f f by a use of (2). Further since N 2 -primitives are
 1 2 Co,«) s'9

 smooth Lemma 1 shows the process is satisfactory.

 Using (0.1)- (0.3) the total can be found on all the closed contiguous

 intervals of the perfect kernel of the set S of (C.0), by a process common to

 all totalisations; see Bullen [3] . This ends the first set of calculations

 that can be used to solve the following problem:

 Problem 1: (P.1). If the total has been calculated on the closed

 subintervals of the contiguous intervals of a closed set,

 find the total on the closed contiguous intervals of the

 perfect kernel of that set.

 Remark (16). If the process is satisfactory up to the given calculations of

 (P.1), then it is so up to the final calculation in (P.1).

 5. The Second Set of Calculations. Preliminaries. Totalisation consists

 of finding a decreasing sequence of perfect sets P , 0 < a < Q, each nowhere
 (X
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 dense in its predecessors , and for each of which the total is known on its

 closed contiguous intervals; then after a countable number of steps the total

 on [a,b] will be known? see Bullen [3] • The discussion in paragraph 4 gives

 the first two perfect sets of the sequence; Pq = [a,b], = the perfect
 kernel of the set S of (C.O), and so it is necessary to solve the following

 problem:

 Problem 2: (P.2). If the total is known on the closed contiguous intervals of

 a perfect set, find the total on the closed sub-intervals

 of the contiguous intervals of some nowhere dense closed

 subset.

 If we have solved (P.2) then by (P.1) we can proceed to the perfect

 kernel of the closed subset in (P.2); if then the perfect set in (P.2) is P^,
 we have arrived at P , and the process can be completed.

 Remark (17). Of course if the process is satisfactory up to the given

 calculations of (P.2) it must remain so after (P.2) has been solved.

 Suppose that (P.2) has been solved for perfect sets of definite type,

 (see section 1) and let P e D^. If H is the set of Section 1 , Theorem 4,
 [c,d] one of its contiguous intervals, then on this interval P consists of a

 countable number of isolated portions of definite type that can only

 accumulate, if at all, at c and, or, d. Then (P.2) is solved for P by the

 solution, assumed, for perfect sets of definite type; the closed nowhere

 dense subset of (P.2) for P is H, together with the closed nowhere dense

 subsets of (P.2) on each of the portions of definite type, on each [c,d]; see

 Denjoy [11, p. 324] .

 It remains then to consider (P.2) for perfect sets of definite type.
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 For this it is necessary to change our definition of the class of

 2

 T^-totalisable functions from a constructive one to a descriptive one.
 2 2

 We will introduce a class of functions on [a,b] , T (a,b), and F e T iff F
 s s

 2
 satisfies (C. 1 )- (C.4) below? it will be seen that if F e T then (F1)1 will

 s ap

 exist a. e. and then if (F1)1 = 0 a.e. F is constant; (see Remark (28)
 ap

 below) .

 2 12
 Definition 1. If f : [a,b] -► R then f e T (a,b) iff J F e F (a,b) and

 s s

 2 e
 (F1)1 = f a. e.? and then T - J f, a < c, d, e < b, is
 ap S (c,d)

 given by the right hand side of (1).

 2 2

 If now f e Tg the Tg-totalisation process will be possible/ using
 2 e

 (0.1)- (0.3) and (0.4)- (0.9) to be defined, and will give T 2 - / f as
 S (c,d)

 defined in Definition 1. It will be clear from the discussion, and from

 2 2
 section 2 that if f e N then f e T and the integrals will be the same.

 s / g s

 To ensure that the preceeding discussion will apply in this new

 2
 situation we state the first two conditions for conditions corresponding

 to ( C . 1 ) and ( C . 2 ) above .

 2
 Condition 1: (C.1). If F e V (a,b) then F is continuous on [a,b] .

 s

 2
 Condition 2: (C.2). If F e F (a,b) then F is smooth on ]a,b[.

 s

 6. Problem Two for Perfect Sets of Type c One. If P e D then for some ' c 1 o

 2
 P = KP/X), X > ' ; so the next character of F will concern behaviour

 o s
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 relative to I(P,X) sets for arbitrary perfect subsets of [a,b] . The form of

 (C.3) below is suggested by properties discussed in section 2.5.

 Condition 3: (C.3). If F e , P * <)>, perfect then 3 closed nowhere dense
 s

 subset S = S ( P ) such thatVo * <(>, a closed portion of P,

 Q n S = ♦, X > 1, F' exists and is AC on I(Q,X).

 As in Section 2 Theorem 2 (C.3) implies that (F1)1 exists a.e. in
 ap

 [a,b] and that F e ACG. Further while the quantities s , t of section 2
 n n

 (9) do not necessarily satisfy section 2 (20), nevertheless both Ilsnl an<*

 5!|tnl converge.

 Remarks (18). By applying (C.3) with P = [a,b] we see that (C.3) implies

 (C.O).

 2
 (19). If f e N then the set S(P) of (C.3) is taken to be the set

 s.g

 of Remark (15), and the discussion in section 2 shows (C.3) holds.

 We will now introduce two operations which will solve the following

 problem:

 Problem 3: (P.3). Let I(Q,X) be as in (C.3) and suppose the total is known on

 all of its closed contiguous intervals. To find the total

 2
 on its containing interval: (f e T , of course).

 s

 Let [c,d] be the containing interval, [c ,d ] a closed contiguous
 n n

 X

 interval in [c,d], F (x) =/ f, c < x < d .
 n / j ' n - - n

 / (c ,d j ' )
 n n

 x

 Remark (20). It is sufficient for (P.3) to obtain / f,u,v,x e I(Q,X) ,
 (u,v)

 since an application of (2) will then evaluate the total for any three points

 in [c,d] .
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 Operation 4: (0.4). With the above notation evaluate the limits

 F (x) F (x)
 n n

 Li = lim
 n c -x , n „ x-d

 x+c n x->d „ n
 n n

 and calculate s = ^-( li - v ) , t =ll + v , n > 1.
 n z n n n n n -

 2 2
 Since f e T each F differs from F e T by an affine function and so,

 s n s

 by (C.3), 'i and v exist being just:
 n n

 F(d )-F ( c )
 n n

 'i = - n d - c n
 n n

 F(d )-F ( c )
 __ i / % n n

 V = F __ i ( / d ) %

 n n d-c
 n n

 and then,

 F ( d )-F( c )

 s = - r-2"
 n d - c 2 n n

 n n

 t = F'(d )-F'(c )?
 n n n

 see section 2 (9), and (19).

 The final operation to solve (P. 3) is justified by the following

 calculations, based on the properties of F given by (C.3), see Denjoy [11;

 pp . 268-269] .

 If u,v e I (Q,X) then,

 v

 F(v) - F(u) = J F'1_,_ . . + (u V v){F(d ) - F ( c )};
 ^ I(Q,A.) . . n n

 and if $, (1) are as in section 2 after Corollary 3 and (18).

 v

 F 1 ( v) - F 1 ( u) = / (J) 1 . + (u y ¿ v ) t I(Q,X) . ¿ n

 v

 = / X ;
 u
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 v

 F ( v ) -F ( u ) - ( v-u ) F 1 ( u ) = / (F1 (t)-F' (u)} 1I(0 X)(t)dt

 + (u J L v) [ (d -c ) { ~( 2 F ' ( c )+F*(d ))-F'(u)+S }] L n n 2 n n n

 v s

 = / / X ( t ) dtds ;
 U u

 where

 X(t) = ♦(t), t e I(Q,X)

 t s

 = -

 d - c , , ,2 2 n n n n -
 n n (d , , - c )

 n n

 So/ as in (4) of section 2, if u,v,x e KQ/M,

 1 X V
 (x-u) ( v-x)V2(F;u/x/v) = (u_v) 1 i/ (t-u)X(t)dt + / (v-t)X(t)dt) .

 u x

 (21)

 Since, see section 2, a. e. on I(Q/X),<l> = (F1)' we can, and will,
 ap

 replace in the definition of X, (1) by f and then the following operation,

 given Remark (20), completes the solution of (P. 3).

 Operation 5: (0.5). With the above notation if u,v,x e I(Q,X) define

 2 rX
 T -J f by the right hand side of (21).
 S (u,v)

 Remarks (21). It is not difficult to see, from (20) and (21), that (0.5)

 consists of Lebesgue integration of tf(t) and f(t) on a nowhere dense perfect

 set, together with the summing of an absolutely convergent series; Den joy

 [11 , p. 283] .

 (22) The constructive approach of paragraph 4 could have been

 continued to this point by replacing (C.3) by the following: (a)

 f e L(I(Q,')), (b) the limit in (0.4) exists, (c) J^|s | and J't | converge.
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 However the discussion is better motivated from the constructive point of

 view, and the change introduced is essential for the next section.

 Clearly if P e then the solution of (P. 3) is the solution of (P. 2)

 since I(P,X) = P, X > X .
 o

 2
 Remark (23). When f e N the set S(P), see Remark (19), is not determined by

 s

 2
 our knowledge of P and f = D F on P; see Denjoy [ 1 1 ,pp. 3 19-323] . So the

 s

 solution of (P. 2) must proceed a little differently. Decompose P into an

 infinity of closed isolated portions Q , limlQ I =0, each point of P being
 n n

 n-*®

 in an infinity of the p ; attempt the above calculations with Q* ,Q~, • • • •
 n 12

 While these calculations may fail for some Q , (if Q O S(P) £ <t>), they must
 n n

 succeed on many as S(P), although unknown, is nowhere dense. In this way we

 find simutaneously both S(P) and the totals on the closed sub-intervals of

 its contiguous intervals. This remark applies to other stages but will not

 be repeated.

 7. Problem Two for Sets of Type 2. If P e then V P = J(P,X); and so

 the next condition is related to J(P/X) for any perfect subset of [a,b] .

 Condition 4: (C.4). If F e p £ <J>, perfect 3 closed nowhere dense subset

 C = C(P) such that Vq * <)>/ a closed portion of P,

 Q H C = <ļ> , if K = [u,v] is a X-maximal segment of Q,

 X > 1 and if

 AgF(u, |K| )+A^F(v, |K| )
 VK) = ~ [¥P '
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 ûgF(u,|K|)
 °x ' l-^īčl K

 then

 (a) l w (K) < ®,
 K X

 (b) lim max |x £ y w^(K)| = 0,
 x,y K

 (c) 3 M such that H', < M.
 2

 Remark (24). This completes the definition of T and it is easily see that
 s

 2 2
 if F, G £ r then aF + b G e T .

 s s

 2
 (25). If f e N we take C(P) to be the set S(P) of Remark (15);

 s,g

 A2F(x,h)
 g

 then since

 h

 X

 To solve (P. 2) for P e D it suffices to calculate / f for x , x
 / ' ® '
 (x / ,x ) '

 O 1

 is one contiguous interval of Q, x is another since then by use of (2), (3)

 and (0.2 ), Q being nowhere dense, the total can be found on the containing

 interval of Q. So for simplicity let us consider a P e the total being

 known on its closed contiguous intervals, P CL [c,d] , with [c^ď] its

 containing interval, c<c' <ď <d, K = [u ,v ] its disjoint ' -maximal
 n n n

 segments, 1 < n < m. We will assume that c' = u < v < . . . < v = d1 and
 11m

 that X is large enough that each is so isolated from its neighbour that

 v +Ik|<u-|kI, 1 1 1 1 1 - < n - < m-1. If c < x < x < c' , d' < x < d we n 1 n 1 n+ 1 1 n+ 1 1 - - - o 1 , -

 can also assume, by taking X large enough that x < u - I K ļ , v + Ik I < 11 1mm

 x.

 Now define x, , 0 < k < 4m+2 as follows: x , x as above, x = x, and
 k ~ - o , 1 4m+2
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 if 1 < n < m, X. _ = u - Ik |, x. . = u , = v , xA , „ = v + Ik 1 I. 1 - - m, 4n-2 _ n 'n 4n-1 . n , 4n n , xA 4n+1 , „ n 1 n 1

 Then, from above, if X is large enough, c < x < x„ < . . . < x„ , _ < d. If
 - o l 4m+2 , -

 2 2
 then f e T and F z T is given by Definition 1, we have from (4) and (6)

 s s

 that

 4m+1

 (x-x )(x-x )V (F;x / x , x ) = T (x-x )u , (22)
 O I 2 Ol , . k K

 , k=1 .

 uk = (xfcfi-xk-i)v2(p,Vi'xk'Vi)' k s 2'1 (mod 4) (23)

 AsF(V'KJ)
 =

 A2F(V , |K I )

 = 5 ļKnļ ' ' n'

 (P. 2) will be solved if we can calculate the left hand side of (22)

 from the known totals on the closed contiguous intervals of P, #x 3],
 k = 0(mod 4), 1 < k < 4m-1, [c,xl and [x. ,d] . Since each of these totals

 - - 3 4m

 differ from F by an affine function they have the same second divided

 differences as F, and so the terms on the right hand side arising from

 given by (23) can be determined; call their sum J| . The remaining terms,

 those with u^ given by (24), cannot be calculated as the points at which the
 second divided differences are calculated lie in two different closed

 contiguous intervals of P; call this sum £ .
 4m+1

 l2 ¿ = i (x"Vuk K K ¿ k=i K K
 k= 0 , - 1 ( mod 4 )
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 4m+1

 -J k=1 k=1

 k=-1 (mod 4)

 m

 = I {(x-x )ü) ( [u ,v ]) - |k 1 I u } n A. n n 1 n' 4n
 n=1

 In d' - C 1
 < (x-c' )max (u ) v)w.. ( [u ,v ] ) + - r
 - I A. n n A. A.

 u,v

 so by (C.4) lim J = 0. Equivalently, by (C.4)
 '-w»

 (x-x (x-x )V (F;x ,x ,x ) = lim J
 O 12 Olz . 1

 '->-œ .

 2 fX
 Operation 6: (0.6). With the above notation evaluate T - J f as

 S (x ,x )
 O I

 4m+1

 Ii« T - li» T (i»-xk)»k + (X-Vilukti)-
 0 k=1

 k= 1 , (mod 4 )
 2

 Remark (26). If F f Tg then Fé C AGC and F1 exists a.e. Hence F can be
 found from F' by a simple totalisation. In the present case of (P. 2),

 P ^ I P I =0 and so knowing the total on all the closed contiguous

 intervals of P, F' is known a.e. However our information does not give

 F*(y) - F'(x), if x,y lie in different closed contiguous intervals of P? for

 the known totals each differ from F by an affine function. An argument

 similar to the above, but using (8) rather than (4), can be used to obtain

 F 1 ( y ) - F1 ( x ) , if we introduce a suitable variant of (0.6). Then the

 totalisation can be completed in the way suggested; see Den joy [11;

 pp. 286-287] .

 Remark (27). It is the need to know that lim Y = 0, and not just that it

 2
 exists, that caused us to introduce the class T .

 s
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 8. Problem Two for Perfect Sets of Type Three. If P Q we will assume

 for simplicity that (C.3) and (C.4) hold on P? that is, P is identified with

 the closed portion on which both (C.3) and (C.4) hold. Since Q(P) is dense

 X

 in P, see section 1 it is sufficient by (0.2) to calculate / f for u,v,x
 ' (u,v)

 in Q(P). However if u,v,x £ Q(P) then for all large enough X,

 u,v,x £ I(P,X ) , and so it suffices to approximate the total for

 u,v,x £ I(P,X), provided the error in this approximation tends to zero as

 X ■* ®.

 Let P = I(P,X) ^ J(P/X), [c,d] a closed contiguous interval of I(P,X).
 X

 The discussion of paragraph 6 shows that an approximation to / f,
 (u,v)

 u,v,x £ I(P,X) can be found if suitable approximations to the s, and t of

 (0.4) can be obtained. Of course if [c,d] ^ J(P,X) = $ then s and t can be

 found exactly, by (0.4).

 Suppose [c,d]^J(P,X) consists of a finite number of X-maximal

 portions, (in a containing interval [c',d"]/ c < c' < d' < d), then we

 attempt to calculate F'fdJ-F'ic), and so t, as in paragraph 7, using (8) as

 suggested in Remark (26). However we cannot, as in (0.6), let X -► », since

 obviously c and d depend on X. Instead we write t = t^+ where t^ is

 known, arising from terms in (8) calculated from the same contiguous

 interval, t unknown, but by (C.4) we can show that t satisfies an
 2 2

 inequality similar to (25). In a similar way we can write s = s^ + s^, s^

 known, unknown but bounded, as t^, by an inequality similar to (25); see

 Denjoy [ 1 1 ;pp. 293-295 ] .
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 It remains to consider the case [c,d] O J(P,') containing an infinity

 of X -maximal segments K = [u ,v ] , n e Z, with v < u , „ , n e Z, n n n n n+ , „ 1

 lim v = c, lim u = d? the case where only one of c, or d, is a point of
 n n

 n+-a> n-*»

 accumulation can be treated similarly. As in paragraph 7 we define a

 sequence ^ x by x = u - ļ 1 K n1 |, x = u , x = v , x 4n+1 = v + |k 1 n1 | , sequence ^ k 4n-2 n 1 n1 4n-1 n , 4n n , 4n+1 n 1 n1

 n e Z; if X > 2 this is an increasing sequence , and lim x = c, lim x = d.
 k+-co

 Now let X1 < x < x" be three points not lying in any K , and distinct from
 n

 all the x, ; precisely 2 we assume x, „ < x* < xA , . x„ , . < x" < xA , . k ; 2 x, 4p+1 „ xA 4p+2 , . x„ 4q+ , 1 . xA 4r+2 ,
 With obvious changes in notation we can apply (9) and (10) to this

 sequence, and, as above the quantities C(x',x), C+(x,x") can be written as

 where the „ can be calculated from known information.
 ± ±,1 ±,2 ±,1 „

 and C+ ^ can be estimated by inequalities similar to (25). - / ^

 2 2
 Since f e T we have that F z V and of course c, d e I(P,X) so that

 s s

 conditions of paragraph 3 apply, see Remarks (10), (11); hence the various

 limits of that paragraph exist? ^+(c,x), 'i (x,d), c(x,x,d), p,(c,d), v(c,d),

 s(c,d), t(c,d), see (13), (16), (18) and (19). Estimates of a simple nature

 show that the similar limits 'i+ c^, 'i^, v s^, also exist; see Den joy
 [ 1 1 ,p. 307-3 1 1 ] . This justifies the following two operations.

 Operation 7: (0.7). With the above notations evaluate

 'i - ( c , x ) = lim C (x'x),
 ' x'+c+

 'x (x, d) = lim C (x,xM),
 "#1 x"->d- +/1

 and calculate c (c,x,d).

 Operation 8: (0.8). With the above notations evaluate

 P' ^ ( c , d ) = lim c (c,d,x),
 x-*c
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 v (c,d) = lim c (e,x,d),
 x+d

 and calculate s^íc/d), t^(c#d).
 In addition calculations similar to those giving (25) give

 |s2(c,d)|, |t2(c,d)| < (26)
 for some constant M; see Denjoy [11, p. 314].

 Carrying out these calculations for each such closed contiguous

 interval of I(P,') enables us to define X„ as in (20) but with s , t 1 n , n

 replaced by s^ t (and <ļ> by f of course )• Calculate the right hand
 2 X

 side of (21) using X and call this T 2 -/ f, where u, v, x £ I(P,').
 i s / i , x

 (u,v) , x

 Define X by (20) with s , t replaced by s . , t _ and <t> replaced by
 2 nn n, 2 n, 2

 0; use the right hand side of (21) with X ^ to calculate a quantity that by
 3

 estimate (26) can be shown to be bounded by

 Operation 9: (0.9) • If u,v,x are any three points of Q(P)

 x x
 2 f 2 f

 Calculate T -I f as lim T -J f.
 s '/ x % s / 1 / X ( u , v ) x % X-*» / ( / u , v X )

 This by previous remarks complete the discussion of (P. 2) for sets of

 2

 type 3 and so of Tg-totalisation.
 2

 Remarks (28). Using the various techniques of T^-totalisation it is possible
 2

 to prove that if F £ = Ū a. e. then F is a constant; see Denjoy

 [11 ;pp. 478-480] .

 2
 (29). A special subclass of N consists of the sums of everywhere

 2
 convergent trigonometric series. Even in this special case T -totalisation ,

 s

 which calculates the coefficients of the series from the sum, cannot be
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 shortened. Precisely, Va, a < Qģ , 3 such an f for which the process has order

 type a, andVß, ß < a, all nine operations are used beyond the ß stage? see

 Den joy [ 1 1 ,pp .483-495] .

 9. The First Order Symmetric Derivative. If F: [a,b] + R is continuous

 and D F = f at all points of ]a,b[, where
 s

 s , „ ¿n
 , h->0 „

 b

 then we say F e N , N -J J f = F(b)-F(a). In this section we will discuss a s , s J
 a

 totalisation process that will calculate F(x)-F(a), from a given f e N , or
 s

 even more generally f e N meaning -®<DF<f<DF<®, F continuous.
 s / g - s - - s

 As in section % if F N (a,b) then [a,b] is the union of a countable
 s , g

 collection of closed sets of the type E = E(A) , where

 Vx e E, 0 £ h £ e, ļ F ( x+h ) - F(x-h) | <_ 2Ah. (A)

 Proceeding as in, Section 2 Lemma 1, (see Den joy 12-11, and 11,

 pp. 235-237), if 0^, C>2 = ® ^ + k are two points of E(A) , u = u^ = 0 + h, any

 other point, and if, for m t Z, u is defined by (SS), see section 2, and if
 n

 I h| > 2 1 k I , I h+2mk ļ < 2 ļ k | , h(h+2mk) > 0, then

 2 I m ļ - 1

 F(U2m) = F(U) + 2ÔA ^ (lhl " rlkl)
 r=0

 h2 2
 = F(u) + 4ÔA , (6 < 1 ).

 If now X, x+k E(A), 2 ļ ' k I 1 < Ik I < ßlk 1 t4|, ' lim k = 0, n ' n+1 1 'n' 1 n+1 ' n
 n+«°

 ļhļ < 4 ļ k ^ I , then as in lemma 3 of section 2

 F ( x+h ) = F(x) + ÖCAßh,
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 where |ô| < 1, and C does not depend on x,h,ß or A.

 Lemma 2. Y x e E( A) of finite index, a say, F(x+h) = F(x) + 26Cah and

 IS+F(x) I < 2Ca .

 Corollary. If f e N with N -primitive F then F* exists a.e.
 s,g s

 Conditions 1, 2 and 3 below will define a linear class of functions T
 s

 and if F e T , F1 exists a.e., and further if F1 = 0 a.e. F is a constant,
 s

 Definition 2. If f: [a,b] -> R then f e T (a,b) iff 3 F e F and F* = f a.e.;
 s s

 x

 then T - / f = F(x), - F(a), a<_x<^b.
 a

 Condition 1: (C.1). If F e F (a,b) then F is continuous in [a,b] .
 s

 Condition 2: (C.2). If F e F , P £ <J>, perfect, 3 closed nowhere dense subset
 s

 S = S ( P) such that Vq * <t>/ a closed portion of P, Q O S = <t>,

 X > 1, F is AC* on I(Q,').

 Condition 3: If F e P£<ļ>, perfect, closed nowhere dense subset

 C = C ( P ) , such that Q t (1), a closed portion of P, Q C = <t>,

 X > 1, if L is a X-maximal portion of Q, K = [u,v] the

 associated X-maximal segment, define for x e L, ļ K ļ £ h £ 2 1 K | ,

 w (K) = max I F(x+h)-F(x-h) ļ , then (a) ' 0). (K) < ®,
 A. , __ A.

 x,h , __ K

 (b) lim {max (xTyJco (K)ļ = 0.
 X-*» x,y

 If f e N then f e T ? (C.1) is trivial and for (C.2), and (C.3), we
 s,g s

 take the sets S(P), and C(P), to be the closed nowhere dense subset of P

 F ( ļ M j
 where

 2h

 index is bounded and so by Lemma 2, f e L(I(0,X))? also by Lemma 2, if [c,d]

 is any contiguous interval of I(Q,X), 0)(F, [c,d] ) < M(d-c); hence F e AC* on

 I(Q/X). In the case of (C.3) note that if x e Q then |F(x+h)-F(x-h) | <_ 2hA,
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 and so, )! w^(K) <_ 4A ļ K ļ <_ (b-a), by (5) of section 2.
 K

 The first four operations of T^ -totalisation are just those of the

 classical T*-totalisation? see Bullen [3]. (C.2) allows us to start the

 process with (0.1), Lebesgue integration on closed intervals not meeting

 S([a,b]), (C. 1 ) permits (0.2), evaluating certain limits, and (0.3), finite

 additivity, requires the use of no conditions. These three operations solve

 (P.1), see paragraph 4.

 From the discussion in paragraph 5; it suffices to consider (P. 2) for

 perfect sets of definite type.

 If the total is known on the closed contiguous intervals of an I(Q,X)

 (= Q if P í D and X is large enough), then by (C.2) if x,y £l(Q,'),

 y d
 F(y)-F(x) is given by (0.4), F(y)-F(x) = / f 1 . . + (x V y)T - / nf ,

 I v y / A. ; S
 X c

 n

 where [c ,d ] , n > 1 denote the closed contiguous intervals of I(Q,X). This
 n n -

 solves (P. 2) when P .

 If P £. D let c < X < x„ < . . . < x„ < d be as in paragraph ? f 7 except v 2 - o x„ 1 . . . x„ 4m+2 - ? f v

 that X, . X, „ are defined as satisfying:
 4n-2 4n+1 „

 X _?+X4
 2 Z ^ fi /"' 4n-1 4 t* 4n A M n ' ' n" - <x>. 4n+1 ,4 "Xx 4n-2 o 1 n1

 if X > 8 a sequence defined this way is increasing as required. Using the

 suffixes 1 and 2 as in paragraph 7.

 F(d)-F(c) = J» ^FÍXj^-FÍXj^)} + y2{p<Vl)-P(V>;

 by (C.2) lim = 0 and this justifies the following as (0.5) of

 T -totalisation:
 s
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 F(d)-F(c) = lim y.ÍFÍx )-F(x )}.
 . '1 k+1 k
 . X+«>

 Then by (C.1), and (0.3), suffices to solve (P. 2) in this case.

 Suppose now that P £ then, as in paragraph 8, it suffices to

 calculate F(y)-F(x), y,x £ Q(P), and to obtain an approximation for y,

 X <Ł I(P,X) provided the error tends to zero as X ■* ®. Let P =

 I(P,X) kJ J(P,X) and let [c,d] be a closed contiguous interval of I(P,X) in

 which the X -maximal portions of J(P,X) accumulate at both c and d, (it

 suffices to consider this case, see paragraph 8.) If c < x < x' < d, x,

 XI £ J(P,X), then proceeding as we did above in the case of P £ D^ , (see also

 paragraph 8), we can obtain:

 F ( x 1 ) -F ( x ) = (x y<ļ X1 ){F(xk+1 )-F(xk)} + (x Y2 x 1 ) { F (x^+ 4ļ ) -Fix^) } ;

 by (C. 2 ) lim Y exists and is just (c Y d){F(x )-F(x )} , and by (C.4)
 ^ K« I K

 x*c

 x' + d

 this last expression tends to zero or X •> <®. Then if x,y £Q(P) we obtain

 F(y)-F(x) by the following, that is (0.6) of this process:

 lim iff 1I(p X)+ (x I y) lim I }
 '-><» x x ->c

 xn'-ä
 n n

 where of course Y is the ^ for the closed contiguous interval [c ,d ] , of
 i , n 'l n n

 I(P,X), n > 1. This completes the discussion of T -totalisation.
 - s

 10. Peano Derivatives Relative to a Set. The results in this section can

 be found in Den joy [10] .

 Definition 3. (The notation is that of section 1 paragraph 3). The index of

 a set P is said to be uniformly bounded by A iff ļh > 0 such

 that VxtP^x + h £ P, Ih I >h, and a(P,x,h ) < A.
 o o o
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 Remark (30). If at all points of P the index is finite then the set of

 points of P at which the index is not uniformly bounded is nowhere dense in

 P; [10, p. 293] .

 Definition 4. Let F: H-> R, x£H^H', if^a^ , • . . ,a^, not depending on h,
 such that if X + h f H

 n hk
 F ( x+h ) = F(x) + y a 17¡- + o(h ), (as h -► 0),

 k=1

 then a, is called the kth-Peano derivative of F relative to
 k

 H H

 H, at X, written F^(x), 1 <_ k n, if F^j(x) exists,
 1 < k < n-1, define y (F,x,h,H) by,
 - - n

 , n n-1 k

 - Yn(F,x,h,H) = F(x+h)-F(x) - J' F(k)(x) -,

 (X $ H H', x+h£ H), then the upper (lower), nth-Peano

 derivative of F relative to H, at x is

 lim sup y (F, x, h, H) ( lim inf y (F,x,h,H)) written
 b+0 n h+0 n

 F* ( .(x)(F" ) - ( ,(X)). ) ( n ) - ( n )
 P

 Theorem 1. Let exist at all points of a perfect set P of uniformly

 bounded index? let Q M/ be a perfect subset of P such that ^ a,

 T) for which if |h| < r), then |h y ^ (F,x,h,P) | < a, then?
 P

 (a) F , » is bounded on Q:
 (n) , »

 (b) 3 M- such that x £. O the oscillation of F^ on Q, at x,
 (n)

 is less than ^ia.

 P
 (c) F, - x is continuous relative to Q, on 0 and has finite (n-1) x

 Dini-derivates relative to Q, at each point of Q, that
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 differ by less than 2p,a?

 P
 (d) if 1 < k < n-2, then F is continuous relative to Q, on

 V K )

 0/ and V x ^ Q,(F^ x , *x(x) exists, and further ^ (k) x (n-k-1 , )

 (F* (k) )? (m) ,(x) = (k+m) . (x), 1 - < m - < n-k-1. (k) (m) (k+m) . - -

 Remark (31). This remarkable result depends on the very elementary but

 fundamental Theorem 1 of Denjoy [10].

 (32). The above result is certainly false if P has an infinite index

 ^ 'J ^ n+ <ļ
 at each point. Let X >0,'(|=1/ ' = 0 , - r

 n - 1 00 A. 0 A.
 n n-K» n

 be the perfect set, having infinite index at each point , defined by

 CO

 P={x : x = J ( - 1 ) . , for some i, , 0 < i < i „ . . . } .
 k-0 ' . , k , - o- 1 „

 CO !

 Define F : P -► RbyF(x) = £ (-1) - then F is continuous on P,
 n=1 6

 F(1) = F(2) = °' F(3 ) = 1? S° F ( 3 ) * (F(1))(2) and F(3 ) * (F(2))(D*
 P

 (33). If F: P R is continuous then F^^ is Baire-1 on P; Denjoy
 [10; Theorem IV].

 Definition 5. Let F: H -► R, P * <J>, a perfect subset of H, if x g P then F is

 regular relative to P (of order n) at x iff:

 V/ p - p p
 (a) V x £ P, F . -v(x) exists with F . . (x), F, . (x) finite;

 v n- 1 ) 'ni ix;

 (b) if 1 £ k £ n-1 then Vx 4 P, (F^î^ix) = F^k+m)(x)»

 1 < m < n-k-1, and <F*k))*n_k)(x> an (F*k) ) ^_k) (x) , are
 finite.
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 - ļļ
 Theorem 2. Let H be a set with index finite at each point/ and with F, X(x),

 (n)

 F? X (x) finite, x £ H, then y v P t <ļ>, perfect subset of H, the set - (n) X v

 of points of P where F is not regular relative to P is nowhere

 dense in P.

 1 1 . Some Problems .

 2 2 2 X (1) If f Ä N 2 (a,b) then f is James P 2 -integrable and P 2 -/ f =
 S'g (a,b)

 2 X 2
 N 2 -/ f,a<_x<^s. What is the relationship between the P 2 -integral and
 S (a,b)

 2
 the T -total ? (See James [1]).

 s

 (2) If f then f is James symmetric P -integrable and the
 s / g

 integral are equal. What is the relationship between the symmetric

 P^-integral and T -totalization ? (See James [2], Mukhopadhyay ) .
 s

 2
 (3) Den joy has generalized his T -totalization by allowing certain

 s

 approximate notions into (C.1)-(C.5); thus (C.1) is replaced by approximate

 continuity, (C.2) by approximate smoothness; see Denjoy [1 1 ?pp. 465-481 ] .

 Skvorcov, [1], has shown that this generalization does not integrate all

 finite second order symmetric approximate derivatives of approximately

 continuous functions. How can Denjoy1 s totalization be changed so as to

 integrate all such derivatives ? Skvorcov [1], has modified the James

 2
 P -integral to obtain is Perron integral that integrates these derivatives.

 How is it related to the Denjoy modification ?

 (4) Bhattacharrya has defined a Perron integral that integrates all

 finite approximate symmetric derivatives of approximately continuous

 141



 functions- Modify the T -totalisation so as to obtain a process that v/ill
 s

 integrate such derivatives and relate it to this Perron integral, and to the

 James symmetric P1 -integral.

 (5) Can the results of section 10 be extended to the higher order

 symmetric derivatives of de la Vallee Poussin ?

 (6) In [10] Denjoy defined an nth-order total. Define an equivalent

 Perron integral; (such an integral will be given in a forthcoming paper of

 the present author.)

 2

 (7) Is it possible to make the and T^-totalizations completely
 constructive ?
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