S. J. Agronsky, Department of Mathematics

California Polytechnic State University, San Luis Obispo, CA 93407

Intersections of Continuous Functions

with Families of Smooth Functions

This paper is a report of results from joint work with A. M. Bruckner, M. Laczkovich and D. Preiss. The proofs are contained in a paper which has been submitted to TAMS. Some open questions are also included.

It is clear that for $f \varepsilon C[0,1], f$ is concave or convex on $[0,1]$ if and only if card $\{x: f(x)=1(x)\} \leq 2$ for all lines $l(x)$. M. Laczkovich posed the following question: If $f \varepsilon C[0,1]$ and $\{f=1\}$ is finite for all lines 1 , then must there be a subinterval of $[0,1]$ on which f is either concave or convex? An affirmative answer was established, which for reference we state here.

Theorem l. If $f \varepsilon C[0,1]$ and $\{f=1\}$ is finite for all lines 1 , then there exists a subinterval of $[0,1]$ on which f is either concave or convex.

It is then natural to ask what results one might obtain by considering the cardinality of $\{f=1\}$ for fixed $f \varepsilon C[0,1]$ and all lines 1. The following were obtained:

Theorem 2. If $f \in C[0,1]$ and card $\{f=1\} \leq 3$ for all lines 1 , then $[0,1]$ can be decomposed into 5 subintervals on each of which f is concave or convex.

Theorem 3. There exists $f \in \mathbb{C}[0,1]$ such that $\operatorname{card}\{f=1\} \leq 4$ for all lines 1 , but $[0,1]$ cannot be decomposed into even countably many subintervals of concavity or convexity of f.

Theorem 4. Let K be the Cantor set. There exists $f \varepsilon C[0,1]$ such that card $\{f=1\} \leq 5$ for all lines 1 but $[0,1]$ cannot be decomposed into even countably many subsets of concavity or convexity of f, and f is neither concave nor convex on any portion of K. In addition, f can be chosen to be increasing and Lipschitz.

Theorem 5. There exists $f \in C[0,1]$ such that $\{f=1\}$ is countable for all lines 1 , but $[0,1]$ contains no subinterval on which f is concave or convex.

As a consequence of Theorem 4, we see that the direct analogue of Theorem 1 obtained by replacing $f \varepsilon C[0,1]$ by $f \varepsilon C(K)$ for K perfect, does not hold. In fact, even more is true:

Theorem 6. There exists K^{*} perfect and $f \varepsilon C\left(K^{*}\right)$ such that card $\{f=1\} \leq 2$ for all lines 1 and yet f is not monotonic on any portion of K^{*}. In fact, the collection of all such f forms a residual subset of $C\left(K^{*}\right)$.

In view of Theorem 6, it is evident that if we are to obtain any results for $f \varepsilon C(K)$ for K perfect, we must strengthen the hypotheses. One way
is to consider intersections of the graph of $f \varepsilon C(K)$ with larger classes of smooth functions. We remark that it is apparent that if $\lambda(K)=0$, then there exists $f \varepsilon C(K)$ such that $\{f=g\}$ is finite for all g differentiable. To see this, just choose $f \varepsilon C(K)$ such that $f^{\prime} \equiv \infty$. Then if g is differentiable, and x_{0} is a point of accumulation of $\{f=g\}$ then $g^{\prime}\left(x_{0}\right)=\infty$. If $\lambda(K)>0$, the situation is different:

Theorem 7. If $\lambda(K)>0$, then for each $f \varepsilon C(K)$, there exists $g \varepsilon C^{\prime}$ such that $\{f=g\}$ is uncountable.

Corollary 8. For each $f \in C[0,1]$, there exists $g \in C^{\prime}$ such that $\{f=g\}$ is uncountable.

One open question is: can Corollary 8 be improved? For example, might we get a twice differentiable function g, or, possibly $g \varepsilon C^{n}$ for some n > 1? However, Theorem 7 is the best possible in the following sense:

Theorem 9. Given $\varepsilon>0$, there exists $K \subset[0,1]$ perfect, such that $\lambda(K) \geq 1-\varepsilon$ and there exists $f \varepsilon C(K)$ such that $\{f=g\}$ is finite for all g twice differentiable.

Theorem 1 can be significantly generalized. We need some definitions and notation.

Definition. If f is defined on a set E, the nth divided difference of f at the distinct points $x_{0}, x_{1}, \ldots, x_{n} \in E$ is defined by

$$
v\left(f, x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n} \frac{f\left(x_{i}\right)}{w^{\prime}\left(x_{i}\right)}
$$

where

$$
w(x)=\prod_{j=0}^{n}\left(x-x_{j}\right)
$$

The function f is said to be n-convex on E if $V\left(f, x_{0}, \ldots, x_{n}\right) \geq 0$ whenever x_{0}, \ldots, x_{n} are distinct elements of E. We say f is n-concave if $-f$ is n-convex. Thus f is 0 -convex if $f \geq 0, f$ is 1 -convex if f is increasing and f is 2-convex if f is convex. If E is an open interval and $n \geq 2$, then f is n-convex on E if and only if $f \varepsilon C^{n-2}(E)$ and $f^{(n-2)}$ is convex on E.

We let P_{n} be the collection of polynomials of degree $\leq n$.
We have the following theorem of Čech [1].

Theorem. For $f \in C[0,1]$, if $\{f=p\}$ is finite for all $p \in P_{0}$, then f is 1 -convex or concave on a subinterval of $[0,1]$.

We may now restate Theorem 1 as:

Theorem, For $f \in C[0,1]$, if $\{f=p\}$ is finite for all $p \in P_{1}$, then f is 2-convex or concave on a subinterval of $[0,1]$.

The above 2 theorems were shown to be special cases of the following more general and stronger result:

Theorem 10. For $f \in C[0,1]$, if $\{f=p\}$ has no bilateral accumulation point for all $p \in P_{n}$, then f is $n+1$-concave or convex on a subinterval of $[0,1]$.

Corollary 11. For $f \in C[0,1]$, if $\{f=p\}$ has no bilateral point of accumulation then there is a subinterval $J \subseteq[0,1]$ such that $\left.f\right|_{J} \in C^{n-1}(J)$. A related theorem is:

Theorem 12. If $f \in C[0,1]$, then either there exists a polynomial p such that $\{f=p\}$ is infinite or there exists $g \varepsilon C^{\infty}$ such that $\{f=g\}$ is uncountable.

In either case, we have

Corollary 13. If $f \in \mathbb{C}[0,1]$, then there exists $g \varepsilon C^{\infty}$ such that $\{f=g\}$ is infinite.

Interestingly, we have the following:

Theorem (Zahorski [3] answering a question of Ulam [2]). There exists a function $f \in C[0,1]$ such that $\{f=g\}$ is finite for all g analytic.

An open question is the behavior of such a function f, must it be in C^{∞} for example? Or, for how large a set in $C[0,1]$ does Zahorski's result hold?

Another open question relates to Corollary 13: Can the hypothesis that f be continuous be weakened (for example to f Darboux or even arbitrary f)?

As a final open question, we might try to extend the results of Theorems 2 and 3 to n-convexity. We first summarize the known results with a "theorem" in the form of a chart.
"Theorem." For $f \in C[0,1]$, if card $\{f=p\} \leq k$ for all $p \in P_{n}$, then $[0,1]$ can be decomposed into s subintervals on each of which f is $n+1$ convex or concave according to the following chart.

\underline{n}	\underline{k}	\underline{s}
0	1	1
1	3	3
n	2	There is no s, even countable
n	4	1
$n+1$	There is no s, even countable	
		1

The open question is now evident: For $n>1$ and $k>n+1$, what are the correct values of s ?

References

[1] E. Čech, Sur les fonctions continues qui prennent chaque leur valeur un nombré fini de fois, Fund. Math. 17, (1931), 32-39.
[2] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.
[3] Z. Zahorski, Sur l'ensemble des points singuliers d'une fonction d'une variable réele admittant les dérivés de tous les ordres, Fund, Math. 34 (1947), 183-245.

