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 A Differentiable Function for which

 Localization for Double Fourier Series Fails

 We give an example of a function of two variables, every-

 where differentiable and. continuously differentiable except at

 one point, for which square sum localization fails. Igari, [2],

 hás shown that continuous functions of this sort exist. On the

 other hand, it has been known since the time of Tonelli that,

 for n= 2, localization holds for functions of type BVC, even

 for rectangular sums. This result has recently been extended to
 functions of type HBV, [1] .

 Our example uses only the simplest facts about Fourier series
 of functions of one variable.

 ®n' n = 1 » 2, . . ., is the sequence of Dirichlet

 kernels, and m is a positive integer, there is a constant c > 0

 /•ir/m

 such that, for every n > m, |Dn(t)|dt > c log n/m.
 ir/n

 (ii) If 0 < a < b < it , there is a c* > 0 such that, for
 fb

 every n, |D (t)|dt > c' log
 Ja " a

 We also use the elementary fact that

 (iii) cross localization holds for functions of two variables.

 This means that if there is a 5 > 0, and if a summable function f

 is zero on the cross d-*,*] x [-6, 6j) u ([-5, 6] x [-*, *]),
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 then the Fourier series of f converges to zero at the origin

 (0,0).

 We consider continuously dif ferentiable functions
 2

 f^, i=lf 2/ 3, . .., defined on I = (-it, it] with support in
 2

 = [a^, Łk] X [ir/n^, v/i] and such that |f^(x,y) ļ < (ir-b^) •

 Let f = £ The strictly increasing sequence of integers {n^},
 i

 the functions {f^}, and the sequences {a^}, {b^}, with
 0<a. <b. < a.,, <... <ir and b. -*■ v, will be defined i i i+l i

 inductively.

 For any n^,
 ► -

 I f(x,y) D (x) D (y)dxdy¡ = 'l f . (x,y) D (x) (y)dxdy¡
 J k k i Ji, 1 . nk k

 - > I k (x)Dn (y) dxdy ļ - ļ I f. i (x,Y)D (x) D (y)dxdy| - )t k nk nk i<k j i k k
 •K 1

 - I I f-i 1 (Xry)D (x) D (y) dxdy] = A - B - C .
 i>k Jli 1 nk k

 Choose a^ = it/2, bļ = 3it/4, and f ^ = 0. Suppose we have chosen

 a^ ^ '^1 ^ ... ^ ak_i ^ bk_^ ^ Vf 2 ^ ••• ^ ^k-1 '

 and f ļ » . • • , fk_i »

 For any choice of b^ > ak > b^ ^ and of n^ > we can

 choose f^, continuously dif ferentiable, with support in 1^, such
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 2

 that ļfjJ < (ii - b^) and approximates

 (tt - b,)2 K sgn (D (x) (y)) K nk nk

 so closely that

 1 2 C"/k fbt-
 A - 2 (ir ~bk} I Dn (y)|dy ^Id (x)|dx

 JTr/nk k Jak nk

 > cx (ir - bk) 2 log (nk/k) log bk/ak,

 where cļ > 0 is independent of the choice of n, . Thus, when

 ak an(^ have been chosen, we may choose nk so large that, with

 fk as above,

 <*) A > k + 1.

 Since £ f vanishes in a cross neighborhood of the oriqin, 3 i< k 3

 for nk chosen sufficiently large,

 (**) B < 1/2 .

 There is a c^ > 0, independent if k, such that

 C < I (w - bi)2 x ļ I d (y) ļdy [ 1|d (x) ļdx
 i>k x jo k •'ai nk

 < c 2 I (w - bi)2(log 1 n k )(b.-a.). i x i > k 1 k i x
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 If and are chosen with < b^, it - 1/k < b^ < it,

 2 k -1

 and so that (n - bj,) (log n^_ļ) (b^ "^) < ) > ^en with

 the inductively determined {a^}, (b^>, {n^}, and {f^},

 (***) C < I (n - b )2 (log n, ) (b. - a.)
 i>k 1

 < co 1 (* - b.)2(log n. , ) (b . - a.) < 1/2.
 ^ i>k 1

 Combining the starred estimates we see that

 I f(x,y) D (x) D (v) dxdyļ > k
 JI k k

 for every k, which means that the sequence of square partial sums

 of the Fourier series of f at (0,0) is unbounded.

 It is clear that f is continuously dif ferentiable except

 at (tt,0). It is dif ferentiable there since |f(x,y) ļ < (ir - x) .

 This proves the following theorem.

 Theorem. There is a function, everywhere dif ferentiable and

 continuously dif ferentiable except at one point, whose Fourier

 series does not have square localization.
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