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 Symmetrically Dif ferentiable Functions

 are Dif ferentiable Almost Everywhere

 In this note we show that any function f defined on the

 real line R and symmetrically semicontinuous at almost every

 point of a measurable set E cR is differentiable at almost

 every point of E at which it possesses a symmetric derivative,

 possibly infinite. Since the existence of the symmetric deriva-

 tive at a point implies symmetric semicontinuity at that point,

 we get as a corollary that a function possessing a symmetric

 derivative almost everywhere is measurable. This solves a

 well-known problem, which was, according to [1], posed by
 ' . . lì

 W. Sierpiński . m . 1928.

 Recall that the upper symmetric derivative of a function

 f at xeR is Is (X) = limsup ÍZSdl ) and that the
 h-O 2h

 lower symmetric derivative is

 fs (X) = liroinf f(xłh) - f(x-h> .
 h-O 2h

 » ■ c;

 If f (x) = f_ (x) , the common value, finite or infinite, is

 called the symmetric derivative of f at x. A function f

 defined on R is said to be upper (lower) symmetrically

 1) Editorial Note: The paper referred to is, W. Sierpiński,
 Sur une hypothese de M. Mazurkiewicz, Fund. Math., 11(1928),
 148-150. The question asked there is a weaker form of the
 measurability question which has been answered by Szpilrajn
 and Preiss.
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 semicontinuous at x, if

 IjLmsup f (x+h) - f (x-h) ¿ O

 (liminf f (x+h) - f (x-h) ^ 0) ,
 h-0+

 and it is said to be symmetrically semicontinuous at x, if

 it is upper or lower symmetrically semicontinuous at x. We shall
 , i ļ - « «

 also use the usual notations Df (x) , Df (x) , D f (x) , D f (x) , D f (x) ,

 and D~"f (x) for ordinary, one-sided, upper, and lower deriva-

 tives. If M is a subset of . the real line, we denote by ļ M |

 its outer Lebesgue measure,

 «/..v ( ~ ,• lMfl(x-h,x+h) 1 ^ ļ ,1
 D «/..v (M) = i x e ~ R -, ,• 1 im 1 ■■ - 2h sr 1 h -O 2h

 +

 D+,„, ={xeR! li* IfflfcjÄM-l. x} and
 n-o+

 D (M) ={,eR: L Ilm lüüí^tux)! = A J L h-0+ J

 We remark that even if M is not measurable, D (M) , D+ (M) and

 D (M) are measurable.

 The results mentioned in the beginning will be easy con-

 sequences of the following lemma.

 Lemma. Assume that f is a real-valued function defined on the

 real line, E is a measurable subset of the real line and KeR

 such that (i) E cD (E) ,

 (ii) E cD(z eR ? £s(z) >k), and
 (iii) f is symmetrically semicontinuous at each

 point of E.
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 Then Df (z) 2K at almost every point z e E.

 Proof. Let

 F = (z eR ; f8 (z) > K)

 and

 Fn = , |hl <i . iiat!5LiE£ls=t!) >K } .

 Clearly F = Ö F. n and ļ D (F) - ö D (F J 1=0. n=l n n=l

 The main part of the proof of the lemma will be accomplished by

 showing that D+f (z) žK whenever z eD(Fn) HE for some natural
 number n. To prove this assertion, we assume z = O and we

 choose A e such that for every a e (O, A)

 (-a, a) n F i , ,
 I--*  2a

 First we prove that

 (*) whenever x € (0, A) , one may find a measurable set Bc(^-x, x)

 with Jb1>j-|x and with f(y) - f(0)^Ky for each y €B.

 Proof of (*) « Let x e (0, A) . we put

 A = (Fn + jx) HEO o|x, x) and note that ]a| > ^ •
 Let

 4-

 E = (z e E î f is lower symmetrically semicontinuous at z),

 E = (z eE ; f is upper symmetrically semicontinuous at z},

 = {z e A fi E+ ; O <h <ì=» f (z+h) -f (z-h) > - £ }, and

 A~ = (z e A HE"; O <h f (z-h) - f (z+h) > - i ) .
 m, k m k
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 Let

 A* = O [ G (D(A* ) UD(AT .))].
 k=l m=l m'k m'*

 We put

 B = a* n[yD(Fn) + |] nc^E + |x] n (fx, X) .
 3

 Since A* is a measurable subset of (^x, x) with

 iA*i - w > î - ikx •

 since

 I (jD(Fn) + ~) n (fx, x) 1 > I - ^x ,

 and since

 I (|e + |x) n <!*, x) ] > £ - ^ .

 I8' > f " TēX '

 To prove the last part of the statement (*) let y eB.

 Then

 (1) 2 (y - fx) + f x ~ | = ļ(y - |) e D(Fn) , since B c|ü(Fn) + f

 and

 3 13

 (2) 2 (y - ^x) € E , since B c-^E + --x .

 Let

 cl = (Fn - |x + Ç HeH (0, X) .
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 Then

 (3) 2 (y - -|x) eD(C^) according to (1) and (2) .
 Let € e (O, an arbitrary positive number. Let

 C1+ = C1nE+ and C1 = C1 HE , and choose, for each

 t e C1+ (resp. t e C1") , a 6+ (t) € (0, Ç) (resp. a 6" (t) e (0, €) )

 such that f (t + h) - f(t - h) > - € for each h e (0, 6+ (t) )

 (resp. f (t - h) - f (t + h) > - Ç for each h e (O, 6~ (t) ) .

 Let

 c2 - U1+(t-ô+(t), t] U U i ft. t+ ô~ (t) ) . t eC teC1" i
 2

 Then (3) and the definition of C imply

 3 2 7
 (4) 2 (y - ^oc) eD(C ) and C is measurable.

 Let k and m be natural numbers such that ^- < €
 k

 and y eD(A+TOł1c) U D (A • Choose ß e (O, min (^, €)) such that

 (y - ß* y + ß) c (|x, x) .

 Put

 c3 - [((y-e, y) ru+m>lc) U((y, y+ß) Ia"^)] - §*

 and

 4 3 2
 CT = (2C ) nc .

 If y e D (A then 2 (y - ^-x) eD_(2C^) which, together with

 (4), implies that one may find a point Je C4 0 2((y-ß, y) - |x) .
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 3 +
 Since 7 e 2C , there is u e (y-ß, y) OA , such that

 m ; K

 3

 1=2 (u-^x) . Then

 (5) f (y) - f (2u - y) > - € according to the definition of A+ . /
 ni/ K

 since u e A+ . , € > and o<y-u<ß<- . In addition,
 ni/ K K m

 3
 (6) u - -tX. e F according to the definition of A, since

 4 n

 U C A+ . CA.
 m, k

 If y eD(A~ ,) - D(A+ . ) , then 2 (y - 4x) e D , (2C3) which,
 IH, K IU/ K ** *r ,

 together with (4) , implies that one may find a point
 4 3 3
 J e C fi 2 ( (y, y+ß) - ^x) . Since I e 2C , there is

 u e (y, y+ß) nA~m ^ such that

 J = 2 (u - |x) .

 Then

 (5") f (y) - f(2u - y) > - € according to the definition of

 A" , , since u e A" , , 6 > r k and 0<u-y<ß<^-. In addition, m,k , , m,k , , r k m
 3

 (6') u - e Fn according to the definition of A, since
 u e A~ , cA .

 Iti, K

 2 1
 Finally# we use J e C to choose t e C such that

 Xe[t, t + 6~ (t) ] or J e (t - 6+ (t) , t] . We also note that

 (7) t + -|x - ^ e Fn according to the definition of .

 Now we are ready to estimate

 f (y) - f(0) = [f(y) - f (2u-y) ] + [f(2u-y) - f(2t -2 (u - |x) ) ] +

 + [ f (2t - 2 (u - |x) ) - f (2 (u -|x) ) ] + [ f (2 (u - |x) ) - f (0) ] .
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 The first term is greater than -€ according to (5) and (5 ') .

 To estimate the second term we first note that since

 lx 3 X
 tec c (O, ļj-) and since y e B c (-^x, x) , y - t e (• -ķ , x) .
 Then since ļ xa- y ^ < ß < 6 and since

 |t - 2 (u - ^x) ļ = |t-^ļ < ? , J (2u - y - 2t + 2 (u - ^x) ) - (y-t) |

 á 2 1 u -y } + jt - 2 (u - -|x) Î < 3 € < j .

 It follows that

 O < 2u - y - 2t + 2 (u - -|x) < ^ .

 Therefore (7) implies

 f(2u - y) - f (2t - 2 (u - ^x) ) > K (2u - y - 2t + 2 (u - ^x) ) .

 The third term is not less than -€ since t e and

 2 (u - -^x) = T belongs to (t - ô+ (t) , t] or [t, t + & (t) ) .

 To estimate the last term, we use (6) or (6') to show that

 3 3 x

 u - ^x e Fn which, together with u - ^x e (o, -ę) gives

 f(2(u - |x)) - f (o) > K2(u - |x) .

 Hence

 f (Y) - f (0) > Ky - 2 6- |k| • I 2 (t - 2 (u - -|x) ) ] - ļ K ļ - ļ 2 (y - u) ļ >

 > Ky - (2 + 4 1k| ) • e .

 Since 6 e (0, yļr) is arbitrary, f (y) - f (0) ^ Ky, which

 finishes the proof of (*) .
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 Next we prove that D* f (O) >. K by showing that

 f (x) - f (0) ź Kx for each xe (0, A).

 Let = F 0 (~x, x) , and C = 2C^ - x.
 n o

 Then C c: (|-x, x) and jcj = 2ļc5j > ^ - yg*-

 Let B be a measurable set with the properties described in (*) .

 Then ļ C 0 B | hence there is v e C5 such that
 2v - x e B .

 From (*) we see that f(2v - x) - f (O) i K(2v - x) .

 7
 Since v e F and v e (-jrx, x) , f (x) - f (2v - x) > K2 (x -v) . n o

 Hence f(x) - f(0) > Kx for xe (0, A) and thus D+ f (0) ž Ķ .
 09

 Therefore D+f(z) * K for each ze^DfPj HE, hence

 D+ f ^ K almost everywhere in E.

 Using this statement for the function cp(x) = -f(-x), we

 see that D+cp s K almost everywhere in -E, hence D f 2: K almost

 everywhere in E, which finishes the proof of the lemma.

 Theorem 1 . Let f be a real-valued function defined on

 the real line. Then f is dif ferentiable at almost every

 point of the set

 D(x e Ry f® (x) < + » or fs (x) > - »} -

 - d(xsR; f is not symmetrically semicontinuous at x) .
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 Proof.

 Let E* = (x eR; (x) > -n} , E~ = {x e R; fs (x) < n) and

 A = (xcR; f is not symmetrically semicont inuous at x} .

 Using the preceding lemma, we see that Df > - ® at almost every

 point of each of the sets - (A U D (A)), and that Df < + »

 at almost every point of each of the sets D(E^) ~ (AUD(A)).

 Prom [2], Theorem 3, p. 171, we deduce that f is different i able

 at almost every point of

 nQifXE*) UD(E~)] - (A U D (A)),

 hence it is dif feréntiable at almost every point of the set

 D<nSl(En UEn)) " D(A) •

 Using that the existence of the symmetric derivative implies

 symmetric semicont inu ity, we get the following corollaries.

 Corollary 1. If a function f has the symmetric deriva-

 tive at almost every point of a measurable set E cR, then f

 is differentiable almost everywhere in E.

 Corollary 2. If a function f has the symmetric deriva-

 tive almost everywhere in R, then f is measurable.
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