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 Intersections of Continuous Functions

 with Families of Smooth Functions

 This paper is a report of results from joint work with A. M. Bruckner,

 M. Laczkovich and D. Preiss. The proofs are contained in a paper which has

 been submitted to TAMS. Some open questions are also included.

 It is clear that for f e C[0,1], f is concave or convex on [0,1] if and

 only if card {x : f(x) = 1 (x) > <_ 2 for all lines 1 (x) . M. Laczkovich posed

 the following question: If f e C[0,1] and {f = 1} is finite for all lines

 1, then must there be a subinterval of [0,1 J on which f is either concave

 or convex? An affirmative answer was established, which for reference we

 state here.

 Theorem 1. If f e C[0,1J and {f = 1} is finite for all lines 1, then

 there exists a subinterval of [0,1] on which f is either concave or convex.

 It is then natural to ask what results one might obtain by considering

 the cardinality of {f = 1} for fixed f e C[0,lj and all lines 1. The

 following were obtained:

 Theorem 2. If f e C[0,1J and card {f=l} £3 for all lines 1, then [0,1] can

 be decomposed into 5 subintervals on each of which f is concave or convex.
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 Somewhat surprisingly, we have

 Theorem 3. There exists f e C[0,1] such that card {f = 1} £ 4 for all

 lines 1, but [0,1] cannot be decomposed into even countably many subintervals

 of concavity or convexity of f.

 Theorem 4. Let K be the Cantor set. There exists f e C[0,1] such that

 card {f = 1} < 5 for all lines 1 but CO, 1 J cannot be decomposed into even

 countably many subsets of concavity or convexity of f, and f is neither

 concave nor convex on any portion of K. In addition, f can be chosen to

 be increasing and Lipschitz.

 Theorem 5. There exists f e C[0,1] such that {f = 1} is countable for

 all lines 1, but [0,1 J contains no subinterval on which f is concave or

 convex.

 As a consequence of Theorem 4, we see that the direct analogue of

 Theorem 1 obtained by replacing f e C[0,1] by f e C(K) for K perfect,

 does not hold. In fact, even more is true:

 Theorem 6. There exists K* perfect and f e C(K*) such that

 card {f = 1} £ 2 for all lines 1 and yet f is not monotonie on any

 portion of K*. In fact, thé collection of all such f forms a residual

 subset of C(K*).

 In view of Theorem 6, it is evident that if we are to obtain any results

 for f e C(K) for K perfect, we must strengthen the hypotheses. One way
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 is to consider intersections of the graph of f c C(K) with larger classes of

 smooth functions. We remark that it is apparent that if X(K) = 0, then there

 exists f e C(K) such that {f = g} is finite for all g differenti abi e. To

 see this, just choose f e C(K) such that f' = ». Then if g is differen-

 tiate, and Xq is a point of accumulation of {f = g} then g'Cxg) = °°.
 If X (K) > 0, the situation is different:

 Theorem 7. If A(K) > 0, then for each f e C(K), there exists g e C'

 such that {f = g} is uncountable.

 Corollary 8. For each f e C[0,1J, there exists g e C' such that {f = g}

 is uncountable.

 One open question is: can Corollary 8 be improved? For example, might

 we get a twice differenti able function g, or, possibly g e Cn for some

 n > 1? However, Theorem 7 is the best possible in the following sense:

 Theorem 9. Given e > 0, there exists K c £0,1 J perfect, such that

 A(K) > 1 -e and there exists f e C(K) such that {f = g} is finite for

 all g twice differenti able.

 Theorem 1 can be significantly generalized. We need some definitions

 and notation.

 Definition. If f is defined on a set E, the nth divided difference of f

 at the distinct points xQ, x-j , . . . , xn e E is defined by
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 n f(x.)

 v(f- *0

 where

 n

 w(x) = n (x - X.).
 j=0 3

 The function f is said to be n-convex on E if V(f, Xq, ^n) >_ 0

 whenever Xq, •••» *n are distinct elements of E. We say f is n-concave

 if -f is n-convex. Thus f is 0-convex if f >_Q, f is 1 -convex if f

 is increasing and f is 2-convex if f is convex. If E is an open interval
 n ~ 9

 and n > 2, then f is n-convex on E if and only if f e C ~ (E) and

 f(n-2) ļs convex on

 We let Pn be the collection of polynomials of degree <_ n.
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 We have the following theorem of Cech £1],

 Theorem. For f e C[0,1], if {f = p} is finite for all p e Pq, then f
 is 1-convex or concave on a subinterval of £0,1J.

 We may now restate Theorem 1 as:

 Theorem, For f e C£0,1], if {f = p} is finite for all p e P-j , then f
 is 2-convex or concave on a subinterval of [0,1J.

 The above 2 theorems were shown to be special cases of the following more

 general and stronger result:

 Theorem 10. For f e C[0,1J, if {f = p} has no bilateral accumulation point

 for all p e Pn, then f is n+1 -concave or convex on a subinterval of £0,1 J.
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 Corollary 11. For f e C[0,1], if {f = p} has no bilateral point of
 łl- 1

 accumulation then there is a subinterval J £.[0,1] such that f|j e C (.J)«

 A related theorem is:

 Theorem 12. If f e C[0,1], then either there exists a polynomial p such

 that {f = p} is infinite or there exists g e C° such that {f = g} is

 uncountable.

 In either case, we have

 Corollary 13. If f e C[0,1], then there exists g e C00 such that {f = g}

 is infinite.

 Interestingly, we have the following:

 Theorem (Zahorski {3] answering a question of Ulam [2]). There exists a

 function f e C[0,1J such that {f = g} is finite for all g analytic.

 An open question is the behavior of such a function f, must it be in

 C°° for example? Or, for how large a set in C[0,lj does Zahorski 's result

 hold?

 Another open question relates to Corollary 13: Can the hypothesis that

 f be continuous be weakened (for example to f Darboux or even arbitrary f)?

 As a final open question, we might try to extend the results of Theorems 2

 and 3 to n-convexity. We first summarize the known results with a "theorem"

 in the form of a chart,
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 "Theorem." For f e C[0,1J, if card {f = p} < k for all p e P , then

 [0,1 J can be decomposed into s subintervals on each of which f is n+1

 convex or concave according to the following chart.

 jl k_ £

 0 11

 2 3

 3 There i s no s ,
 even countable

 1 2 1

 3 5

 4 There is no s,
 even countable

 n n+1 1

 The open question is now evident: For n > 1 and k > n+1 , what are

 the correct values of s?
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