Real Analysis Exchange Vol. 8 (1982-83)

Casper Goffman, Department of Mathematics, Purdue University West Lafayette, IN 47907. Fon-Che Liu, Academia Sinica, Nankang, Taipei, R.O.C. Daniel Waterman, Department of Mathematics, Syracuse University, Syracuse, NY 13210

> A Differentiable Function for which Localization for Double Fourier Series Fails

We give an example of a function of two variables, everywhere differentiable and continuously differentiable except at one point, for which square sum localization fails. Igari, [2], has shown that continuous functions of this sort exist. On the other hand, it has been known since the time of Tonelli that, for n=2, localization holds for functions of type BVC, even for rectangular sums. This result has recently been extended to functions of type HBV, [1].

Our example uses only the simplest facts about Fourier series of functions of one variable.

(i) If D_n , n = 1, 2, ..., is the sequence of Dirichlet kernels, and m is a positive integer, there is a constant c > 0

such that, for every n > m, $\int_{\pi/n}^{\pi/m} |D_n(t)| dt > c \log n/m.$

(ii) If $0 < a < b < \pi$, there is a c' > 0 such that, for every n, $\int_{a}^{b} |D_{n}(t)| dt > c' \log \frac{b}{a}$.

We also use the elementary fact that

(iii) cross localization holds for functions of two variables. This means that if there is a $\delta > 0$, and if a summable function f is zero on the cross $([-\pi,\pi] \times [-\delta, \delta]) \cup ([-\delta, \delta] \times [-\pi, \pi])$, then the Fourier series of f converges to zero at the origin (0,0).

We consider continuously differentiable functions f_i , i=1, 2, 3, ..., defined on I = $(-\pi, \pi]^2$ with support in $I_i = [a_i, b_i] \times [\pi/n_i, \pi/i]$ and such that $|f_i(x,y)| < (\pi-b_i)^2$. Let $f = \sum_i f_i$. The strictly increasing sequence of integers $\{n_i\}$, the functions $\{f_i\}$, and the sequences $\{a_i\}$, $\{b_i\}$, with $0 < a_i < b_i < a_{i+1} < \ldots < \pi$ and $b_i \neq \pi$, will be defined inductively.

$$\left| \int_{I} f(x,y) D_{n_{k}}(x) D_{n_{k}}(y) dxdy \right| = \left| \sum_{i} \int_{I_{i}} f_{i}(x,y) D_{n_{k}}(x) D_{n_{k}}(y) dxdy \right|$$

$$\geq \left| \int_{\mathbf{I}_{k}} \mathbf{f}_{k}(\mathbf{x}, \mathbf{y}) \mathbf{D}_{\mathbf{n}_{k}}(\mathbf{x}) \mathbf{D}_{\mathbf{n}_{k}}(\mathbf{y}) d\mathbf{x} d\mathbf{y} \right| - \left| \sum_{i < k} \int_{\mathbf{I}_{i}} \mathbf{f}_{i}(\mathbf{x}, \mathbf{y}) \mathbf{D}_{\mathbf{n}_{k}}(\mathbf{x}) \mathbf{D}_{\mathbf{n}_{k}}(\mathbf{y}) d\mathbf{x} d\mathbf{y} \right|$$

$$- |\sum_{i>k} \int_{I_i} f_i(x,y) D_{n_k}(x) D_{n_k}(y) dxdy| = A - B - C .$$

Choose $a_1 = \pi/2$, $b_1 = 3\pi/4$, and $f_1 = 0$. Suppose we have chosen $a_1 < b_1 < \cdots < a_{k-1} < b_{k-1} < \pi$, $2 = n_1 < \cdots < n_{k-1}$,

and $f_1, ..., f_{k-1}$.

For any choice of $b_k > a_k > b_{k-1}$ and of $n_k > n_{k-1}$, we can choose f_k , continuously differentiable, with support in I_k , such that $|f_k| < (\pi - b_k)^2$ and f_k approximates

$$(\pi - b_k)^2 \operatorname{sgn} (D_{n_k}(x) D_{n_k}(y))$$

so closely that

$$A \ge \frac{1}{2} (\pi - b_{k})^{2} \int_{\pi/n_{k}}^{\pi/k} |D_{n_{k}}(y)| dy \int_{a_{k}}^{b_{k}} |D_{n_{k}}(x)| dx$$

$$\geq c_1 (\pi - b_k)^2 \log(n_k/k) \log b_k/a_k$$

where $c_1 > 0$ is independent of the choice of n_k . Thus, when a_k and b_k have been chosen, we may choose n_k so large that, with f_k as above,

$$(*)$$
 A > k + 1.

Since $\sum_{i < k} f_i$ vanishes in a cross neighborhood of the origin, i<k for n_k chosen sufficiently large,

$$(**)$$
 $B < 1/2$.

There is a $c_2 > 0$, independent if k, such that

$$C \leq \sum_{i > k} (\pi - b_{i})^{2} \int_{0}^{\pi} |D_{n_{k}}(y)| dy \int_{a_{i}}^{b_{i}} |D_{n_{k}}(x)| dx$$

$$\leq c_{2} \sum_{i > k} (\pi - b_{i})^{2} (\log n_{k}) (b_{i} - a_{i}).$$

If a_k and b_k are chosen with $b_{k-1} < a_k < b_k$, $\pi - 1/k < b_k < \pi$, and so that $(\pi - b_k)^2 (\log n_{k-1}) (b_k - a_k) < (c_2 2^k)^{-1}$, then with the inductively determined $\{a_i\}, \{b_i\}, \{n_i\}, \text{ and } \{f_i\},$

(***)
$$C \leq \sum_{i>k} (\pi - b_i)^2 (\log n_k) (b_i - a_i)$$

 $< c_2 \sum_{i>k} (\pi - b_i)^2 (\log n_{i-1}) (b_i - a_i) < 1/2.$

Combining the starred estimates we see that

$$\left| \int_{\mathbf{I}} f(\mathbf{x}, \mathbf{y}) D_{\mathbf{n}_{k}}(\mathbf{x}) D_{\mathbf{n}_{k}}(\mathbf{y}) d\mathbf{x} d\mathbf{y} \right| > k$$

for every k, which means that the sequence of square partial sums of the Fourier series of f at (0,0) is unbounded.

It is clear that f is continuously differentiable except at $(\pi, 0)$. It is differentiable there since $|f(x,y)| \leq (\pi - x)^2$. This proves the following theorem.

<u>Theorem</u>. There is a function, everywhere differentiable and continuously differentiable except at one point, whose Fourier series does not have square localization.

References

1. C. Goffman and D. Waterman, The localization principle for double Fourier series, Studia Math. 69 (1980), 41-57.

2. S. Igari, On the localization properly of multiple Fourier series, J. of Approx. Theory, 1 (1968), 182-188.

Received June 6, 1982

•