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 Almost Continuity and Connectivity - Sometimes

 It's As Easy to Prove a Stronger Result

 This note is an attempt to interest more analysts

 in almost continuous functions. One reason that an

 analyst might care about almost continuity is that when

 he or she wishes to prove that a real function is a

 connectivity function it is often just as easy (or even

 easier) to prove a stronger result - that the function

 is almost continuous. I give two examples, one old and

 one new. Also I show that some results of Brown on

 negligible sets for connectivity functions and some

 recent results of Cristian and Tevy on associated sets

 easily extend to almost continuous functions.

 Unless otherwise noted all functions considered

 here are real functions defined on the real line, R.

 No distinction is made between a function and its

 graph.

 That a function f is connected just means that

 f is a connected set. We say that f is a connec-

 tivity function if fļC is connected whenever C is

 connected. While connected functions are not neces-
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 sarily connectivity functions in general, the notions

 are the same -for functions from the real line into

 itself. That f is almost cent i nuous means that if

 D is an open set such that f ç D then there exists a

 continuous function g with the same domain as f

 such that g D.

 It is not hard to &ee that if f : R - > R is almost

 continuous then f is connected [11]. The converse,

 however, is not true (see C83, for example). These

 classes of functions share a number of properties.

 They coincide, for instance, for functions of Baire

 class 1 C13. Both classes can be characteri zed in

 terms of closed subsets of the plane. While it is

 possible to extend many results about connectivity

 functions to results about almost continuous functions,

 extensions of this type are not always possible. For

 example, Brown in CID has shown that a Darboux function

 which is the pointwise limit of a sequence of functions

 which are continuous on the right must be a connec-

 tivity function and that such a function need not be

 almost continuous.

 ÊC9E9§ÍtÍ9Q !•. CAD In order that f : R R be a

 connectivity function it is necessary and sufficient

 that whenever M is a continuum (compact connected

 set) in the plane such that f both has a point

 directly above some point of M and a point directly

 245



 below some point of M, then f r' M * ¿ .

 Suppose f : R - ^ R. By a bl_ocki_ng set o-f f we

 mean • a closed subset K of the plane such 'that

 f r' K = <f> and such that if g:R-*R is continuous

 then g f~) K ^ $ . Obviously, f is almost continuous if

 and only i-f it has no blocking set. An ÍCC§duçibl.e

 kÍ9ÊkÍ.Q9 lit (IBS) K of f is a blocking set of f

 such that no proper subset of K is a blocking set.

 Prgggsitign 2Ł [83 Suppose f : R - > R fails to be

 almost continuous. Then there exists an IBS K of f

 and the x-projection of K is a non-degenerate connec-

 ted set.

 A £iąssi.ę resul t of Jones

 In 1942 Jones C73 gave an example of a connec-

 tivity function f :R - » R such that f is a dense

 subset of the plane and f satisfies f <x + y) =

 f(x> + f (y> . The fuction f is constructed by trans-

 finite induction. In order to make f be connected,

 Jones insures that if M is a closed subset of the

 plane with uncountable x-projection, then M/1 f * .

 In order to convince someone that f is connected one

 can discuss what sets can separate subsets of the plane

 and get something akin to Proposition 1. Ifind it

 easier to prove Proposition 2 (it's not hard) and show

 that f is almost continuous.
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 A recent ręsyl_t oí Ceder

 •The following lemma is an "unbounded" version of

 the technique used in C103 to produce an almost con-

 tinuous function which is a dense subset of the unit

 square.

 Let Pj and p ^ denote, respect i vel y , the pro-
 jections of the plane onto the x-axis and the y-axis.

 Lemma JLŁ Suppose f : R R has the property that

 if u is an upper semi -conti nuous function with domain

 a non-degenerate interval and range a subset of R then

 f r' cl (u) ï4 Then f is almost continuous.

 PC29Í.Í Assume the contrary and let K be an IBS

 of f. Note that P2*K* ~ R» "for otherwise K would
 miss a constant function. By the Baire category

 theorem, for some integer n, pŁ <K D p~l <Cn,n + ID))
 must contain a closed interval, Ca, bü. For each

 X £ Ea,b] let (x,u(x)) be the highest point of

 K /~1 (Ca,b3 X Cn,n + 13) with abscissa x. Then u is

 upper semi -continuous, leading to a contradi cti on.

 Recently Ceder C3D gave an example of a connec-

 tivity function f:R-?>R such that f | A is discon-

 tinuous whenever A is uncountable. Using the

 preceeding lemma one need only examine Ceder 's proof to

 see that the his function is in fact almost continuous.

 All that one need do is replace the continuum H at
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 the top of page 160 of Ceder's paper with the closure

 of an upper semi -continuous -function.

 • Note that Jones' example does not depend on the

 continuum hypothesis while Ceder's construction does

 use CH.

 Results of Brown oņ negligible sets

 Let the letter I denote the interval CO, ID.

 The following results are stated -for functions from I

 into itself because that is the convention in the

 references. These results also hold for functions from

 R into R.

 Suppose f : I - ^ I is almost continuous and that

 M Ç. I. We say that M is f zQ§ai.Í9ÍbL® every

 function g! I - >1 which agrees with f on I ' M is

 almost continuous. (Note that my use of the term "neg-

 ligible" is different than Brown's). The following two

 theorems are simply restatements of Theorems 1 and 2 of

 C23, with "connectivity" replaced with "almost con-

 tinuous" .

 Jheorem 1Ł If M is a subset of I, then there

 exists an almost continuous function g:l I such

 that M is g-negligible if and only if I ' M is c-

 dense in I.

 Proofs Just use Brown's proof together with Lemma

 1 and the fact that an almost continuous function from
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 I into I is connect i vi ty .

 Jhegrem 2¿ 1+ g: I ->• I is almost continuous then

 the -fol lowing statements are equivalent to each other:

 2
 (i ) g is dense in I .

 (ii) Every nowhere dense subset of I is g-

 negligible.

 (iii> There exists a dense subset of I which is

 g-negl igible.

 ÊCSQii To show that (i) implies (ii), suppose

 g:l-> I is almost continuous and dense, li is nowhere

 dense and f : I I agrees with g on I ' M. Assume

 that f is not almost continuous and let Q be an IBS

 of f. Since Pj(Q) is an interval, int(pj(Q)> must
 contain a point z of I ' cl <M) . By the irreducib-

 lity of Q there exist continuous functions s,tïl- ^ I

 such that s | CO, z D /"1 Q = <f> - t | Cz , 1 3 /) Q. Let A and

 B be, respectively, circular neighborhoods of

 <z,s(z)> and (z,t(z>> such that (ft U B) fi Q = çf .
 *

 Since g is dense there exist c and d such that

 c < z < d, (c,g<c)> £ A, (d,g(d)> € B and

 Cc,d3 Ç I ' M. Let P =

 ( <íc>X I) ' A) U ( ( <d> *1) ' B) U (p"1 (Cc,d3) />Q) .

 Since g A P = çf , there is a continuous function

 I which misses P. We can now obtain a contra-

 diction by constructing a continuous function from I

 into I which misses Q. Do this by taking parts of
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 s|CO,cD, t'Cd,13 and h/Cc,dD and joining them with

 linear -functions inside A and B.

 That (ii) implies (i) and that (iii) implies (i)

 follow exactly as in Brown's proof. The proof that (i)

 implies (iii) given below differs only superficially

 from Brown's.

 Suppose again that g: I I is almost continuous

 and dense. Then g *(1/2) is easily seen to be dense
 in I. Let g *(1/2) = M A K, where M and K are
 disjoint and dense in I. We show that M is g-

 negligible. To see this, suppose f:I I agrees with

 g on I ' M. Assume that f is not almost con-

 tinuous and let Q be a blocking set of f. Since K

 is dense in I the set N = <x € M : (x,l/2) £ Q> is

 nowhere dense. But the function h:l-^I which agrees

 with f on N and agrees with g on I ' M misses

 Q and cannot be almost continuous. Thus N is a

 nowhere dense set which is not g-negl igible. This

 contradiction completes the proof.

 Results of Cristian and Tevy on associated sets

 Theorems 3 and 4 and Corollary 1 below are re-

 statements of results of Cristian and Tevy C53, with

 "almost continuous" replacing "connected". Using

 Theorem 2 of the present paper, the proofs are vir -

 tuai 1 y identical to those in C53, with- "continuum"
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 being replaced by "IBS", and are omitted. Definitions

 of terms used but not defined here may be found in C53.

 • Ih§2C§=iD Suppose f,g:I - ^ I such that f is

 Darboux, dense and not almost continuous and there

 exists a finite set A St <0,1) such that f * (y) «
 g 1 (y) for any y 6 I ' A. Then g is dense and not
 almost continuous.

 Ç9C2ii.£C¥ i». Suppose f,g¡I - ^ I are both Darboux

 and dense and there exists a finite subset A of

 (0,1) such that f -1 (y) = g"1 <y) for each y 6 I ' A.
 Then f and g are both almost continuous or both not

 almost continuous.

 The set A in the two preceeding results cannot

 in general be replaced either with a countable set or

 with a nowhere dense set.

 Ib®QCē!D The class of almost continuous func-

 tions is not characterizabl e by associated sets.

 ÊCQklâQîa. It is known that any function from R

 to R is the pointwise limit of a sequence of almost

 continuous functions C9D. However, no intrinsic

 characterization has been given either for the uniform

 limit of a sequence of almost continuous or of a

 sequence of connectivity functions. Bruckner and Ceder

 [3D have considered the latter problem.
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