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 Geometric properties of fractals

 Fractal is a general describtive term referring to the subsets of

 the euclidean n-space which are quite different from smooth curves or

 surfaces or sets which cem be well approximated by them. Typical examples

 are Cantor-type sets, curves of infinite length having tangent nowhere and

 surfaces without tangent planes. However, Cantor sets with positive

 Lebesgue measure should not be considered as fractals since Lebesgue

 density theorem tells that they can locally be well approximated by

 balls. The term fractal was introduced by Mandelbrot, who has used

 them tö model various physical phenomena, cf. [MB]. In the following

 I will explain some of the geometric measure theoretic properties of

 fractals. An excellent introductory text to this area is Falconer's

 recent book [FK2], and Federer [FH2] gives a rather complete treatment

 of the integral-dimensional sets.

 1 . The structure of integral-dimensional sets

 The basic tools for studying fractals are the Hausdorff measures.

 For 0 S s í n the s-dimensional Hausdorff measure of a set A in Rn

 is given by

 OO 00

 HS(A) = lim inf { £ a(s)2 S(diam E. )S: Ac U E. , diam E. S 6}.
 64-0 i=1 1 i=1 1 1

 Here a(s) is a positive normalization constant, which for integral s is
 S • • •

 chosen so that the restriction of H to any sufficiently • smooth s-dimensional •

 surface is the s-dimensional area measure on that surface. In particular,

 H11 is the Lebesgue measure in Rn. It is not hard to show that HS is
 a Borei regular outer measure in Rn, and that for any A in Rn there
 is a unique number dim A, called the Hausdorff dimension of A, determined

 by the following properties :
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 HS(A) = 00 for s < dim A,

 HS(A) = 0 for s > dim A.

 The foundations of geometric measure theory were laid by Besicovitch

 in 1920fs and 30 's in [B], where he described to an amazing extent the
 1 2

 structure of those H measurable subsets and the plane R which have

 finite measure. In [ FH 1 ] Federer extended most of Besicovitch' s

 theory to H311 measurable subsets A of Rn with H^A) < °°, where m
 is an integer, 0 < m < n. The underlying principle in this theory is

 that such a set A can be decomposed into two parts, A = B U C, such

 that the geometric measure theoretic properties of B are similar to

 those of "nice" m-dimensional surfaces, whereas the properties of C

 are completely opposite. Thus B is the non-fractal and C the fractal

 part of A. Besicovitch called these parts regular and irregular, and

 Federer (H^m) rectifiable and purely (H^ni) unrectifiable . Briefly
 the main results are the following:

 ( 1 ) Rectifiability properties: H111 almost all of B can be covered
 with countably many m-dimensional C1 (or Lipschitz) submanifolds , but
 H^M fi C) = 0 for any such submanifold.

 (2) Density theorems: The upper and lower s-dimensional (spherical)
 densities of a set E c Rn at a point x 6 Rn are defined as the upper
 and lower limits as r i 0 of the ratios

 HS(E il {y: I x - y I 1 r})/a(s)rS.

 We denote them by D^Ejx) and DS(E,x). Then

 D^Bjx) = Dm(B,x) = 1 for ^ almost all x G B,

 Dm(C,x) < 1 for H111 almost all x € C.

 The latter result was proved in [MJ2] and [MP1 ] . For m = 1, Besicovitch

 and Moore [ME] have proved the stronger result D^(C,x) < D^(C,x) for
 almost all x G C. It is not known whether this holds for m > 2.
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 (3) Existence of tangents: At H111 almost every x € B there is
 an approximate m-dimensional tangent plane V for B, which means that

 V is an m-plane containing x such that for every 6 > 0

 lim r "h^B fi {y : |x - y| £ r, dist (y,V) > ó|x - y|}) = 0.
 r+0

 At H111 almost every x 6 C no such tangent plane exists.
 (M Orthogonal projections: Let G(n,m) be the set of all linear

 m-dimensional subspaces of Rn, and let P^: Rn V be the orthogonal
 projection onto V G G(n,m). There is a natural orthogonally invariant

 probability measure Yn on G(n,m), which in the cases m = 1 and
 m = n - 1 can be identified with the surface measure on the unit sphere

 of Rn. The results of Besicovitch and Federer give:

 iffPJ) V > 0 for y almost all V G G(n,m), 5 9 if H^B) > 0, 9 V n,m 5 9 9

 H^P C ) = 0 for y almost all V G G(n,m). 5 V 'n, m 5

 The problem whether the corresponding result holds for sets A

 having finite integralgeometric measure I^A) was solved in the negative
 in [MP5] .

 2. Densities of general fractals

 We now turn to general fractals whose Hausdorff dimension need not

 be integral. The fundamental work was done by Marstrand in 195^ in [MJ 1 ] -

 We first consider their densities. The following basic result, essentially
 n . s

 due to Besicovitch, is often very useful: If A c F is . H measurable

 with HS(A) < then

 2 S S D^Ajx) - 1 for HS almost all x £ A,

 D^Ajx) = 0 for HS almost all x € Rn ^ A.

 It may happen that DS(A,x) = 0 everywhere in A although HS(A) > 0.
 The more delicate density structure of integral-dimensional sets was
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 described in (2). The corresponding problem for non-integral dimensional

 sets was solved by Marstrand in [MJ3]:

 If s is not integral, A is HS measurable and HS(A) < «, then

 DS(A,x) < D^Ajx) for HS almost all x € A.

 In [MJ 1 1 Marstrand also considered densities in angles (in place of discs)

 of subsets of the plane. Most of these results were generalized to higher

 dimensions by Salii in [S]; he also replaced angles by much more general
 sets .

 In the same paper Salii showed that for the so-called self-similar

 fractals much sharper density theorems hold. A subset of Rn is self-
 similar if it can be split into a finite number of "essentially disjoint"

 parts each of them being geometrically similar to the whole set. For a

 precise definition and elegant theory see Hutchinson's paper [H]. Standard

 examples are the symmetric Cantor sets. Salii showed that for self-similar

 sets the upper and lower densities have a constant value almost everywhere

 in that set. This applies also to the generalized angular densities.

 3- Projections of fractals

 The basic projection theorem is: If A is a Suslin set in Rn, then

 (1) dim A > m implies H^P^A) > 0 for y a. a. V € G(n,m),
 v n ,m

 (2) dim Aim implies dim P,rA = dim A for y a. a. V G G(n,m).
 V n,m

 The case m = 1, n = 2 was proved by Marstrand in [MJ1]. In [KR]

 Kaufman gave new proofs using Fourier transform in ( 1 ) and potential

 theory in (2). Later "both Fourier transform and potential theoretic

 methods have been very useful in several questions on fractals. Kaufmann

 also showed in the case m = 1 , n = 2 that the set of exceptional directions

 in (2) has Hausdorff dimension at most dim A, and this bound is sharp, cf.
 [KM]. Generalizations to higher dimensions as well as in other respects
 can be found in [MP2] and [ FK 1 ] . For example, in [FK1] Falconer derives

 an upper bound for the Hausdorff dimension of the set of the exceptional
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 directions in (l), which in the case ir . = 1, n = 2 equals 2 - dim A.

 Davies has shown that for general non-Suslin sets the above projection

 theorem fails, see [D] .

 The results described above give good information about the measures

 Hm(P„A) for y almost all V F. 0( r. ,ra) ir; the car.es K' '( A) < 00 ~nd
 V n ,m

 dir. A > n, but they say nothing about the case where din; A = m and A

 has non-o-finite K111 measure. Recently Falconer and Talagrand [T] have
 shown that there is hardly anything to say ingenerai. They have shown

 (independently) that modulo certain neasurability assumptions one can give
 the measures of almost all of the projections in advance, and then find the

 set. Falconer has gone even further and shown that, again with mild measur-

 ability assumptions, given c V E 0(n,m) there is A c Rn such that

 Ey c PyA and H^P^ANEy) = 0 for ^ almost all V E G(n,m). In the
 case m = 1, n = 2 Falconer's result is in [FK2, Chapter 7]» and the

 general version will appear later.

 U. Intersections of fractals

 • IÎ

 Suppose that A and B are Suslin sets in • R4. The basic question

 is to find relations between the Hausdorff dimensions of A and B and

 those of the intersections A fi fB, where f runs through the isometry
 r

 group of R*, or some other family of transformations. Deverai results

 of this type appear in [MPU], and a summary of them was given in [MP3].

 There the following two cases were considered: (l) B is "nice" integral-

 dimensional and f is an i some try. (2) A and B are fractals and f

 is a similarity. About the same time Kahane [KJ] considered independently

 the second case with more general affine maps than similarities. Ore of

 his results is:

 Let G be a closed subgroup of the general linear group of Rn acting
 transitively in Rn ^ {0}, and let t be an invariant measure in G. If

 A has positive s-capacity ^(A) and if K^(B) > 0, then, if s + t > n,

 Hn{z E Pn: C (A PI (gB+z)) 0 >0} >0 s+t-n 0

 for t almost all g G G; in particular, dim Afl (gB + z)>_s'+t-n.
 s t If 0 < H s (A) < a» and 0 < H (B) < <*> and if B satisfies some extra

 conditions, e.g. D^(B,x) > 0 for x C B, then one can see as in [MPH] that
 the latter inequality
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 - can be replaced by equality provided dira A + dim B - n - 0. That some
 extra conditions are needed follows from the examples constructed in [KJ],

 [MPU] and [PICU] .

 It is not clear in what generality the results of the above type hold

 in Rn, n £ 2, with G = 0(n), the orthogonal group of Rn. In R1 , where
 the rotation group is degenerate, they don't hold at all, see [KJ] or [MP^] .
 However, it seems that certain estimates obtained by Falconer in [FK3]

 could be used to improve some of the results of [KJ] and [MP^].
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