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 In the theory of Lebesque measure in ]R , the density theorem plays

 an important role in connecting the abstract Radon-Nikodym theorem with

 the local definition of a limit. There is a natural fit between Lebesque

 measure in 3R and the local geometry of a measurable set. But there are

 other measures in IR , based on outer measures which charge sets of zero

 Lebesque measure. Hausdorff exploited the Caratheodory method of con-

 struction to define a translation invariant measure in 1R , based on

 coverings which are economical. Let us recall one version of his defini-

 tion: let <f>: (0,6) 3R+ be monotone increasing with <J>(0+) = 0;

 00

 (1) <ļ> - m ( E ) = lim inf { (2r.):Ec U B(x.,r.), r. < 6}
 6+0 1 i=l 1 1 1

 where B(x.,r.) denotes the open * ball centre x. , radius r. > 0, defines a i i open * i , i
 k

 metric outer measure on the power set of 3R . Restricting this to the

 class M. of measurable subsets gives (spherical) Hausdorff <J>-measure.
 ♦

 In particular, if <1>(s) = cs**, you get s-dimensional mcdsurc in IR .

 tThis is a survey of recent results obtained in collaboration between
 the two authors, and summarized in a lecture at the Symposium given by
 the first author.
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 d ex
 For a < d, IR has non a- finite s -measure, but we can look for a

 density theorem valid for subsets of positive finite measure. For example

 if E is the classical Cantor set in [0,1] and a = log2/log3, Hausdorff

 proved that

 sa-m(E) = 1.

 However direct calcuation shows that, for x e E, 0 < lim inf - - m^E ^ ^ <
 "xei |i|a

 1 1 ho
 o

 1 = lim sup - - m , so that no strong analogue of the Lebesgue
 xei |i|a

 1 1 ho

 density theorem holds even for an extremely regular set like the Cantor

 set. In fact Besicovitch [1] shows that for subsets of 3r' 0 < a < 1,

 there is no set E with 0 < sa-m(E) < 00 for which lim - - m ^ ^ exists
 - xei |i|a

 1 1 ho

 a.e., and Marstrand [5] shows that a density can only exist a.e. for a

 2
 subset of ]R if a = 0,1, or 2 .

 The corresponding result in 1R must be true, but I am not aware

 that it has been proved rigorously-namely , that it is only for integer

 powers that one can hope to have a density for any set. When a is an

 a

 integer 0 < a < k, the sets E for which 0 < s -m (E) < + 00 and the

 density holds a.e. in E are in some sense locally 'almost embedded' in

 a suiteüble E-dimensional subspace. They were first studied by Besicovitch [1]

 in the case a = 1, k = 2 and called regular. These Besicovitch results

 were extended by many authors to general (a,k) and are described in the

 book by Federer [4] on geometric measure theory. The reader who would

 like a more elementary organized account is advised to look in the forth-

 coming book by Falconer [3] .
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 Let me summarize some of the Besicovitch results for linear measure

 2
 (Hausdorff measure with <f>(s) = s) on IR , which we now denote by m.

 Suppose E is m-measurable, 0 < m(E) < + then E is regular if

 m(E f)B(x,r) ) % _

 m(E fi B (x, r) ) , _

 of a regular E^ and an irregular E

 Further it is proved that E is regular if and only if one of the

 following holds, apart from a set of zero m-measure:

 (a) E is a countable union of subsets of rectifiable arcs

 (b) E has a tangent a.e.

 (c) in all directions except at most 1, E projects onto a set of

 positive Lebesque (linear) measure.

 On the other hand E is irregular if one of the following holds:

 (a) no rectifiable arc intersects E in a set of positive measure

 (b) set of points where E has a tangent has zero measure

 (c) in almost all directions , E projects onto a set of zero Lebesque

 (linear) measure.

 Geometric measure theory is an elaborate and useful development of

 techniques based on these results. However there is at least one impor-

 2
 tant sense in which the Besicovitch regular sets in IR are not 1 curvelike'.

 2
 If C, D are two rectifiable arcs in IR , then the Cartesian product C x d

 4
 is a rectifiable 2-surface in IR . However, if A , B are regular linearly

 2
 measurable sets in 3R , it does not follow that A x b is a 2-regular sub-

 4
 set of IR , in fact it may not even have Hausdorff dimension 2: examples

 can be given of regular sets A, B with dim A x B = 3. The reason for

 this difficulty is that Besicovitch allows an exceptional set of zero

 m-measure in his definition of regularity. These exceptional sets can
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 cause dif f iculities in any context for which m-measure is not the appro-

 priate definition of smallness. In order to control the exceptional sets

 we need a new definition of measure which , in general , gives a larger

 value than Hausdorff measure.

 Let us summarize the definition of such a measure, which we call

 packing measure. Put

 (2) <ļ> - P (E) = lim sup{E<ļ> (2r. ) :B(x. ,r. ) disjoint, x. € E, r. < 6}
 6+0 iii i i

 This defines a set function which is monotone, but not countably sub-

 additive, since <f>-P{:Cg}= 0 but s^-P(D) = +°° for the countable compact set

 D = {0,k *;k6W}. It is not an outer measure but it is a pre-measure so

 we can use method I of Munroe to give

 <J> - p (E) = inf{E<J>-P(E. ) : ECiUe.}
 i i

 (3)

 = infilim <1>-P (E ) : E tE}.
 n n

 The measure theory for <J>-p is studied in [7]. For all E ďjR,

 <J>-m(E) £ <f>-p(E). For the Cantor set E cz IR with <ļ) 's) = sa, a = log2/log3

 sa-m(E) = 1 but sa-p(E) = 2.

 d
 This leads us to conjecture that, if there is a set E cz tr with

 a a

 0 < s -m (E) = s -p (E) < -H» then a is an integer, and E is regular.
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 For any set E c i , we have the Hausdorff dimension

 dim E «* inf {a>0:sa-m(E)=0} ,

 and we can now define the packing dimension

 Dim E - inf{a>0:s°-p(E)=0} .

 Clearly,

 0 £ dim E <_ Dim E <_ k,

 and for any a,ß satisfying 0 £ a _< ß £ k, it is not difficult to construct
 k

 a Cantor like set E cz JR with dim E = o, Dim E = ß. For a Lebesque

 k
 measurable set E c ]R of finite positive Lebesque measure, it is not

 difficult to prove that s - m(E) = s - p(E) = c|e|.

 We can now consider three distinct notions of regularity for a subset

 _ _ k
 E _ <= _ ]R .

 (a) E is weakly regular if dim E = Dim E.

 We remark that this is useful when we consider Cartesian products. In

 general, see Eggleston [2] ,

 dim A * B £ dim A + dim B

 but if at least one of A,B is weakly regular, see Tricot 19] , then

 dim A * B = dim A + dim B.
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 (b) E is (ft-regular if 0 < (ļ) - m (E) < + 00 , and the density theorem

 holds <J> - m a. e. There are many equivalent definitions, all allowing for

 an exceptional set of zero ^-measure# in the sense of Hausdorff.

 (c) E is strongly ^-regular if

 (4) 0 < <t> - m(E) = <J> - p (E) < + ».

 r

 If our conjecture is valid , this forces <ļ> (s ) = s with r an integer. We

 justify the definition by exploring its implications for (1>(s) = s and

 subsets of the plane. To simplify notation s - p(E) will be denoted

 p (E) . The remaining results are proved in detail in [8], so we just

 summarize them here. It is convenient to define upper and lower (linear)

 2
 densities for an arbitrary measure p, defined on Borei sets in 3R .

 ~ / X Ä y (B (x,r) )
 ~ D (x) / X = lim inf Ä

 - y M , ^ 2r y M rIO , ^
 (5)

 6 (x) - lim sup üiSiLÜl
 " rłO 2r

 Morse and Randolph [6] studied these functions using (Hausdorff linear)

 measure m; we now restate their results , and obtain corresponding ones

 for the (linear packing) measure p.

 (6) p (E) < + "=> y(E) _> p(E) infÍD^(x) :x6E}

 (7) p (E) < p(E) SUp{D^(x) :x€E}

 (8) g(E) > m(E) inf {Õ (x):x8E}
 - V

 63



 (9) ļJ (E) 2m (E) sup{6^ (x) :x€E}

 We remark that the factor 2 in (9) is required because there is a set EQ

 with 0 < m(E0) < <*», but 6^ (x) = J for all x 6 Eg with y(E) = m(EflEg).

 This factor arises because in the definition of m, we do not cover by

 balls centred in E, while the computation of density only uses centred

 balls.

 We can extend our definitions for density of E at x, and obtain them

 as special cases of (6) to (9) by taking p to be the restriction of

 p-measure or m-measure to E. Thus

 Z, i • . m(E fi B (x,r) )
 D(x,E) = i lim • . sup

 £ m(E fi B (x,r) )
 D(x,E) = lim mf £

 T , , • p (E (1 B (x , r) )
 T A(x,E) , = lim , • sup

 » , f p(E(lB(x,r))
 Mx,E) » , = lim inf f

 and we get immediate corollaries of (6) - (9) . We now distinguish

 between exceptional sets by writing m.a.s. (resp p.a.s.) when the state-

 ment is true outside a set of m-measure (resp p-measure) zero. We state

 these formally

 Corollary 1. If E is m-measurable , 0 < m(E) < + then }■ <_ Õ(x,E) <_ 1

 m • a. • s •
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 Corollary 2. If E is p-measurable , 0 < p(E) < + then A(x,E) = 1 p. d.s.

 Corollary 3. If E is p-measurable , 0 < p(E) < + 00 , then m(E) =0 <r=>

 A (x,E) = -H» p.a.s.

 Corollary 4. If E, F are m-measurable , E c F and 0 < m(F) <_ m(E) < + ®,

 then m.a.s. on F we have D(x,F) = D(x,E) and D(x,F) = D(x,E).

 If, in addition p(E) < », then m.a.s. onF, A(x,F) = Mx,E) and Ā(x,F) = Ã(x,E).

 Corollary 5. If E is p-measurable, 0 < p(E) < « and Ã(x,E) < + « p.a.s.,

 then Fez E, m(F) = 0 =*> p(F) = 0.

 We can now work out the implications of the condition of strong

 regularity 0 < m(E) = p(E) < + «>.

 Theorem 1. If E is arcwise connected and m(E) < + ®, then E is strongly

 regular.

 Theorem 2. A set E with 0 < m(E) < + » is strongly regular if and only if

 one of the following holds

 (a) JD (x , E) = 1 p.a.s. on E;

 (b) Ā(x,E) = 1 p.a.s. on E?
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 (c) E = U E2 where E^ is a subset of a countable union of

 rectifiable arcs and P(E2) -, 0;

 (d) E has a tangent at x for p.a.s. x in E.

 It is easy to give examples of sets E which are regular but not

 strongly regular , but if 0 < p(E) < 00 and Ā(x,E) < 00 p.a.s., then

 regularity and strong regularity are equivalent. The slight strengthening

 in the condition gives control over the exceptional set in the original

 Besicovitch definition. Our hope is that it will also lead to some

 simplifications in geometric measure theory.
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