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 DERIVATION BASES ON THE REAL LINE (I)

 Preface. The material presented here is a preliminary version of a pro-

 jected monograph on the subject of differentiation and integration theory

 on the real line. I would like to thank the editors of the Exchange for

 their encouragement in this project and their willingness to present this

 admittedly tentative version. I trust the reader too will be as generous

 in overlooking the obvious rough edges.

 The intention of this study is to present a language and a frame-

 work within which a large portion of classical real analysis permits a rela-

 tively clear and simple expression. Our unifying concept is that of a deri-

 vation basis. Relative to any derivation basis there are three fundamental

 related concepts, giving rise to a derivation theory, an integration theory

 and a measure theory. Many of the concerns of analysts over the years can

 be considered as entirely natural problems that arise within such a setting

 and by placing them within this setting one acquires a convenient way of ex-

 pressing the problems, a clearer picture of the many interrelations between

 problems, and a. unified methodology for attacking the problems.

 Our language draws on two main sources: the abstract differen-

 tiation theory introduced some sixty years ago by R. de Possel and devel-

 oped since then by numerous authors, and the abstract integration theory

 (generalized Riemann integration) introduced by R. Henstock some twenty

 years ago and developed since then mainly by Henstock himself and his

 students. As we choose to place everything just on the real line we will

 not require the full apparatus of these two abstract theories nor will we

 require of the reader any familiarity with them.
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 The first chapter £5 only an attempt to motivate the general

 theory and to give an indication of the form it is to take. One gener-

 ally needs a good bit of motivation in order to pursue an abstract theory

 and the ideas here are no exception. The fact that there are by now

 dozens of distinct derivation and integration processes and hundreds of

 papers generated in an attempt to sort out their properties certainly

 provides adequate motivation for a general theory. Indeed numerous

 authors have responded to this situation (which Professor Garg describes

 as a "jungle") by putting forth concepts designed to unify and simplify.

 Of the many unifying attempts in the theory of integration on the real

 line that of Henstock appears to be the most successful. Here we take

 this a step further and show that Henstock1 s ideas also provide a unifi-

 cation of the many derivation processes and that they provide at the same

 time a better view of the historically close connection between integra-

 tion and differentiation.

 The second chapter introduces the notion of an abstract deriva-

 tion basis on the real lijie and develops all of the terminology needed for

 the remainder of the work. The ideas are really quite simple but they

 apparently are rather compact and the notation takes a bit of familiarity;

 for this reason we have liberally given examples (all in italics) to help

 illustrate the ideas and to ease somewhat the burden on the reader. There

 is always the danger in the development of an abstract language that the

 author will create merely his own private fantasy, unshared by others 7

 certainly our subject already has a number of apparently profound but

 clearly unreadable works. For this reason the terminology has been kept

 to a bare minimum and mainly suggestive notation and labelling has been

 used, although of course the risk remains.

 The third chapter develops the properties of the variation.

 This concept is a common generalization of such diverse notions as Peano-

 Jordan measure, upper Darboux integrals, upper Lebesgue and Lebesgue-

 Stieltjes integrals, total variation of a function, Burkill integration

 and Hellinger integration. The variation is the most convenient tool for

 developing properties, of the derivation or the integration and it provides

 68



 remarkably simple proofs of a variety of well known theorems. In addition

 there are a number of concepts which arise directly or indirectly from a

 consideration of the variation and these too will appear in this chapter?

 thus the measure theory and the theory of the upper integral are given

 here as well as such notions as a generalized continuity.

 Chapters four and five, which give treatment of the abstract differ-

 entiation theory and the integration theory, will appear in a later issue of

 the Exchange.

 Proofs are given for all the main results. For the illustrative

 examples usually only a statement of the result appears with, perhaps, a

 reference to the literature where one is known. A number of items in the

 text have appeared as queries; this is meant to indicate only that at the

 time of writing this question occurred to the writer with no corresponding

 answer coming to mind. Answers to the queries, suggestions and critical
 comments would be most welcome.
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 CHAPTER ONE

 INTRODUCTION

 §1. Abstract differentiation theory. Our concern throughout is with

 abstract differentiation theory in its simplest setting, the real line.

 In that setting much of the usual machinery of that theory becomes empty

 and most of the traditional problems of the subject meaningless. However,

 new problems and new machinery arise naturally by reviewing classical

 analysis in such an abstract setting. It is hoped that such a study will

 throw some light on a number of problems in analysis and will enrich the

 general subject of abstract differentiation theory itself.

 We begin with a very sketchy review of the abstract theory:

 Let (X , yrj , ļi) be a measure space and select from yr' a distinguished

 class of sets I c yrj so that 0 < y (I) < + 00 for every I € I . The

 class I is to play the role of the "intervals" and so we shall refer to

 them as "generalized intervals".
 i

 DEFINITION 1.1 A differentiation basis B on the measure space (X , yr' , y)

 is a filterbase on the product set I * X .

 That is B is a collection of subsets of I * X , so that each

 ß Ç B contains numerous pairs (I,x) (I an interval and x € X) , and

 B has the filterbase properties: (a) 0 J? B , Cb) if ß^ and ß^
 belong to B then there is a ^3 c ^ $2 t^iat a^-so belongs to B .

 For any function F : I -*• R we may define its derivative at a

 point X 6 X with respect to this differentiation basis B by writing

 Dß F(x) = lira F (I) /V (I)
 where the limit is taken in the sense of the filterbase B . In the

 simplest language Dg F (x) = c if for every e > 0 there is a
 ß € B so that

 |F(I)/'yCl) - c I < e for all (I,x) € ß .
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 In less simple language this can be written by setting

 D CF , X ; ß ) = {F U) /11 U) : U,x) € ß}

 and then {DCF,x;ß) : ß € B} is a filterbase on the real line and it

 converges to the derivative if such exists.

 The central problem of abstract differentiation theory can be

 formulated with a minimum of terminology now; a function f on X is

 locally integrable if it is integrable on each set I € I , and if so

 we may write F^ (I) = f dļi (I € I) for its indefinite integral.

 BASIC PROBLEM OF ABSTRACT DIFFERENTIATION THEORY. Given a class F of

 locally integrable functions/ what are the necessary and sufficient condi-

 tions that a basis B should have in order for the assertion

 F^ (x) =? f (x) y-alraost everywhere in X
 rS

 to hold for every function f in the class F ?

 The charm and challenge Of this problem is in the quite surpri-

 sing fact that the answer lies not in measure-theoretic considerations

 nor in topological considerations but in the geometry of the differenti-

 ation basis B . For a full explanation of this vague term and the world

 of Vitali conditions, halo conditions, etc. to which the problem leads

 the reader might consult Bruckner [. 8 ] for an overview and then de Guzman

 [37] and Hayes and Pauc [39] for a serious study of the subject.

 If we restrict our attention to the real line with p as

 Lebesgue measure then we are naturally drawn to use genuine intervals

 [a,b] for the class I . Thus, if I is the collection of all closed

 bounded nondegenerate intervals on the real line R , a differentiation

 basis B is a filterbase on 1 * R . Such objects are the principal

 object of our study in the present work.
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 We are not however interested in the basic problem given above ,

 for in the setting of the real line almost any reasonable differentiation

 basis would differentiate the integrals of any locally integrable function

 even if for y we take Lebesgue-Stielt jes measures ļi_ generated by a
 o

 continuous bounded variation function G . Our program instead is to seek

 other problems natural to real analysis and to discover the geometry of a

 differentiation basis that lies at the heart of the problem. This is com-

 pletely within the spirit of abstract differentiation theory but will lead

 us to entirely different notions.

 In the next three sections we show how the notion of an abstract

 differentiation basis on the real line arises naturally in the study of

 three quite different concepts.

 §2. Generalized derivations. It is common now, in the study of real functions,

 to replace the derivative (which may not exist) by the extreme derivates

 (which do exist) . Thus for any function F one introduces the bilateral

 derivates defined as

 D F (x) = lim sup F ^ ~ F
 y+x y - x

 and

 DF(x) = lim inf F Cy) " F Cx)
 y->-x y ~ x

 and the four unilateral derivates (also called Dini derivatives)

 + DF(x) = lim sup y) " F - - ,
 Y-WC+ y - x

 ^ F (y) 1 - F (x)
 D F (x) = lira inf ^ - 1

 y-*-x+ y x

 ~ĎF(x) = lim sup F(y) ~FCx)
 y+x- y~x

 ~DF(x) = lim inf F(y) .
 y+x- y - x
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 These derivation processes are the most natural but they do not

 exhaust the many other reasonable (and unreasonable) ways in which the

 derivative has been generalized. For later reference (as well as to im-

 press on the reader the bewildering variety of such inventions) we list

 those generalized derivatives that are known to us. Since our concern is

 to present a unified and simplified treatement of these derivation pro-

 cesses we should first confront the confusion into which some order is to

 be thrown.

 Ci) uniform derivation, A function f is said to be a uniform

 derivative of a function F on a set X provided

 lim [F(x+h) -F(x)]/h = f (x) uniformly for x € X .
 h+0

 While such, a derivation should have limited interest as being far too

 restrictive this process plays an historically important role and will

 play an important illustrative role in our general theory. A number of

 authors have used this concept (e.g., Weinstock .[117], Lahiri [74], Bhakta

 and Mukhopadhyay [ 6 ] , Manna [80J ' .

 (ii). sharp derivation. For any function F we define the sharp

 extreme derivates as

 -# / . , . F ty) 1 - F (z)
 D F / (x) . = lim , . sup - 1 - 2

 ty / z ) -> tx,x) y z
 y ? z

 and

 D»F(X) - li», inf F'r':F"" Z . (y,z) (x,x) y Z
 y f* z

 These evidently satisfy the inequality

 D#F(x) 5 D F(x) í ĎF(x) < Ď#F(x)

 and so represent not a weakening of the ordinary derivation process but a

 sharpening of it and hence the name. It would be appropriate to name them

 after Peano who first introduced them in 1892 (Peano [S9] ) but his name is
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 now firmly attached to a different process. Some authors have referred

 to this as "strong" derivation but that term is reserved for quite a

 different notion in general differentiation theory (cf. Saks [1 05, p. 106])

 and would interfere with the terminology needed for vector-valued exten-

 sions of this concept. Bruckner [10, p. 69] suggests "unstraddled" but

 only in passing.

 The concept itself might at first sight appear too restrictive

 to play any serious role. For example, in order for a sharp derivative
 #

 D F (x) to exist in an interval F must be continuously dif f erentiable

 there. Even so the sharp derivation can be used to clarify the nature of

 assertions about other derivations. For example the following two classi-

 cal theorems for the Dini derivatives (the first due to Dini himself and

 the second to W.H. Young) are much clearer when expressed in terms of the

 sharp derivation.

 +

 THEOREM 1. If_ DF: is continuous at a point x^ then F is
 dif ferentiable at x^ .

 THEOREM 2. If_ F is continuous then residually +DF(x) = DF(x) .
 In their sharper versions (the latter of which is due to Bruckner and

 Goffman [11]) we have

 THEOREM 1 1 . If_ +D F is continuous at a point .x^ then F has
 a sharp derivative there.

 # +
 THEOREM 21. If_ F is continuous then residually D F(x). - D F (xl

 = ~D F (x) .

 Any study of this derivation process should begin with a reading

 of Peano1 s original paper t[99]) which contains a number of basic observa-

 tions. (For some more recent studies see Esser and Shisha [ 30J , Bhakta

 and Mukhopadyay [6], Belna, Evans and Humke [ 3 J.)
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 (iii) density derivation« The most profound and useful of the gener-

 alizations of the ordinary derivation process was given by Denjoy [24] and

 by Khintchine [70]- For any function F the derivate ap - D F (x) is the

 infimum of all numbers c for which the set

 F Cy) 1 - F (x)
 y J : - 1

 - J y - x

 w J

 has x as a point of dispersion (1 , e . , of outer density zero) .

 This, together with its corresponding lower derivate, is the

 process of bilateral approximate derivation. One sided versions are

 available merely by considering the appropriate one sided density condi-

 tion, and we label these as

 ap- + D F(x) , ap-+D F(x) , ap - D f (x) , and ap - D F (x)

 and refer to them as the approximate Dini derivatives.

 There is an extensive literature devoted to the study of these

 derivations and a formidable range of results has been obtained. The sur-

 vey article of Bruckner and Goffman [12] provides a recent and quite compre-

 hensive review of the subject.

 By relaxing the density requirements in the above definition we

 can obtain a number of generalizations of the approximate derivative. For

 a pair of number (p , X) chosen from the interval [0,1) define the

 derivate ap . - D F (x) to be the infimum of the numbers c for which
 vP / A )

 the set

 F (y) - F (x)
 y J : -

 - J y - x

 has outer right upper density less than 1 - P and outer left upper density

 less than 1 - X .
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 Although these derivations are of much less significance than

 the approximate given above they do play a role in some investigations.

 Den joy [24] studied the ap . - process and some investigations of
 (JL 1 )
 (JL 4"' 2

 Denjoy and Khintchine (cf. Saks [105, pp. 295-297]) involve the process

 ap(o , 0) *

 In their study of Perron type integrals Sarkhel and De [IOTI have

 been led to consider a different type of modification of the above density

 condition: a set E is sparse on the right at a point x if for every

 e > 0 there is a 6 > 0 so that every interval (a,b) c (x , x+6) with

 (a - x) <6 (b - x) contains a point y such that |e Í1 iļ < ļ 1 1 £ where
 I = (x,y). Clearly, a sparse set has lower density zero but examples are

 given [107 , p, 30] to show that its upper density may be arbitrarily close

 to 1 . Using this notion of sparse in place of density zero we obtain

 the "proximal derivation" process.

 (iv) category based derivation. It is only natural/ given the success

 and importance of the density based derivation process, that one tries tp

 utilize other measures of size. Thus one could consider using the concept

 "first category in some neighbourhood of x " in place of "density zero at x"

 in the previous definitions. This leads to the notion of a qualitative

 derivation introduced by S. Marcus [82]. A number of authors have shown

 that such derivations share many properties of the ordinary derivative; for

 example, it is shown in Bruckner, O'Malley and Thomson [13] that a qualita-

 tively differentiable function is in fact dif ferentiable.
 2

 (v) selective derivation. A selection is a function s:R •+ R that

 is symmetric (i.e. , s(x,y) = s(y,x)) and for any x < y , has

 x < s(x,y) < y . This concept was used by Neugebauer [94] to characterize
 those functions which are in the first class of Baire and have the Darboux

 property, and (solving formally a long standing problem of W.H. Young) to
 characterize those functions which are everywhere the derivative of some

 continuous function. These considerations have led O'Malley [95] to define
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 a derivation process relative to a selection and he has used this class

 of derivations to shed some light on other types of derivatives. (We

 might mention as well that the notion of a selection has been used to

 provide a modification of the Riemann-Stieltjes integral; see for ex-

 ample Baker and Shive [23.)

 Thus if s is a selection one has defined

 D F (x) = lim sup [F(js(x,y)) - F (x) ]/[s (x,y)-x]
 y-x

 and

 D F(x) = lim inf [F(s(x,yH - F (x) 3 /[s U,y> -x] .
 y->x

 One then studies the properties of selective derivates and selective deri-

 vatives relative to general selections or selections having some further

 properties; since a number of different derivations can be realized as

 selective derivatives this gives a general approach to studying a certain

 class of generalized derivations. (See the article of O'Malley [95] for

 details.)

 O'Malley has also defined a related class of "bi-selective

 derivations".

 (vi) parametric derivation. Èvans and Humke [29] define a derivation

 process of the form

 D F (x) = lim inf [F (x - <p (h) ) - F (x - cp(h) - h) 3 /h
 h -*0+

 and

 D F(x) = lim sup [F(x-(pCh)) - F (x - ip(h)-h)3/h
 ^ h-H)+

 where cp is an appropriate monotonie function considered as a "parameter" ,

 and they obtain numerous properties of such derivates and derivatives.

 Other variants on this theme are possible by the choice of similar "para-

 meters". In a sense, in fact, the selective derivative is a certain type

 of parametric derivative.
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 (vii) neighbourhood filter derivation. For each x € R suppose

 there has been given a filter N(x) converging to x ; then one defines

 D F (x) to be the infimum of the numbers c so that
 N

 ' y : F ~ F ^ < c k U {x} € N(x) .
 y - x

 Similarly F(x) is the supremum of the numbers c for which

 . Fiy) - FU) 1 y { J e
 ' y - x

 v

 If one takes for N(x) the usual neighbourhood filter on the

 real line at x then reduces to ordinary derivation. If one takes

 for N (x) the collection of all sets rj that have inner density 1 at

 x then realizes the approximate derivation ap-D .

 Although this is a most useful and most general manner of ex-

 pressing a derivation process there appear to have been only two publi-

 cations investigating the notion: the original work of Świątkowski [111]

 (in Polish) in which the ide'a was introduced and an article of Mastalerz-

 Wawrznczak [83] obtaining a version of the Goldowski-Tonelli theorem for

 such derivations.

 A special case of the neighbourhood filter derivation has been

 considered by Császár [22]. Let S be a Q-ideal of subsets of R , i.e. ,

 if A € S and B c a then B € S CS is hereditary) and S is closed
 under countable unions. Define F to be the filter of sets that are

 complements of sets in S and at each point x use N(x) = F . Then

 the derivation D corresponds to that of Csaszár: because N (x) is
 N

 the same filter at each point and because it is closed under countable

 rather than merely finite intersections further properties should be

 available. See [22] for an account of these.

 A similar theory of limits based on a system of filters has been

 investigated by Jedrzejewski [66].
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 (viii) path derivation. For a measurable function F that has an

 approximate derivative ap - D F(xQ) at a point there is a particularly
 convenient expression of that derivative: for some set E measurable

 and with density 1 at xQ the function F has a derivative at xQ
 relative to E equal to the number ap - D F (xQ) , i.e. ,
 lim [F (y) -F(x)]/[y-x] as y ** x with y € E is this number. This

 realization of a generalized derivation as a derivation relative to some

 set has a number of convenient properties. For this reason the notion of

 path derivation was introduced in an attempt to unify a variety of themes

 in differentiation theory.

 A system E = {e^ : x € RJ is a system of paths if each E^ is
 a set of real numbers having x as a point of accumulation. Then deriva-

 tion relative to the paths in E is defined as

 D F (x) = lim sup FCy) ~Ftx)
 E y + x Y"*

 v € E
 x

 and

 F (x) = lim inf F(y) ~ F(x) .
 "E y ->- x Y"*

 y J € E J x

 The theory of such derivates and their corresponding derivatives proceeds

 by investigating properties that arise in the derivates from assumptions

 about the thickness of the paths and the manner in which pairs of paths

 E^ and E^ intersect. (See Bruckner, O'Malley and Thomson [13] for some
 such results.)

 A special case is obtained by fixing a set Q that has 0 as a

 point of accumulation and defining E to be the system {Q + x : x Ç R} .

 If we denote the corresponding derivation D as [O] - D we have the
 E

 "congruent derivation" of Sindalovski [109] .
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 A special case in turn of the congruent derivative can be

 obtained by fixing a sequence {h } convergent to zero and taking for
 n

 Q the range of that sequence. If we denote the derivation as ti^}]
 we have the sequential derivation of Petruska and Lazcovich [73] •

 Finally, a more elaborate path derivation can be defined re-

 lative to a sequence {E } of sets that cover the line: one writes
 n

 [ í E }] - D F(x) = sup lim sup F ^ F ^
 n n y X Y x

 y € E
 n

 and

 [{E }1 - D F (x) = inf lim inf F ^ ~~ F ^
 n n y -* x y-x

 y 6 E
 n

 This is the "composite path derivation" of O'Malley and Weil [97]. It is

 motivated by O'Malley's observation in [96] that an approximately differ-

 entiate function permits a decomposition of the line into sets ^or

 which ap - D F (x) = [{E }] - D Fix) must hold.
 n

 This type of derivative was first studied by Ridder EL033 and

 Tolstov [116] in order to provide a Perron type characterization of the

 general integral of Denjoy.

 (ix) symmetric derivation. One of the most familiar and useful of

 the many generalized derivations is obtained by writing

 sym-D F(x) = lira inf [Flx + h) - F(x-h)]/2h
 h-> 0+

 and

 sym-D F (x) = lim sup [F Cx = h) - F(x-h)]/2h .
 h -* 0+

 This process has been extensively studied by numerous authors

 and there are a great many results that have been obtained. A list of

 references would be too lengthy and almost certainly incomplete; the in-

 terested reader should consult Khintchine for the earliest and Preiss
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 and Larson for the most recent of the deep results known for this deri-

 vative. Bruckner ¡10, p. 168J lists: some bibliography .

 By combining the idea behind the symmetric derivation process

 with some of the previously mentioned ideas one can arrive at an "approxi-

 mate symmetric derivation" , "preponderant symmetric derivation", "symmetric

 path derivation", etc. . These ideas have been pursued by a number of authors

 (e.g. , Evans [28] , Larson [76] , Mukhopaayay [93] ) .

 (x) relative derivation. By altering the difference quotient in each
 of the preceding derivations one can arrive at the notion of "relative

 derivation" or derivation relative to a function G . In place of a quotient

 [F (y) -F(z)]/(y-z) write [F(y) -F(z)]/[G(y) -G(z)] . The study of such

 derivatives goes back quite far; Lebesgue made a number of contributions.

 Several results are given in Saks [105, pp. 272-277] and (in rather more ar-

 cane language) in Kenyon and Morse [68] .

 A siinilar alteration was made by Besicovitch [ 5 j who studied the

 limits of the quotient [F(y) - F (z) ]/[y - z] s for 0 < s < 1 and obtained

 results closely related to Hausdorff dimension Cas might be expected) . A

 common generalization of this relative derivation and Besicovitch1 s frac-

 tional derivation is obtained by considering simply the quotient h(J)/g(I)

 with I = [z,y] and where h and g are arbitrary (not necessarily

 additive) interval functions. This study along with a corresponding in-

 tegration theory was initiated by Burkill [14 ] , [15 ] and has been continued

 by numerous later authors (e.g., Kerapisty [67], Henstock [41 ], [423 , Cesari
 [20 J ) .

 All of the examples of derivations given above, from the Dini

 derivation through to Burkill1 s general derivates can be expressed vaguely
 in the form

 GD h (x) = lira inf h(I)/g (J)
 9 I => X

 and

 GD h (x) = lim sup h(l)/gtl)
 g I =>x
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 under various interpretations as to what I «=» x. C" I shrinks to x "J

 might mean. Such generalized derivation processes as can be expressed

 in this manner include a broad spectrum of generalized derivatives and

 we propose to study just this type of derivative. We must ignore then

 a number of other ideas such as the introduction of convergence factors

 (Cesaro derivatives, L -derivatives) , higher order derivatives (Peano
 P

 derivatives, second symmetric derivatives), and vector-valued functions,

 but this still leaves an extensive theory.

 To set up such a theory within the context of a derivation basis

 using the terminology in §1 above let Ī denote the family of all nonde-

 generate compact intervals. Then we shall be studying the following

 notions.

 DEFINITION 1. By a differentiation basis on the real line we mean a

 filterbase of subsets of I * R .

 DEFINITION 2. If B is a differentiation basis on the real line then

 by the extreme B-derivates of a function F we mean

 D F(x) = inf sup F (J) / 1 1 ļ
 ß € B U,x) € ß

 and

 D F(x) = sup inf F CD / 1 1 1
 ö ß ÍB (I,x) € ß

 This then captures most of the ideas of dif f erentation theory;

 we in fact will go somewhat further and define a derivation basis B to

 be any nonempty family of subsets of I x R . This very general object
 and the notions that arise from it are the subject of our study and they

 provide a unified approach to the study of generalized derivations.
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 ¡i 3. Riemann type integral s - We have promised in the previous section that

 our study is concerned exclusively with derivation bases Ci.e. , families

 of subsets of I X R and especially filterbases on I x R) . That this

 should have even the most remote connection with integrals of Riemann type

 may appear strange. To see how this connection arises let us set deriva-

 tion bases and filterbases aside and follow the history of Riemann type

 integrals.

 It was Cauchy [19] who proved that for any continuous function
 n

 f on an interval [a,b] the limit of the sums Z f (£ . ) (x. - x. ,)
 . n i . i l-l
 l-l . n

 over partitions of the interval [a,b] with the limit taken in a now

 familiar sense can be used to compute the integral. It was then only

 left to Riemann a half century later to take Cauchy1 s theorem as a

 definition of " integrability" and to proceed from there. This defi-

 nition of an integral as a limit of Riemann (Cauchy?! sums has a natural

 and simple appeal. It also has some decided advantages over more modern

 integration techniques. For example, ti) a generalization to Stielt jes
 n

 integrals as lim E. f (Ç . ) (G (x. ) -G(x. )) ìs immediate, Cii) generali-
 i-i 111-1

 n

 zations to integrals of arbitrary interval functions as lim £ h([x. ,,x.])
 i-i 1-1 1

 giving Burkill or Hellinger integrals is equally immediate, Ciii) vector-

 valued integration presents no barrier - indeed since the process is merely

 a sum followed by a limit our functions may assume values in a topological

 semigroup and the formal definition remains unchanged.

 This procedure, of defining an integral as a limit of Riemann

 sums, has been severely discredited by a generation that now considers an

 integral to be nothing more or less than a countably additive signed measure.

 Within that viewpoint the Riemann definition of an integral is considered to

 be intimately joined to a finitely additive measure (Peano-Jordan measure)

 and hence forever doomed to enjoy no adequate limit theorems; consequently
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 any of the presumptive adyantagea that such a Riemann type definition

 possesses should be cheerfully abandoned in favour of the deeper ana-

 lytic properties available in measure theory. Thus, for example,

 Luxemberg [79] shows that the convergence properties of the Lebesgue

 integral arise from the countable additivi ty of Lebesgue measure.

 For measure theorists there is no issue here.

 However, on the real line there is a certain convenience pro-

 vided by an integral defined as a limit of Riemann sums; and the Riemann

 integral lacks no convergence properties - it is merely somewhat short of

 integrable functions with which to express them. In fact Lebesgue himself

 showed that his integral was expressible as a limit of Riemann sums

 (Lebesgue [77]) but the limit proved too intractable to be taken as a

 definition. The issue is simple: the usual limit operation that is used

 in the calculus to define the Riemann integral is too coarse and allows

 too few functions to be integrable, therefore a finer limit operation

 should be substituted.

 If we express this in the correct language the solution will be

 apparent. By a partition tt of the interval [a,b] we mean that

 TT = {(ï^,xj : i = l,2,...,n} where I^ are nonoverlapping subintervals
 of [a,b] whose union is [a,b] and x^ is a point of the interval
 [a,b] tin fact in most applications x^ € I J * By II we mean the
 collection of all such partitions of [a,b] . For a function f on

 [a,b] we write

 s(£'ïï> - £(i,x) £U> I1!
 and for any subset II of II we write

 S(f,n0) = { s (f /ir) : ir î nQ} .

 The usual convergence notion used in the calculus can be described by

 writing for any 6 > 0 ,

 Ilg = {tí 6 II : if (I,x) € tt then 1 1 ļ < 6} .
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 Then {ïïg : 6 > 0} is a filterbase on ÏÏ and convergence of the corres-
 ponding filterbase {s(f,IIg) : 6 > o} is equivalent to the Riemann inte-
 grability of f in the classical sense.

 Now we can give a precise formulation of the extension problem

 for the Riemann integral: find a filterbase F on II that is finer than

 {Jig : 6 > 0} and provides an abundance of functions f for which S(f,F)
 converges.

 Surprisingly this formulation returns us to our starting point.

 In order to find an appropriate extension of the Riemann integral it would

 be enough to find a differentiation basis B such that each element ß é B

 contains a partition of the interval [a,b] . Then if we write for each such

 ß f ïïg = {tt € II : TT c ß} we will have that {11^ : ß € B} is a filterbase
 on II . In fact there are a number of generalized derivations whose differ-

 entiation bases have this property that partitions always exist and each such

 derivation yields an extension of the Riemann integral in the above prescribed

 manner. The table below tells the story. The differentiation basis that

 expresses the generalized derivative listed in the first column provides a

 natural extension of the Riemann integral. The classical name for the

 extension (where it has been previously named) is listed in the second column.

 Except for the Riemann integral which, of course, is defined as

 a limit of Riemann sums these characterizations are quite recent. Lebesgue

 did point out CE 77 3) that his integral could be obtained as a limit of

 Riemann sums but although a number of authors did pursue the idea the simple

 characterization here was discovered much later. Independently Kurzweil [72]

 and Henstock [45] found the characterization of the Den joy-Perron integral.
 Henstock pointed out that similar Riemann sums characterizations of the

 approximate Perron integral (Henstock [47] ) and the general Denjoy integral

 (Henstock [54, p. 222] and the corrected version in [60, pp. 2-3]) were

 also available. It was McShane [89] and [90] who noted the adjustment

 needed in order to characterize precisely the Lebesgue integral in this way.

 The interpretation of these facts within the setting of derivation bases

 is really very obvious but has received no explicit comment from previous
 authors .
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 TABLE 3. 1

 DIFFERENTIATION r¡ TPVFRFNT TA T TON BASIS m CTS CORRESPONDING EXTENSION OF
 DIFFERENTIATION r¡ TPVFRFNT TA T TON BASIS m CTS ^ RIEMANN INTEGRAL

 uniform derivation classical Riemann integral

 sharp derivation classical Lebesgue integral

 ordinary derivation integral of Den joy and Perron

 approximate derivation approximate Perron integral
 (of J. C. Burkill)

 composite path derivation general Den joy integral
 (under some hypotheses)

 selective derivation (unnamed)

 qualitative derivation ( unnamed )
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 This Table alone should be sufficient motivation to pursue a

 study of derivation bases. That this collection of integrals which for

 so long were considered as dramatically different should be so easily

 unified certainly suggests that the underlying structure is of some in-

 terest. But apart from this unification there are other strong reasons

 for wishing to study these ideas systematically. Numerous other inte-

 gration procedures on the real line have also been invented and these too

 can be placed within this setting. Thus the various Stielt jes integrals

 (the Riemann-Stielt jes, Lebesgue-Stielt jes, Darboux-Stielt jes, Perron-

 Stieltjes, etc. ) , the integrals of arbitrary interval functions (Burkill,

 Hellinger, Burkill-Cesari) , and a variety of modifications of these pro-

 cedures (mean-Stielt jes, modified-Stieltjes, "belated" integrals, Lane

 integral) can receive a systematic study. As the list of integration

 procedures on the real line devised to handle specific problems is proving

 to be endless any attempt to simplify matters should be welcome.

 §4. Measure theory » We have seen that the study of differentiation bases
 leads to a number of solutions to the extension problem for the Riemann

 integral. There is a parallel problem .in measure theory which we discuss
 here.

 Let us begin by sketching the development of measure theory in

 the nineteenth century. Using the terminology of the previous section we
 may define the Peano-Jordan outer measure m(E) of a set E contained

 in the interval [a,b] as follows: for any partition ïï of [a,b] set

 m(TT,E) = I {ļl.ļ : (I.,x.) € 7T , x. € E}
 1 XX 1

 and for any subset 11^ of II define

 m(II0,E) = sup {m (1T,E) : TT € 11^} .
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 Then for the measure of the set E we take

 m(E) = lim mCII^jE)

 in the sense of the filterbase {m(IIg,E) : 6 > o}. This is essentially
 the definition of Stolz [ ] although the filter approach does not make

 this entirely transparent.

 This manner of defining a measure has a number of advantages:

 (i) the generalization to Stielt jes measures G CE) is managed merely by

 replacing m (tt,e) by m(ir,E;G) = E { ļ G tlļ_) I * (. it , xi € e} ,
 (ii) a further generalization in the same spirit places the Darboux-

 Stieltjes upper integral in the same setting - take

 m(ir,E;f,G) = I {If (x.)G(I.) I : (I.,x.) € TT , x. ( E}
 ix il i

 and then the resulting measure (fG) (E) would be the. same as the upper

 Darboux-Stieltjes integral ļ f (x) ļx (x)d|G| , (iii) an extension to E
 ' a

 measures generated by interval functions whose values lie In some abstract

 structure could be accomplished by replacing with the set

 m(II0,E) = {m(ïï,E) : TT € 11^} and so producing a set-valued measure.

 The Peano-Jordan measure has one useful limit property: if

 {p } is a shrinking sequence of closed subsets of [a,bj then
 n

 miflF ) = lim m(F )• It also has a property which to a twentieth
 n n

 century eye seems highly undersirable, m(E) = m(E) for all E c [a,b] ,

 but to the mathematicians of the previous century would have seemed a

 sine qua non of any measure theory. When Lebesgue began searching for

 a measure theory with which to generalize the integral he was led to an

 entirely different method of construction, largely because of the influ-

 ence of Borei. But this method of construction of Stolz can be extended

 merely by searching for a finer filterbase than {IT^ : 6 > o} .
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 In fact then there is associated with any derivation basis on

 the real line a fully developed measure theory and it should be studied

 along with the corresponding integration theory and differentiation theory.

 From this viewpoint all the apparatus of Lebesgue's theory of measure

 arises naturally as part of the study of the ordinary derivative.

 Even better is the fact that a number of variational ideas

 that have played a key role in various studies in differentiation theory

 and in integration theory are expressible directly in terms of the measures

 that arise. Thus for a function F there will be a measure Fg corres-
 ponding to any derivation basis; in the particular case where B expresses

 the ordinary derivative this measure F0 carries information as to whether
 D

 F has bounded variation or is VBG^ , or AC* or ACG* on a set. Also
 because the same structure is used to define the measures, the derivatives,

 and the integrals , the interrelations are frequently very easy to establish

 and the role of certain classical hypotheses becomes rather transparent,

 §5. The program. Our program in this study is to use the notion of an
 abstract derivation basis as a unifying concept in the treatment of a

 variety of ideas in classical real analysis. In particular, by devel-

 oping in this setting the three basic concepts of the integral, the

 derivative , and the variation we can give a simpler and more directed

 account of a great many concerns of real analysts .

 A largely suppressed motivation for this study rests on the

 fact that these ideas should have some considerable impact on the study of
 differentiation and integration in higher dimensions. Authors such as

 Mawhin and Pfeffer have obtained some interesting results; Henstock has

 devoted much time in the development of an abstract theory that will apply
 in higher dimensional and even infinite dimensional spaces (our bibliography
 lists his contributions) ; McShane in [89] and later work has introduced

 these ideas into the study of stochastic integrals. There are a number

 of other themes that are being or could be studied (Burkill-Cesari in-

 tegration for example) in this setting. Although we do not here pursue
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 any of these ideas it is possible that a detailed study of derivation

 bases on the real line will provide some clues as to the type of results

 that might be sought in higher dimensions; thus Bruckner [ 7 ] has obtained

 analogues of classical theorems for the Dini derivatives in higher dimen-

 sions and one could expect that more of the detailed knowledge of deriva-

 tives on the real line could be lifted to higher dimensions.
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 CHAPTER TWO

 DERIVATION BASES

 §1. Basic definitions. The focus of attention is on intervals and interval

 functions» Indeed, as J.C. Burkill pointed out, "almost every process of

 analysis involves the manipulation of functions of intervals, which are not

 usually additive11 [14, pp. 275-276]. We actually go somewhat further and

 study what we call "interval-point11 functions and shall hazard the proposi-

 tion that every process of classical real analysis can be realized as the

 manipulation of such functions. In this section we present the terminology

 needed for an investigation of these interval-point, functions and their re-

 lated concepts.

 (1) [intervals] The collection of all closed bounded intervals is

 denoted as Í . By I we mean all finite unions of intervals.

 (2) [interval functions] An interval function is a mapping from

 I having real values. We prefer upper case letters F, G, H,
 etc. for such functions.

 If f : R R then Af denotes the interval function defined

 by Af(.[x,y]) = f (y) - f (x) . For many applications it is best

 not to distinguish notationally between a function F : R R

 and its corresponding interval function Af .

 (3) [additive interval functions] An interval function F is

 additive if F (I U J) = F (I) + F (J) for any pair of nonover-

 lapping intervals I and J for which I U J is an interval.

 Such an F can always be extended to I+ and this will be
 done without comment.
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 (.4) Ipoint functions] A function f : R R is called a

 point function, merely to distinguish it from the other

 types of functions under study.

 (5) [interval-point pairs] Our concern in the sequel is with

 pairs (I/X) where I € I and x € R and with th.e col-

 lection of all such pairs, namely the product set I x R .

 We use lower case greek a , 8 , Y etc. usually to denote

 subsets of I x r .

 (6) [partitions] A finite subset ir of I x R is a partition

 if

 TT = { (r ,x^) : i = 1,2,3,... ,n}

 has 1^ and I . nonoverlapping for distinct i and j .
 n

 It is said to be a partition of U and where that set

 (which of course belongs to I+) is also an interval we have
 more or less a traditional partition except that the associated

 points x. are carried along. Kurzweil [65, p. 515] calls

 them "pointed partitions", Henstock [55] calls them "divisions",

 and McLeod [88] calls them "tagged division".

 (7) [interval-point functions] A function h : I * R R is called

 an interval point function. We consider point functions

 f : R R and interval functions F : I -»■ R as special cases

 of interval-point functions by agreeing that f(I,x) = f (x)

 and F (I ,x) = F (I). In this way we even have the product fF

 defined as an interval-point function, by (fF) (I,x) = f(x)F(I) .

 The special interval (and hence interval-point) function

 I j X [ , the length of the interval I is denoted as m so
 that m (I) = m(I,x) = ļlļ for all I € I and x € R.
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 (8) [Riemann sums] If h- is an interval-npoint function and

 ïï is a partition then the sum

 I (hCl,x) : U/X) € Tí}

 is our version of a Riemann sum and we use the shorthand

 Z h, E h (I ,x) , or I. , h(I,x) to denote such sums.
 TT TT ^X/X)vTT

 In particular the traditional Riemann sum

 I f(Ç ><x -* >
 1=1

 assumes the form

 Z fm or Z f(x)mCI)
 Tí Tí

 where ir is the partition ïï = : i = l,2,*..,n]
 ii

 with 1^ = •

 (9) [derivation basis] A derivation basis is a nonempty collection

 of subsets of I X r .

 (10) [sections of a derivation basis] For any ß c I x r and

 any X c r we write

 ß(X) = {(.I, xl f P : I C X) and ß[Xj = { (I,x) € ß s x € X> .

 Then if B is a derivation basis so too are the objects

 B (X) = {ß (X) : ß € B} and B[X] = iß[X] : ß € B}

 which are called sections of the derivation basis B .
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 The square bracket sections BJX3 are used frequently

 especially in the measure theory. The round bracket

 sections B(X) will be used only in the case of X = I

 an interval or X = G an open set. In the latter case

 the section B(G) would be considered in the language of

 abstract differentiation theory (cf. Hayes and Pauc [39,

 p. 12]) a "G-pruning".

 (11) [partial order of derivation bases] . The collection of

 derivation bases is partially ordered in a natural way:

 if A and B are derivation bases such that given any

 element ß € B there is an element a € A such that

 a c ß then we say A is finer than B and write A 5 B .

 This then induces an equivalence relation: A is said to

 be equivalent to B and we write A = B if A 5 B and

 B < A .

 (This partial order suggests a natural way of combining two

 derivation bases B, and B„ . One can write B. V B. and 12 . 12

 B^ A B^ for the two derivation bases

 Bi v b2 - {6i u e2 : Pi € Bi ■ € V
 and

 B1 A B2 - tpŁ B2> .

 Note that BļAB2 á B. I V B2 (i=l,2). A number of later
 ideas permit an expression in this language: for example a

 derivation basis B that has the property B = B A B is

 said in §4 below to be filtering down» The derivation bases

 D, RD, and LD that represent the ordinary derivation , right

 derivation and left derivation (see §3 below) are directly re-

 lated by the assertion D = RD V LD. We do not intend to use

 this terminology in the sequel but mention it parenthetically

 as it may prove useful in some contexts.}
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 § 2 . The three fundamental concepts arising from a derivation basis. As

 has been mentioned in the introduction there are three fundamental objects

 of study in the theory of derivation bases; loosely these are a differen-

 tiation theory, an integration theory , and a measure theory. These concepts

 dominate the theory.

 A. [DIFFERENTIATION THEORY] Let B be a derivation basis and let h and

 k be interval-point functions.

 (a) [exact derivatives] A function f is an exact B-derivative

 of h relative to k if for every e > 0 there is a ß 6 B
 with

 I h (I ,x) - ftx)k(I,x)| = £ ļk(I,x)ļ

 for all (I,x) € ß .

 In symbols we may write D0 h = f . B k

 In the special case k = m we return to conventional rather than

 relative derivatives and then f is an exact B-derivative of h

 if for every e > 0 there is a ß € B with

 - fix) < e for all (I,x) € ß

 and we write D h = f .
 B

 (b) [extreme derivatesi The upper and lower extreme B-derivates

 of h relative to k at a point x are

 D„ h (x) = inf sup h(I,x)/k (I,x)
 ß €B (I ,x) €ß

 and

 D„ h (x) = sup inf h (I,x)/k (I,x) ,
 ß €B Cl,x) Cß

 subject to the interpretation of 0/0 as 0 and c/0 as

 + °° or depending on the sign of c .
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 In the special case where k.«in we return to conventional

 rather than relative derivatesi and we do not have to worry

 about division by zero? the notation will be simply

 Dg h (x) and Dg h(x) .

 B. [MEASURE THEORY] Let B be a derivation basis and let h be an

 interval-point function.

 (a) [the variation] For any nonempty subset ß of I * R
 we write

 V(h,ß) = sup |h(I,x)| : Ti c ß f tt a partition)

 and refer to V(h,ß) as the variation of h over ß ;

 for ß = 0 we take VCh,0i = 0 .

 The variation of h over B is defined as

 VQi,B) = inf V Ch., ß ). .
 ß C B

 (b) [the variational measure] For any set X c R the B-

 variational measure of h on X is the variation of

 h over the section B[X] of B , i.e. ,

 (X) = V (h,B[Xj ) .

 Cc). [the upper integral] For any set X c r the B-upper

 integral of h over X is

 B- {x] d|h| = V (h,B[X] ) ,

 in short, then merely another notation for the measure

 (X) .
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 C. [INTEGRATION THEORY J Let E be a derivation basis and h an interval-

 point function.

 (a) [the B-integral] The B-integral of h. over the interval

 Iq is any number c for which., given e > 0 , a ß 6 B
 can be found so that

 I1«,*) (. hUC'*) -<=!<*

 for every partition tt of IQ , tt c $ .

 (b} [B-integrable] The function h is B-integrable over I

 if such a number c exists and is unique; implicit in

 this is the requirement that every ß € B contain a parti-

 tion of the interval I .
 0

 If h is B-integrable over an interval 1^ we write this
 number c as

 (b) ln0) dh °r id0) dh

 if the context is clear.

 If h is the product of a point function f and an interval

 function G then we would prefer the notation

 -«o' dlfG> *1'V £dG '

 The use of the round bracket notation in the integral and the square
 bracket notation in the upper integral is intended to reflect the fact
 that

 J CI) dn

 arises from the derivation basis BCD and that

 , EX] dh
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 arises from the derivation basis B[X] and the connection between the

 two concepts is only strong in certain examples, but not in general.

 This really reflects the classical distinctions between integration

 thought as a "function of sets" or as a "function of intervals" which

 distinction often causes the student some pain when he thinks simulta-

 neously about the nature of the Riemann-Stielt jes and the Lebesgue-

 Stieltjes integrals.

 §3. Fundamental examples of derivation bases. In order to give some substance

 to the preceding material/ which will certainly strike most readers as for-

 biddingly abstract , we now present a series of examples to motivate and illu-

 strate the theory. Later examples in the text will make use of this termino-

 logy and notation. In each case some brief mention will be given to indicate

 the nature of the three fundamental concepts as they are realized in that

 setting.

 EXAMPLE 3.1 (The trivial derivation basis) The derivation basis

 T = { 0 >

 is called the trivial basis. It is finer than every other basis. The
 variation VChtT) clearly vanishes for any interval-point function h
 and so any measure also vanishes. There is no integration theory
 available as this basis does not supply any partitions.

 The derivation theory is also satisfyingly trivial in that one
 always has

 - T ^ = + 80 an^Ļ ' ^
 and

 dt

 is invariably true.
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 At first sight one might expect to exclude such objects from con-
 sideration and restrict the definition of a derivation basis to disallow
 the inclusion of the empty set ; the only reason we do not do so is to pre-
 serve the feature that whenever B is a derivation basis then so too is

 any section BPf] or B (I) . Note however that any basis B that contains
 the empty set is equivalent to T .

 EXAMPLE 3. 2 (The uniform derivation basis) For any positive number ô
 we write

 = {(I,x) : I € I , X € I3 |l| < 6}

 and refer to the derivation basis

 U = {ß5 ; 6 > O }

 as the uniform basis.

 It should be apparent that U expresses uniform derivatives and
 the Riemann and Riemann- Stielt jes integration procedures. It is less

 obvious that m^ yields the classical Peano- Jordan measure.

 EXAMPLE 3. 3 (Tiie refinement basis) Let S be any set of real numbers that
 has no point of accumulation and for any such S wvi te

 = { ('a,b' 3x) : a < b , a 5 x 5 b , SO (a,b) = 0 }

 and

 R = ißg : S R j S has no accumulation points } .

 This basis has its greatest interest in the integration theory
 ana expresses an integral based on a familiar partition-refinement type
 limit as has been used in the study of certain versions of the Riemann-
 Stieltjes integral (e.g. , Pollard fioca , Getchell [35];. The differenti-
 ation theory is essentially the same as that for U and just expresses
 uniform derivatives.
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 Note that R is finer than U, i. e. t in symbols R š U , since

 if a ß i U is given one can select a set S so that ß^ c ß , in
 particular the integration theory provided by R is slightly more general
 than that given by U (as is familiar from elementary analysis) although
 both give precisely the classical Riemann integral when applied to a
 function of the form f(x)m(I) . The difference between the two bases

 emerges for Stielt ¿es type integrals ffdg ; in our setting the familiar
 advantage that the basis R has over U is expressed by the fact that R

 has the additive property defined in §4 below.

 EXAMPLE 3. 4 ( The ordinary derivation basis) For any positive function <5
 on i? define the collections and by

 = i(lyx) :J€IjX€Jj 'l' < 6 fx;}

 and

 = {(Ijx) : I € I , X an endpoint of I t |j| < &(x)} .

 Then the derivation bases

 D° = : à a positive function on i?}

 and

 D » {8{ 6 a positive function on B}

 are two versions of the ordinary derivation basis. The former will be
 called a full version and the latter an endpoint tagged version.

 It is not difficult to see that the extreme derivates. D~. F Cxi
 ~*a J

 and Fix) are just the usual bilateral extreme derivatives of

 F j D_ F (x) and D F(jc). , and that the assertion F = f just says

 that f is the derivative of F .

 It is far from obvious though that the measure theory here gives

 m p and m^p equivalent to Lebesgue outer measure on the line and that
 the integration theory yields the Ben joy-Perron and Denjoy~Perron-Stieltjes

 integrals.
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 These two bases treat additive interval functions in the same

 way and only diverge in their treatment of nonadditive interval functions
 or arbitrary interval-point functions. Mainly D is to be preferred as
 it has some sharper properties . This feature of ordinary derivation is
 common: there are a number of applications where a choice between a full
 version or an endpoint tagged version needs to be made differently depend-

 ing on the theorem desired .

 Note that D 5 D° i U and D £ R .

 EXAMPLE 3. S (The sharp derivation basis) In the basis D we required of

 the pairs (I>x) appearing that x be an endpoint of I . If we remove
 the restriction that x even belong to the interval I and adjust so

 that I is "close" to x then we arrive at the sharp derivation process.
 For a positive function 6 on R write

 ßj* = {(IjX) :I£IjX£R, I c (x - 6(x) , x+ ôfaj )}
 and then

 # if
 D = { ßß : & a positive function on R}

 is called the sharp derivation basis.
 U u

 It should be clear that the D deri.vates and the D derivative

 is just the "sharp" differentiation we have described in the introduction;

 it is however surprising and perhaps curious that the integration theory
 developed by this basis includes a characterization of the Lebesgue integral.

 Note that D 5 and 5 but that neither U nor R are

 comparable with . It is useful to introduce a sharp version of the
 uniform basis by writing for any positive number 6 ,

 = {(I3x) : I € I , x É R , I c fx - Ô, x + 6)}

 and

 if = :5a positive number } .
 if if Jf

 Then certainly U 5 U and D S if ; interestingly, and significantly ,
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 the -integration theory for the t/ basis gives the Riemann integral
 where one might have expected from these relations that it would only
 give a restricted version of it.

 EXAMPLE 3.6 ( The dual of the ordinary derivation basis) The basis D

 has a dual in a sense that will be formalized -in elow. D* denotes
 the derivation basis that contains all elements 0* c I x R that have
 the following property: if x £ R and e > 0 are given then there is

 at least one number y x such that 'y - x | < e and (lXjy],x)
 (or ([y,x] 3x)) belongs to fļ* .

 This basis has the remarkable feature that it reverses the roles

 of the upper and lower extreme derivates: for a function F the D and D*
 derivate s are related by

 Dq FCx) = Z?D* Fix) and D ß Fix) = F(x) .

 Also an assertion D F - f is equivalent to the fact that at each

 point x the number fCx) is a derived number for the function F
 (so that in particular such f need not at all be unique).

 There is no integration theory available as D* need not contain
 enough partitions but the measure theory does play a role in the subsequent

 theory. Note that D* 5 D , a fact that will not hold necessarily for all
 dual bases but does for most familiar ones.

 EXAMPLE 3. 7 (Dini derivation) In order to express one-sided derivatives

 and Dini derivatives we need one-sided versions of D . For any positive

 function 6 on R define
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 i?aô = {(lx,yìsx) : O < y -x < fifxj},

 = {C[y,x]fx) : O < X - y < Six)},

 RD = ^^5 : ô a -positive function on R}
 and

 LD - : ô a positive function on R} .

 We refer to these as the right and left Dini derivation bases. Note that
 KD 5 D and LD S D and that D* < PD and D* 5 ID (in fact D* ^ RD U LDJ.

 EXAMPLE 3.8 (Wittered or natural derivation) Suppose that there is given

 a system {N(x) : x d R} of filters such that each N(x) is a filter
 converging to x . The derivation process generated by such a system of
 filters can be described by the following derivation basis. A choice
 relative to the system { N(x ) : x € i?} is a function t) on R such that

 each Tļ € N (x ) : corresponding to any choice rj we write
 X

 K = {(lyj 3],x; : y =■ x , z > x , z É ri
 Tļ jC

 or z = x y y < x , y t ri)
 •U

 and

 N = {ß^ : T) a choice} .

 This type of basis is sufficiently general that it can be studied

 and characterized in our abstract terminology and henceforth when it appears
 it will not be hidden in italics but will join the main body of the text.

 For various choices of the system N one has the derivation bases

 D, RD or LD . If each N(x) is defined to be the collection of all sets

 having inner density 1 at x then the corresponding derivation basis is

 written as A and called the approximate derivation basis.
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 EXAMPLE 3. 9 C Composite path derivation) In order to define a derivation

 basis that captures the notion of a composite path derivative Cas given
 in §2 of Chapter One) we must proceed in a slightly different manner:
 given a sequence E = { E of closed sets such that UE = R and

 a positive function 6 on R x N Ci. e. , for x € R and for

 n - 1,2, 3,... there is a positive number 6(x,n) defined) we write

 3 E$ = { (lx,yi ,z) : for some n í N 3 x,y,z € E^
 X 5 s i y and 0 < y-x < &Cz,n)} .

 Then the basis C^, defined for a fixed sequence E = ¿s

 Cp ~ í^i? 6 * ^ a Posttive function on R x N} .

 The properties of the basis depend usually on properties possessed

 by the sequence E . In order for Dr F = f to hold it is necessary
 E

 and sufficient that f(x) be the derivative of F at x relative to

 any set E that contains x .

 For a more general basis write

 C = U {CE : E {En} a>xu sequence of closed sets covering R} .

 This basis expresses the general notion of composite path derivation. In

 particular if there is some sequence {Pn) of closed sets covering R
 for which fix) is the derivative of F relative to each containing

 x, then Dç F = f . Note that C š C^, for any sequence E .
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 EXAMPLE 3.10 (The symmetric derivation basis) The symmetric derivative

 can be expressed naturally by a derivation basis as follows: if <S is

 a positive function on R denote 8^s as

 ß® = { (Ix-hjx+hìjx) : û < h < 6 toi}
 0

 and

 S = {&6S : 6 a positive function on R} .

 Except for the obvious relation S < D° this basis is quite
 remote both in methods and properties from the other bases defined above .

 §4. Elementary properties. The definition of a derivation basis requires

 only that one has a nonempty collection of subsets of I x R . As the

 example of the trivial basis (Example 3.1} shows there can be no theorems

 at all in this generality. This is similar to the situation in a develop-

 ment of topology where a general topological space has scarcely any genuine

 theorems; as in topology where the theorems flow from strong assumptions

 (separation properties for example), we need here a number of assumptions

 that can be used to develop a theory. In this section we outline just the

 simplest and most elementary of these and present a few examples to help

 illustrate. In §5, §6, and §7 below we wULl investigate the deeper and

 more powerful assumptions that are needed to give the heavier results of

 the theory.

 DEFINITION 4.1 {FILTERING DOWNj A derivation basis B is said to be

 filtering down if for every and in B there is an element

 € B with

 ß3 c Pi n ß2 .
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 The main intention of this property is to allow limit operations,

 for then (unless B is trivial) B Is a filterbase and the derivation

 theory and the integration theory that arise from B can be expressed in

 terms of such a limit. In Henstock's development of this type of theory

 he uses the phrase "directed in the sense of divisions" in more or less

 the same sense (see Henstock l55j ) and in his lectures refers to this in-

 formally as "B shrinks". If B is nontrivial (i.e. , not equivalent to

 the trivial basis) and is filtering down one can replace B by the filter

 B on I X R generated by B and then, since B ^ B , the ensuing theory

 is unchanged.

 EXAMPLE 4.2 The derivation bases T,U,R,D^fl/,D,D°,N, and S
 are all filtering down. The example D* Cthe dual of DJ is not filtering
 down and this account s for some of its unorthodox behaviour Cas for example

 the fact that a D*~derivative need not he unique}.

 DEFINITION 4.3 {STRADDLED, ENDPOINT TAGGEDj A derivation basis B is

 said to be straddled if for every ß í B and any pair (I,x) € ß one

 has X € I . A derivation basis is said to be endpoint tagged if_joQreover

 for such pairs (I,x) the point x must even be an endpoint of the

 interval I .

 EXAMPLE 4.4 All the bases we have defined in the previous section are

 straddled with the exception only of the sharp bases 'ß and D# .

 Only the bases D , RD , UD , N have been defined in such
 a way as to be endpoint tagged. The basis D* has not been defined
 this way but a moments reflection will show that there is a basis equi-
 valent to D that is endpoint tagged «
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 DEFINITION 4.5 [SEPARATION PROPERTIES] Two subsets and ß. are
 1 *•

 said to be separated if for any pair ^ Pļ and an>r Pair ^2 '*2* * ^2
 the intervals 1^ and 1 2 are nonoverlappi-ng. A derivation basis B is
 said to separate two sets X , Y c R if there is an element ß € B such

 that ßlX] and ß[Y] are separated.

 EXAMPLE 4.6 The basis D separates any two sets X and Ï that are

 topologioally separated. Ci.e. , such that there are disjoint open sets

 G 2 and G ^ with X c G ^ and Y c the basis U does not have
 this property.

 DEFINITION 4.7 [ADDITIVE PROPERTY] A derivation basis B is said to be

 additive if for every interval I , Bš B(I) U B(R'I^) . Equivalently

 this says that for any pair ß^ , ß^ from B and any interval I there
 is a ß € B for which

 ß c ß1(i) (J ß2(R'i°l .

 We can say that ß splits at I here in the sense that for every pair

 (J,x). € ß either J c 1 or else J and I do not overlap.

 EXAMPLE 4.8 The uniform derivation basis U and the refinement basis R
 help demonstrate the additive property . The former is not additive and

 the latter is. It is precisely this fact that makes the basis R prefer-
 able in defining Stielt jes-type integrals. This distinction also shows
 that the two versions of the ordinary derivation basis D° and D are
 slightly different in their effect: the former is not additive while the

 latter 3 the endpoint tagged version, is additive and again is to be pre-
 ferred in a development of a Stielt jes-type integral.
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 DEFINITION 4.9 [FINER THAN THE TOPOLOGY] A derivation basis B is

 said to be finer than the topology if for every open set G ,

 BIG} Š B(G) .

 Equivalently this asserts that for every element ß^ € B and every
 open set G there is an element ß2 € B for which

 ß2 c P!(G) *

 EXAMPLE 4.10 Neither of the bases U nor R are finer than the topology
 although all of the other bases we have defined are.

 DEFINITION 4.11 [IGNORES A POINT] A derivation basis B is said to

 ignore a point x if there is an element ß € B for which there is

 no pair (I,x) € ß for any I € I . Equivalently B ignores the

 point x if the section B[{x}] is equivalent to the trivial basis.

 EXAMPLE 4.12 Usually we will invoke definition 4.11 in a form to exclude

 the possibility that a basis ignores a point. Most of the bases we have

 so far defined ignore no point. However > a basis may ignore every point

 and yet not be trivial (i.e. > is not equivalent to the trivial basis).
 The composite path basis has been defined in such a way that it ignores

 every point.

 We give a fui>ther example here of a basis which ignores each

 point , is nontrivial and might have some interest. From the ordinary deri-
 vation basis D we collect sections as follows:

 DD = {ß [f?Ntf] ; ß € D and N ci? is a set of measure zero } .

 While this basis does inherit some properties from D it nonetheless

 ignores every point. The statement F - f is equivalent to the
 assertion F'(x) = f(x) almost everywhere.
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 §5. The partitioning property. One of the most interesting and useful

 properties to emerge in this study of derivation bases arises from the
 observation that a number of important derivation bases contain an abun-

 dance of partitions. While the properties of the previous section have

 only relatively minor and predictable consequences in the theory the

 partitioning property has deep and far ranging consequences.

 DEFINITION 5.1 A derivation basis B is said to have the partitioning

 property if for every ß € B and every interval I there is a partition

 TT of I contained in ß .

 EXAMPLE 5.2 The bases U (the uniform derivation basis) and R ( the

 refinement basis) can be easily seen to have the partitioning property.

 Of course it is this fact that permits a Riemann integral to be defined
 in terms of U -limits or R -limits.

 EXAMPLE 5.3 (The partitioning property for the ordinary derivation basis)
 The partitioning property for the bases D and D° follows from an ele-
 mentary compactness argument; indeed this property is equivalent to com-
 pactness and the various characterizations of compactness (Heine-Borei,
 Bo izano -Weiers trass ) can be deduced in turn from the partitioning property

 (see Example 5.6 below). This has a curious history. It was proved , of
 course j by Henstock [45] and by Kurzweil [72] in their development of the
 generalized Riemann integral that now bears their name. Henstock since

 has traced the history of the idea back further j in [50., p. 124] he pro-
 vides the references Hildebrandt [63], W. H. Young and G.C. Young [118],
 and Lusin [78] all of whom use an idea of this sort. Recently the history
 has been pushed back even further to the close of the last century by the
 references Goursat 136] and Cousin [21] (we have obtained these latter two

 references through Professor G. Goodman). Possibly one can go even earlier
 but for now we should , as does Mawhin [85], label this "Cousin's lemma".
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 EXAMPLE 5.4 (The partitioning property for the approximate derivation basis)
 That the approximate derivation basis also possesses this property was first

 indicated by Henstock yrf] using a standard category argument. This same
 type of argument has been formalized by Romanovski (see Kestelman [69,

 p. 217]) and can be considered an abstract presentation of a partitioning
 property. Romanovski' s lemma can be written as follows:

 let V be a collection of intervals that is hereditary (i. e . , i£
 I c J ç v then I € V)t that contains every I with the property

 J c jP =» J € V , and that has the property : if P is perfect and
 every interval contiguous to P is in V then for some I € V ,

 fi P ¿ 0 . Then V contains a partition of every interval.

 The role that Romanovski' s lemma plays in the theory of inte-

 gration is closely related to the role the partitioning property in general
 must play.

 This partitioning property has many implications for the

 differentiation theory, the measure theory, and the integration theory

 associated with a derivation basis. Immediately we see that the precise

 setting in which the integration theory must take place is in that of a

 derivation basis that is filtering down and which enjoys the partitioning

 property. Indeed corresponding to any such derivation basis is a Riemann

 type integral.

 This property has many far reaching effects; we will isolate

 one particularly useful one. If P is a class of intervals it is said to

 be additive if whenever [a,b] and [b,c] belong to P so also does

 [a,c], and P is said to be B- local for a derivation basis B if there

 is in B at least one element (3 such that for every (I,x) € ß it is

 the case that I € P . We then have the following elementary, but useful,

 theorem. We call this the partitioning argument: loosely it asserts that

 if a property of intervals is additive and holds locally for any appropriate

 derivation basis, then that property holds globally.
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 THEOREM 5.5 [the partitioning argument] Let P be a class of intervals
 that is additive and B-local for a derivation basis B that has the parti-

 tioning property. Then P contains all intervals.

 The following examples illustrate the variety of applications

 of this principle.

 EXAMPLE 5.6 (The Bolzano -Weier s trass theorem) The partitioning property

 for the derivation basis D is proved by a compactness argument; conversely
 the partitioning argument can establish any of the several equivalent ex-
 pressions of compactness on the real line. For an example we show that any
 set S that has no accumulation points roust bs finite in any interval

 which is the Bolzano -Weier s tras s theorem. Say that [a,ł>] belongs to P

 if and only if S fi [atb] is finite. Then clearly P is additive and
 since S has no accumulation points it is easy to see that P is D-local.
 By the partitioning argument it follows that P contains every interval and

 this proves our claim. Note that the basis īfl (which also has the parti-
 tioning property) could have been used here.

 Similar arguments can be used to obtain the Heine -Borei theorem.

 EXAMPLE 5. 7 (A monotonicity theorem) Let F be a real function whose
 lower bilateral dex*ivate P F(x) is everywhere positive. Then a com-
 pactness argument would show that F is strictly increasing. The same
 can be based on a partitioning argument using the derivation basis D :
 let [a,i>] belong to P if and only if F(b) - F(a) > 0 . Then P is

 clearly additive and our assumptions on the derivate of F show that P
 is D-local. Thus every interval [ atb ] belongs to P and so F is
 strictly increasing.

 While this is not too surprising an application it is re-
 markable that the same argument will give a monotonicity theorem for a
 number of generalized derivates provided only that the associated deri-
 vation basis has the partitioning property. Thus one has this same

 feature for approximate derivates , preponderant derivates , qualitative
 derivates , and selective derivates with an identical simple proof in each
 case.
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 EXAMPLE 5.8 (A Darboux property) If F is an everywhere approximately

 continuous function then it has the Darboux property. To prove this
 using a partitioning argument let A denote the derivation basis that

 expresses approximate derivation and which is known to have the parti-
 tioning property (see §P below for more details). It is enough if we
 show that F nonvanishing would require that it be oXways positive or
 else always negative. Say that [a3b] belongs to P if and only if

 F(a)F(b) > 0 : then P is additive and an easy argument shows, since
 F does not vanish^ that P is A-local. By the partitioning argument

 P contains every interval and that proves our claim.

 This same argument can be used for a variety of generalized

 notions of continuity to show that functions continuous in such a sense

 must have the Darboux property (e.g. preponderantly continuous j select-

 ively continuous).

 The partitioning argument is just a formulation of some very

 familiar arguments in analysis. The formalization is convenient in that

 it can suggest methods of proof that might not otherwise come to mind; for

 example many properties of approximate derivatives and approximately con-

 tinuous functions can be proved by this argument that have in the past

 been approached by more complicated methods. Note that these ideas have

 been given formal treatments in the past: thus there are the "full cov-

 ering properties" of Thomson £115], the "interval-additive propositions"

 of Ford [32], the "creeping lemma" of Moss and Roberts [92], and the

 "local, additive families" of Shanahan [108].

 The partitioning property has an important implication for

 the variation of additive interval functions and nonnegative subadditive

 interval functions which we express in the following lemma.

 LEMMA 5.9 Let B be a derivation basis that has the partitioning

 property and let h be an additive interval function or a nonnegative

 subadditive interval function. If V(h,B(I)) =0 for an interval I

 then h vanishes on every subinterval of I ; If V(h,B) = 0 then h

 vanishes identically.
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 PROOF. Since J h ļ is a nonnegative subadditive interval function when
 h is additive it is enough to prove the lemma for the subadditive case.

 For any e > 0 if V(h,B(I)) = 0 then there is a ß € B for which
 V(h,ß(I)) < e . If J c i then, by partitioning property, there is

 a partition it of J with ir c ß . Thus

 h(J) - Z(I.,X.) €ir h(I,) 5 V(h,ß(I) ) < £

 and so h (J) < e for all J c I and all e > 0 . Hence h vanishes on

 every subinterval of I as required. The final assertion of the lemma

 now follows easily since if V(h,B) = 0 then V(h,B(I)) = 0 for every

 interval I .

 This property of derivation bases that have the partitioning

 property is important on its own and can be used even when the basis is

 not partitioning.

 DEFINITION 5.10 [H-COMPLETENESS] Let B be a derivation basis and H

 a family of nonnegative subadditive interval functions. B is said to be

 H-complete if for any h € fi for which V(h,B) = 0 one has h = 0 .

 An important special case occurs if C is the collection of

 all continuous subadditive interval functions: such an h is continuous

 if for every e > 0 there is a 6 > 0 so that h (I) < e whenever

 ļ I ļ < ô A basis that is at least C-complete has a number of desirable
 properties. C-completeness or H-completeness relative to any collection

 H is, by lemma 5.9, weaker than the partitioning property. The termin-

 ology is from Henstock [50].

 EXAMPLE 5.11 (The symmetric basis is C-oomplete ) The derivation basis S

 that expresses symmetric derivation does not have the partitioning property
 but is C-complete. This follows from a weak type of partitioning property
 available for S that a student of Benstock's s J.J. McGrotty {87], has
 discovered:
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 let ß í S , and c € E then there must exist a set C c (o t + 00 ) that

 is both closed and countable sueh that ß contains a partition of every

 interval of the form [c-tjc + t] for t $ C .

 This suggests however a modification of the symmetric
 derivation basis that could -possibly be used to develop an integration
 theory (in particular that would invert the symmetric derivatives of

 continuous functions). To each ß € S one can find a countable set

 Nņ so that ß contains a partition of every interval [x,y] for
 which X i Nq and y $ Na . Then if one defines

 P P

 PS = {ß U ß' : ß € S , p' € DWp]}

 this enlarged derivation basis should have the partitioning property ,

 should be filtering down, etc. . We leave it as a query as to whether

 this can be pursued to give an interesting integration theory ¿ and
 especially as to whether it is related to Denjoy 's symmetric totaliza-
 tion process (Denjoy [25]).

 EXAMPLE 5.12 (The Dini derivation bases are C-complete) It is easy to

 see that neither of the bases FD nor LD that express the one-sided

 derivations have the partitioning property. That they are C-complete

 can be obtained from a form of a partitioning property that is related

 to a notion of Lebesgue:

 if ß € PD and [a,ł>] is an interval then there is a transfinite in-
 creasing sequence { Ç . } such that a and b appear in the sequence

 Is . - -

 and every pair.

 (Hi, ti, k' îsz tí 5i+3

 belongs to ß .
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 On the basis of the above property of RD we can see that

 RD is C-complete ; for if h is a continuous vonnegative subadditive
 interval function and V(h,&) < e for some ß € RD then for any interval
 [a.b] there is such a sequence {Ç .} linking a and b and by arguing
 along the sequence in an obvious fashion one obtains that h([atb]) < e ,
 and hence the result. (This can be proved of course much more simply than

 employing the above "Lebesgue chain" but it seems appropriate here to con-
 nect the idea with some kind of partitioning argument. )

 (Perhaps more surprising is the fact that the dual basis RD*
 defined in %8 below has almost the same "partitioning property" as that
 above: for that basis each ß* € RD* permits such a transfinite sequence
 {£.} for which each term ([Ķ. , iß* and so it too must be
 C-complete. )

 EXAMPLE 5.13 (Composite path derivation) For a fixed sequence {£^} of
 closed sets covering the real line we have defined the composite derivation

 basis (relative to E = {E n }) as C E ~ g ; 6} where

 ô = {([x,y] , z : x,y,z € En for some », x é z š y ,
 and O < y - x < ô(z,n)} .

 We can prove the following: if for each n every peint of E^ is a point
 of bilateral accumulation of En+j then has the partitioning property.

 The general composite derivation basis C which is essentially

 just U {Cp ; all such E = {E /T }} does not have the partitioning property Hi /T

 and as it stands is not quite suitable for a Riemann-type integration theory.

 Henstock suggests the following modification (Henstock [60, p. 3 ] J : to each

 sequence E = í^n) of closed sets covering R let A denote the points
 in anu a E that are isolated on one side at least in E * : this set A„ a n n * E

 is evidently countable (cf. Saks [105, p. 260]). Define

 PC - ÍS^UfS' : S.Ï)6 <C£, p' ÍDHjl ,
 all seauences E = {F J } } J . n J J
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 Then the arguments in Henstock [60¿ p. 3 ] can be used to show that PC

 has the partitioni?ig property and Henstock claims that the resulting
 integral will bes because of Tolstov [1163 , equivalent to the general
 integral of Denjoy.

 §6, Local character ♦ The derivation basis U which expresses uniform

 derivation and the derivation basis D which expresses ordinary deriva-

 tion have a number of features in common: both are filtering down and

 both have the partitioning property. Indeed D 5 U so that D is a

 finer filterbąse than U . The integration theories that arise in the

 two theories are of course similar in many ways? but the integration

 theory for D extends the integration theory for U in some powerful

 ways. The scope of the limit theorems available in the D setting is

 truly impressive. It is natural to ask for the abstract property resi-

 dent in the derivation basis that expresses these limit properties.

 Some authors have fixed on the fact that U is defined as (3X : 6 > 0}

 for fixed positive numbers 6 and that D employs positive functions

 6 . Thus we have the introduction of the function 6 as a "gauge" and

 attention focused on this distinction (e.g. , in McLeod [88]). McShane

 interpreted this distinction in his setting ( [89] ) by the phrase "point-

 wise character". The clearest expression of this property is however

 given in Henstock [55] using the terminology "decomposable" and "fully

 decomposable". We will use different language so that we can reserve the

 term "decomposition" for a concept that is a decomposition in the usual

 sense of that word.

 DEFINITION 6.1 [LOCAL CHARACTER] A derivation basis B is said to have

 local character if

 B 5 Ux€RB[(x>1 •
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 Less compactly this requirement can be written as follows: if to each

 X 6 R an element ß^ € B is given then there is a ß ( B for which
 ß c U ß„[{x}] (i.e., - - - for which ß[{x}] c ß for all x € R) . X v[ A X - - - ^

 Loosely put this just asserts that B is completely determined by its

 sections B[{x}] as is the case for the ordinary derivation basis but
 is not the case for the uniform basis.

 Henstock also uses a weaker concept in his investigations.

 The stronger concept (local character) is a natural one to impose in

 differentiation theory, but for a great many of the results of his inte-

 gration theory either in our setting on the real line or in a very abstract

 setting one only needs a "countable" version of this property.

 DEFINITION 6.2 [O-LOCAL CHARACTER] A derivation basis B is said to have

 o-local character if for every sequence of disjointed sets {X } one has
 n

 CO CO

 B[ U X ] s U B[X ] .
 n 1 n n=l n=l 1

 Less compactly written this says that given any such sequence {x } and
 n

 any sequence {ßR} c B there is a ß € B for which

 PtX]cp forali n.
 n n

 Certainly a basis that has local character must have O-local

 character; the converse is not true as the example of the basis DD below
 (Example 6.5) will show.

 In our development we will see that these properties of
 local character and (J-iocal character will provide all of the needed

 convergence results. In particular in their presence the measures h
 B

 become genuine outer measures (i.e. , coun tably subadditive set functions)

 and the integrals ^^fdh assume all of the power of the Lebesgue
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 integral as regards taking limits inside the integral. Indeed, as Henstock

 has remarked [ ] , these properties in our setting do for integration theory

 what "countable additivity" does in the measure theoretic setting.

 The examples indicate which bases possess which properties.

 EXAMPLE 6. 3 Neither. U nor R have local character or o-local character.

 They do have a weaker version of tiiese properties however: if ißn) is a
 finite sequence of elements of U (or of RJ and a corresponding
 sequence of disjointed sets then there is an element ß € U (or in RJ

 such that PI^K] c ßn for each n .

 EXAMPLE 6.4 All of the bases D, D° , D*, D*, N, S, RD, and ID have
 local character merely because of the manner in which they were defined.

 EXAMPLE 6.5 (A basis with o-local character but not local character)

 The basis DD defined by sectioning the ordinary basis D by sets of
 full measure j i.e. ,

 DD = {ß [i?'7V3 •' ß 6 D and N c R of measure zero } 3

 does not have local character because if x £ R is given there is in DD

 an element ß with ß [{x}] = 0 so tìiat local character would imply
 30 CO

 that 0 € DD which is false. It does have o-local character however.

 To see this let be ą sequence of disjointed sets and ß^ a sequence
 from CO : for each ß^, there is an element ß^f from D and a set N ^
 of measure zero so that ß^ = ß^, [R' N^] . Define

 CO

 N = U N.
 k-1 K

 and select a ß' in D so that c ßfc' •» the element ß in
 DD defined as ß = ß'[i?'2V] is the one needed to verify the o-local

 character property.
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 This same observation applies to the modified version of

 the symmetric basis PS (Example 5.10 ). Neither has local character
 but each can be proved to have o-local character.

 §7. Decomposition properties. We begin by illustrating a most common

 device in differentiation theory. For example, in the study of the Dini

 derivative +D F (x) one might encounter a situation in which everywhere
 on a set X one has +D F(x) > c . In some sense then one expects the
 function F(x) - ex to be increasing on X although that cannot preci-

 sely be the case. What is available, however, is a decomposition of the

 set X into a sequence of sets on each of which the function

 F(x) - ex is indeed increasing. To see how this may be done, classically,

 we choose a number 0 < 6 (x) < 1 at each point x € X so that for any

 0 < y - x < 5 (x) one has F (y) - F (x) > c (y-x) . This function 6

 induces a decomposition on X by writing

 X . « {x Ç X : 2~m-1 5 5(x) < 2_m} fl [ j2~m"1/ ( j+1) 2~m""1)
 mj

 for m = 0,1,2,3,... and j = 0,±l,±2,±3,... . On each set X . it

 is easy to see that F(t) - ct is increasing.

 This device is much used in differentiation theory in the

 study of all manner of generalized derivatives but in spite of the fact

 that it recurs as a theme in a number of instances it has not been singled

 out and formalized prior to its mention in Bruckner, O'Malley, and Thomson

 [13] as a "ô-decomposition" . This will play a role in our theory as well.

 DEFINITION 7.1 Let Ô be a positive function defined on a set X .

 Then by a ¿-decomposition of the set X we mean a sequence {x } which

 is a relabelling of the double sequence {x .} defined above. Such a

 decomposition has the following proparties :
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 (i) *s a disjointed sequence whose union is X ,

 (ii) if two points X and y belong to the same set X
 n

 then I y - X i < min {6 (x) , 5 (y) } , and

 (iii) if X € X is a point of accumulation of some set X
 n

 then every point y in the set X fi (x - 6 (x) ,x + 6 (x) )
 n

 has |y-x| < min {6 (x) , 5 (y) } .

 DEFINITION 7.2 Let B be a derivation basis and let X c r . By a

 decomposition property of the derivation basis B we mean an assertion

 that for every ß € B there exists a decomposition ^e set x

 for which each section ß [X^] enjoys some stated property.

 DEFINITION 7.3 Let B be a derivation basis and let X c r be a closed

 set. By a closed decomposition property of the derivation basis B we

 mean an assertion that for every ß € B there is a decomposition of the

 set X , {X } , such that sections ß [X ] and ß [X ] enjoy some stated
 n n n

 property.

 There are a number of decomposition properties that are useful

 in the development. We shall give several general decomposition properties

 that are shared by a number of derivation bases as well as find, for a

 particular example of a derivation basis , a decomposition property that is

 peculiar to it. Indeed in this theory it is most useful to sort out in

 advance of the study of some derivation process the decomposition properties

 that will be available for its corresponding basis. Our first general prop-

 erty shall be labelled as a Y-decomposition property after W.H. Young and

 G.C. Young who first proved a number of the results for the Dini derivatives

 that we are able to generalize by utilizing this decomposition property.
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 DEFINITION 7.4 A derivation basis B will be said to have the

 Y-decomposition property if for every set X c r and every ß Ç B there

 is a decomposition of the set X into a sequence of sets with the

 property that ß [X^J contains a partition of any interval with endpoints
 in X^ . B is said moreover to have the closed Y-decomposition property
 if for X closed such a decomposition can be found so that moreover if

 y i X and x € X is sufficiently close to y then ß [X ] contains
 n n n

 a partition of the interval [x,y] (or [y,x] if y < x) .

 (In particular note that would then always contain a

 partition of any interval [a,b] with a, b € X ana a and b are not
 n

 isolated on the right and left, respectively, in X , while if a and b
 n

 are so isolated one can at least find points a' 5 a and b' > b arbitra-

 rily close to a and b respectively and so that partitions are available

 for the intervals [a' ,a] , [a', b'] , and [b' ,b] ; from this one can at

 least obtain approximate results for [a,b] (e.g. , any additive interval

 function h would have h([a,b]) = h(ta',b']) -h(Ia' , a] ) -h([b,b']) and in-

 formation about the three terms on the right of this equality would be available.

 EXAMPLE 7.5 (A decontpostion property for the uniform basis) The basis
 U has both the Y -de composition property and the closed Y-decomposition
 property (from 7.7 betou and because RD s UJ. It is easy to see that it
 has a much stronger property: if ß € U and X bounded is given there

 is a finite decomposition of X, {X^X^ . . suchthat ß[Jf] contains
 any interval point pair ([a3b]3 c) for which c 6 ia3b] and [a,b] lies

 inside the bounds of X^ .

 EXAMPLE 7.6 (A decomposition property for the sharp basis ) The basis
 D# has a decomposition property almost as strong as that for U ; if
 ß € and X c E is given then there is a decomposition of X into a

 sequence of sets { Xn } such that for any interval [a,b] that lies

 within the bounds of Xn there is an element ([a}b]} c) É ßjA^j
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 EXAMPLE 7. 7 (Decomposition properties for the Dini derivation bases)

 The bases RD and ID have the Y- de composition property and the closed
 Y-decomposition property. In fact , given ß € PD and a set X there

 is a decomposition { X o£ X so that any interval [ a,b ] whose

 right endpoint is in X ' and which lies inside the bounds of X n must
 have the element (lajbi^a) € ßl^J •

 To see this let &(x ) be given so that

 3 = Ut x,y]sx) : 0 < y-x < 6(x)} 3

 and let {A^} be a 6- decomposition of X . Then { X must have the
 stated property and this decomposition can be used to verify the conditions
 needed for the Y-decomposition property. For the closed Y-decomposition
 property the same with X closed works.

 EXAMPLE 7.8 (A decomposition property for the ordinary basis) The basis
 D has the following decomposition property that is stronger than the
 Y-decomposition property; if ß € D and X c R is given then there is a

 decomposition { X of X with the property that ß [X^' contains a parti-
 tion ir (containing no more than txjo elements) of any interval [a} b) that
 lies within the bounds of X and intersects J .

 n n

 EXAMPLE 7 . 9 We shall give some general methods later in §3 to show that
 the derivation bases that express approximate derivation 3 selective deri-
 vation , qualitative derivation , and preponderant derivation all have the
 Y-decomposition property and the closed Y-decomposition property.

 EXAMPLE 7.10 (Decomposition properties for the symmetric basis) The

 symmetric derivation basis S has the following closed decomposition
 properties which are of some use in establishing a number of properties
 of symmetric derivatives.
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 (A) ļ£ X c R is closed and ß i S[X] there exists a decompo-
 sition { X of X with the property that if x € X is a
 right hand limit point of X ' then for y € X , y > x and
 sufficiently alose to x there must be a point z € (x,y) OA

 for which (I ,x) , (I ,y) and - (I tz) all belong to X
 x y - z

 where

 . -.1 - [x - (y-z) j x + (y-z)] ,

 I. - ly - (z-x) * y + (z-x)] j and
 y

 I = [z - (y-x) , z + (y-x)}
 S

 so that F(I ) - F(I ) + F(I ) whenever F is additive,
 z x y 1

 (The same assertion holds for x a left limit point of X '

 with appropriate changes of course. )

 (B) This decomposition aan arranged as well so that

 whenever x is a right hand limit point of X ' and y > x

 is a left hand limit point of X ' and I* denotes the interval

 I ^ - (y-x) , - ^ + (y-x) ] = ( Jœ - , ft/ - ]

 then there are (I.^x.) € ß [X] , i = so that

 Fa*) = e. 6 r-i;1 f(i.)
 i=u ^

 for additive F .

 QUERY 7.11 What are the appropriate decomposition properties for the

 derivation basis that expresses the approximate Symmetrie derivation?

 For a first application of the Y-decomposition properties we

 establish a useful criterion for a derivation basis to have the partitioning

 property,
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 THEORM 7.12 Let B be a derivation basis that has the closed Y-décomposition

 property and has the following local property as well: if ß € B , x £ R and

 £ > 0 then there are numbers y and z with x-£<y<x< z < x + E so

 that ß contains a partition of the intervals [y/X] and [x,z] . Then B

 has the partitioning property.

 PROOF. Let ß € B be given. We need to prove that ß contains a partition

 of every interval. Let J denote the collection of all intervals [a,b]

 such that ß contains a partition of every subinterval of [a,b] and write

 G = U { (a,b) : [a,b] € J} .

 The set G is open and the theorem is proved if we are able to show that

 G = R for if tc,d] c g then since a finite number of elements J will

 cover [c,d] we can obtain a partition of [c,d] . To obtain a contradic-

 tion suppose that the set Q = RSG is nonempty. We already know that it
 must be closed: if [c,d] is an interval contiguous to Q then ß con-

 tains a partition of every subinterval [a,b] with c<a<b<d. By

 the hypothesis of the theorem ß must contain a partition of [c,a] and
 [b,d] for some such a and b so that we now have that ß contains a

 partition of [c,d] and also every subinterval. Consequently Q can have
 no isolated points.

 Using the closed Y-decomposition property we can decompose Q

 into a sequence of sets {Q } such that ß[Q ] contains a partition of any
 n n

 interval [x,y] with endpoints in Qn and ß contains a partition of
 [x,y] provided x,y <: and not isolated on the right and left respectively.

 71

 By Baire's theorem (see Saks [105, p. 54]) one of these sets (Q^ say) is
 dense in a nonempty portion of Q (Q f! [c/d] say) . A consequence of this
 is that ß must contain a partition of any subinterval of [c,d] . To see
 this we only have to subdivide any such interval into subintervals that are
 contiguous or complementary to Q , and subintervals [x,y] with
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 x,y € Q fi [c,d] = Qm fl [c,d] for which x is not isolated on the right
 and y is not isolated on the left. Since ß contains a partition of any

 interval of either of these types we can find a partition of every subin-

 terval of [c,d] as claimed. But then Q (1 (c,d) = 0 which is impossible.

 This contradiction proves the theorem.

 §8. The dual basis. Conventional abstract differentiation theory is dominated
 by the duality between the notions of a full cover and a fine (or Vitali)

 cover. That general theory commonly proceeds by making some assumption on the

 nature of these covers, most frequently that some version of the Vitali cover-

 ing theorem is available (e.g. , see Hayes and Pauc [39, Chapter II]). On the

 real line we require a more delicate approach which we achieve by the notion

 of a dual basis; in this way theorems which would normally require a Vitali-

 like assumption merely require the appearance of the dual basis. Thus our

 viewpoint should be that in the study of a derivation basis B , particularly
 in the study of the differentiation theory that arises, the dual basis B*

 must take a natural appearance.

 DEFINITION 8.1 Let B be a derivation basis. A subset ß* of I x r is

 said to be B-fine if for every ß € B and every x € R either ß[{x}] = 0
 or else ß fiß[{x}] ^ 0 . The collection of all B-fine subsets of I x R
 is denoted as B* and referred to as the dual of B .

 Usually we shall assume that B ignores no point so that the

 condition in 8.1 need only read that ß* fi ß [{x}] ¿ 0 for all ß € B and
 all x € R . We choose to call the derivation basis B* the dual of B

 because of the fact that under most circumstances (see Theorem 8.6 below)
 the dual of B* , (B*)* , is equivalent to B (i.e. , B = B** ) . In fact
 if B is filtering down and ignores no point then B** is the filter
 generated by the filterbase B .

 EXAMPLE 8.2 The dual basis of the trivial basis T consists of all subsets
 of 1 * K and so in particular T = T* .
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 EXAMPLE 8.3 The dual basis of D is the basis D* introduced in §3 above.

 EXAMPLE 8. 4 The dual basis of D° is the same as the dual basis of U .
 From this we see that the second dual of U , U** , is equivalent to D° .

 There are a number of natural questions that we can now answer

 for dual bases. Some of these are trivial and some quite surprising. For

 most derivation bases B (those that are filtering down and that ignore no

 point) the dual basis B* behaves in a startling manner with respect to
 derivation: for interval point functions h and k the bases B and B*
 interchange the upper and the lower derivations so that

 °B VX) = ÏÏB* hk(x) and FB VX) = VX)

 A referee of an earlier version of this theory has remarked that this might

 be quite shocking to some readers and recommends that it be emphasized that

 this interchange is just our abstract expression of a well known fact re-

 garding the computation of a "lim sup" : a lim sup can be viewed as a "sup

 - inf" or equally well as an "inf - sup" by a familiar device. One has for

 example

 lim sup f Cy) = inf sup (fty) : 0 < y-x <6}
 y->- X + <5 > 0

 and

 lim sup f (y) = sup { inf f (x+h ) : {h } a sequence + 0 }
 y •+ X + n

 The remaining properties should be less "shocking".

 LEMMA 8 . 5 Let A and B be derivation bases that ignore no point. If

 A < B then A* c B* ; if_ A = B then A* = B* .
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 PROOF. If ß* € A* is given and A £ B then for any ß^ ^ ® an<*
 X € R there is an element ß^ € A with ß^ c ß^ and so

 ß* n ß2 ííx}] D ß* n ßx [{x}] f 0

 by the definition of the dual A* . Consequently ß* £ B* and hence
 A* c B* as required. The final assertion follows from this in ein obvious
 manner .

 THEOREM 8.6 Let B be a derivation basis and B* its dual. Then the

 following must hold;

 8.6.1 if ß* € B* and ß* c y c I x r then necessarily y £ B* ,

 8.6.2 B* has local character, and

 8.6.3 if_ B ignores no point then B** o B .

 If we assume as well that B is filtering down and ignores no point then
 the following also hold:

 8.6.4 B* 3 B ,

 8.6.5 if ß í B and ß* € B* then ß fi ß* € B* ,

 8.6.6 if B has local character then B** is the filter generated by
 the filterbase B on I x r , and

 8.6.7 if B has local character then B** SB .

 PROOF. Assertions 8.6.1 and 8.6.2 are obvious. For 8.6.3 if B ignores

 no point then B* also can ignore no point; thus if ß* € B* and ß € B
 we have

 ß* n ß u*)] = ß* [{x}] n ß ft 0

 so that by this symmetry when ß is in B it is also in B** .
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 For 8.6.4 under the additional assumptions here any pair

 ß^ and in B have ß^ il ß^ t{x}] f 0 (since there is a
 ß^ c ß^ H ß^ and ß^ [{x}] cannot be empty) so that each element of
 B is in B* . For 8.6.5 if ß € B and ß* in B* are given and
 x € R and ( B are also given we certainly have

 ß1 fi ß2 fi ß* [{x}] = ß2 fi ß* [{x}] ? 0

 for any ß^ € B with ß2 c ß. . This shows that ß fi ß* is in B*
 as required.

 Finally we need only show that given an element ß** of
 B** there is a ß € B for which ß c ß** for then our assertions
 would follow from 8.6.1 and 8.6.3. To this end we fix x € R and de-

 termine aß € B so that ß I{x}] c ß** . if this were not possible
 X X

 i.e. , if there is no such , then one can define

 ß* = { (I,X) : I € I , (I,X) ł ß**} U I X(R'{x}) .

 By our assumptions on ß** we see that ß* U ß [{x}} ¿ 0 for every
 y € R and every ß € B : for y ý x this is immediate and for y = x

 this is because ß** can contain no ß[{x}] for ß ( B . But this
 contradicts the fact that ß** € B** for this ß* so defined is an
 element B* that does not meet ß** at the point x .

 Hence we have for every x € R and element ß^ € B for
 which ß [{x}] c ß** . Because B has local character we may find an

 element ß of B so that ß[{x>] c ß^ for each x ; this is of course
 the required ß that is a subset of ß** and the proof is complete.

 128



 EXAMPLE 8. 7 The assumption that a basis ignores no point is important
 in order for the dual basis to have any properties. For example the
 basis I® ignores every point and it follows that its dual 1®* con-
 tains every subset of I x R and in particular DD* is equivalent to
 the trivial basis.

 Thus even though ED S D one does not have DD c D

 as Lemma 8. 5 would showt and other properties of the dual that require

 a basis not to ignore a point also fail.

 THEOREM 8.8 Let B be a derivation basis that is filtering down and does

 not ignore a point c € R . Then the derivates of an interval-point function

 h relative to an interval-point function k at c with respect to B and

 its dual B* have the following relationship:

 % hk(c) = °B* hk(c) ^ DB hk(c) = 5ß* hk(c) *

 PROOF. Suppose that Dg < r ' then there is a ß € B so that

 h(I,c) ^
 k (I,c)

 for all (I,c) € p . Let ß* belong to B* so that by definition
 ß*[{c}] must meet ß : this gives

 inf {tarif ! (I'C) e p*} •= r •

 and hence Dg* - r • Äs this holds for all such r we have estab-
 lished the inequality £b* Ve) îdb Vc) •

 In the opposite direction if > r then every ß € B

 must have at least one element (I,c) for which

 h(I,c)
 k(I,c) > r
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 and we can define the collection

 ß* = { (I,c) : I € I , 77~f k(I,c) > r} U I X (rN{c}) . k(I,c)

 From the above remarks ß* must belong to B* and so

 { Eatff ; u'c) e p* } ? r

 which proves that - r ' yielding the inequality

 Dg* (hk(c) > Dg hk(c)

 and the theorem follows.

 §9. Natural derivation bases. If we are given a family of filters
 {N(x) : X £ R} such that N (x) is a filter convergent to x then we

 have defined in §3 above a derivation basis generated by the family
 {N (x) : x € R} and denoted for convenience N . Not only does this

 formulation express a great many familiar derivation bases (approximate,

 selective, path derivation etc. ) it is a sufficiently general object on

 its own that it can be studied abstractly to some advantage. Indeed

 there is a characterization of such derivations in terms of the simple

 language we have previously developed.

 THEOREM 9.1 Let B be a derivation basis that is filtering down, endpoint

 tagged, finer than the topology, and has local character. Then there is a

 system of filters {N (x) : x € R} with each N (x) a filter converging to

 the point x such that the derivation basis N generated by the family is

 equivalent to B . rf B does not ignore a point x^ then the filter
 N (Xq) is nontrivial (i.e. , {xQ} ^ ) -

 PROOF. For each x 6 R and ß € B let (x) = {y € R : ([x,y],x) or

 ([y,x],x) is in ß} , and let N (x) be the filter generated by the filter-

 base {Mq (x) U {x} : ß 6 B} .
 P
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 The characteristics of a derivation basis that make it

 expressible as a filtered derivation process occur frequently enough

 to warrant a new definition.

 DEFINITION 9.2 [NATURAL DERIVATION BASIS] A derivation basis that is

 filtered down, endpoint tagged, finer than the topology, has local

 character and ignores no point is said to be a natural derivation basis.

 In any discussion of a natural derivation basis we will move

 freely between the generating filter family and the basis itself; certain

 properties prove to be more readily expressible in terms of the nature of

 the sets in the filters N (x) than in the compact language of the deriva-

 tion basis terminology. Note especially that a natural derivation basis

 is additive as the next lemma shows. If N is a natural derivation basis

 then always N 5 D and so N* c D* .

 î'EMMA 9.3 If a derivation basis B is filtering down, endpoint tagged
 and finer than the topology it is necessarily additive. In particular
 every natural derivation basis is additive.

 PROOF. Given ß^ , ß^ € B and I = [a,b] define the open sets

 = R'{a,b} and G^ = (a - - , a + U (b - , b +

 Since B is finer than the topology we may select elements £3 ' ^ ^
 so that Ï c and C ^1^G2^ * Finally, since B is
 filtering down we may select an element ß í B with ß c fi ß2 fi ß3 fi
 The lemma is proved now merely by showing that this ß splits at I ,

 ' that if (J,y) € ß then J cannot overlap I , and this follows

 easily from the construction and the fact that y here must be an endpoint
 of J .
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 BEMARK 9.4 Natural derivation is very general. Suppose that a function
 F is given and some generalized derivation process has yielded the extreme

 derivates GD F(x) and ~GD F(x) such that each is a derived number of the
 function F at X and GD_ F(x) 5 GD F(x) . Then write for any e > 0

 n £ (x) = (x - e y X + z) fi {y : Gl¿ F(x) - e < ~ - x < GD F(x) + e} £ y - x

 and let N(x) be the filter generated by the filterbase

 {r'ç(x) : e > 0} .

 Each N(x) is a nontrivial filter converging to x and the corresponding
 derivation basis N has D L. F(x) = GD F(x) and TX. F(x) = 'W F(x) .

 -N - N

 In particular every generalized derivative whose values are

 restricted to lie at derived numbers (unlike the symmetric derivative but

 like the approximate) gives rise to a natural derivation process that ex-

 presses it y but tailored, it must be noted , to the particular function
 lender investigation.

 There are a number of more delicate properties of natural

 derivation bases that are expressible in terms of the sets that appear

 in the families N (x) . One group of these, called intersection condi-

 tions, is particularly useful. These are related to similar notions

 explored in Bruckner, O'Malley and Thomson [13].

 DEFINITION 9.5 Let {N (x) } , be a system of filters with each N tx)
 xc R

 converging to x . A system { Tļ } r is said to be a choice from N X XtK r

 if each Ti € N (x) .
 x
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 DEFINITION 9.6 A system {N (*) )X£R will be said to have the stated
 intersection condition if corresponding to any choice {rļ } , from

 X XtR

 N there is a positive function 6 on R so that whenever

 0 < y - X < min {6 (x) , 6 (y) }

 the two sets r| and r| from the choice intersect in the described
 x y

 manner :

 9.6.1 [INTERSECTION CONDITION] T)^ fi T) (1 [x,y] ^ 0 ,

 9.6.2 [INTERNAL INTERSECTION CONDITION] Tļ^ fi rļ 0 (x,y) ¿ 0 ,

 9.6.3 [EXTERNAL INTERSECTION CONDITION [p] , p > 0]

 n n (*-p(y-x)f x] * 0
 A y

 and

 "Hx n "Hy n ty , y + p(y-x)) Ý 0 ,

 9.6.4 [ONESIDED EXTERNAL INTERSECTION CONDITION [p] , p > 0]

 as for 9.6.3 but only one of the two intersections need

 be nonempty.

 Our first result shows that in the presence of an intersection

 condition the derivation basis inherits some strong properties.

 THEOREM 9.7 Let N be a natural derivation basis that satisfies the

 intersection condition (9.6.1). Then N has the Y-decomposition property
 and the closed Y-decomposition property. If in addition each set Tļ € N (x)
 is twosided at x (i.e. , the sets [xř + 00 ) and (- x] do not belong to
 N (x) ) then N has the partitioning property.

 PROOF. Let ß € N be given. Then by the definition of N there is a
 choice Tļ t {rļ (x) : x € R} , so that

 ß = { (fy, z] , x) : y,z € Tļ(x) , y 5. x < z} .
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 Corresponding to this choice T) there is a positive function 6 on R

 so that if 0 < y - X < min {6(x), 6 (y)} then the intersection condition

 9.6.1 is met for T] (x) and T)(y) .

 If X c R is given then let a ¿¡-decomposition of

 the set X . If x,y € X^ with x < y then by the nature of the decom-
 position T)(x) D T} (y) D [x,y] contains a point z say. If z = y then

 the pair ([x,y],x) belongs to ß > if z = x then the pair

 ([x#y]#y) belongs to ßtxn^ > if x < z < y then both pairs ([x,z], x)
 and ([z»y], y) belong to ß [X ] Thus we see that B [X ] contains in

 n n

 any case a partition of any interval with endpoints in X^ . This proves
 the Y-decomposition property.

 If X is closed and denotes the same decomposition

 then for any point x in the closure of X , but not in X , we must
 n n

 have Xr fi (x - 6(x) , x + 6 (x) ) nonempty and every point y in that
 intersection will satisfy

 |x - y I < min {6(x), <5(y)}

 by the nature of the 6-decomposition. Again then the above arguments supply

 a partition of [x,y] or [y,x] . This proves that the closed Y-decomposi-

 tion property holds.

 Finally to see that the partitioning property holds we need

 only appeal to Theorem 7.12 since B has the closed Y-decomposition

 property and the twosided assumptions that are given in the statement of

 our theorem give precisely the local property needed for 7.12. This then

 completes the proof.

 EXAMPLE 9.8 (Intersection conditions for the approximate derivation)

 Let {N(x) : x £ R) be a system of filters with the following density
 restrictions: each t) (. N(x) has lower (inner) density on the right

 %c

 at x exceeding p and on the left exceeding ' . We say then that

 N is of ( pj ') -density type. Type (131) is defined by having density
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 equal to 1 and for OS p,' < 1 the "exceeding" is used. The corres-

 ponding natural derivation bases can be used to express the standard
 density derivations: (1,1) -density type for the approximate derivative,

 r-ļ -density type for the preponderant 3 and (0,0) -density type for
 the weakest density derivation.

 The following density types have the following intersection
 properties:

 (.1,1) -density type - intersection condition,

 internal intersection condition, and

 external intersection condition [p]

 for all p > 0 ;

 (p,X) -density type - intersection condition and

 P + X > .2 internal intersection condition ;

 ( Pj X) -density type, - intersection condition,
 p > JL and X > i. external intersection condition v
 2

 for some p > 0 .

 Note as a consequence of these intersection conditions that a

 natural derivation basis of (p,X)-density type with p + X > 1 (in parti-
 cular the approximate derivation basis) has the partitioning property.

 EXAMPLE 9.9 (Intersection conditions for paths) A system {£ : x Ç. R}
 *T

 where each E ' is a set having x as a point of accumulation gives rise
 to a system of filters by taking merely for each N(x) the filter gener-
 ated by the filterbase {£ n (x - e , x + e) : e > 0} . In this case the
 intersection conditions assume a simpler form; for example this N has
 the internal intersection condition if and only if there exists a positive
 function 6 on R so that if 0 < y-x < min { ô(x ), 6 (y)} then
 Ex H Ey H (x,y) fi 0 .

 Thus our intersection conditions for a natural derivation

 basis translate into direct assertions about the intersections of the paths
 for path derivations. (See Bruckner , O'Malley and Thomson [13] for an
 account expressed in simpler language. )
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 QUERY 9.10 (Selective derivation) The idea behind O'Malley' s notion

 of selective derivation is very closely related to the internal inter-

 section condition. There are two problems here that are worth considering .

 #1. If f is the selective derivative of a function F (for a given

 selection) is there a choice of paths {E : x € i?} possessing the in-
 ternal intersection condition so that f is the path derivative of F

 for the system {E : x i R) ?
 X

 §2. If 2?n F - f for a natural derivation basis N that possesses the
 internal intersection condition is there a selection so that f can be

 realized as the selective derivative of F relative to that selection?

 13 6



 CHAPTER THREE

 THE VARIATION

 §1. Elementary properties. Recall that for an arbitrary interval-point

 function h and any derivation basis B the variation of h over B

 has been defined by setting V(h,B) = inf {V(h,ß) : ß € B} where

 V(h,0) =0 and for a nonempty ß c I x r we have defined

 V(h,ß) = sup { 2 |h(I,x)| : TT a partition, TT c ß} €
 ( I / X/ v TT

 This concept is fundamental to all of our concerns in this study; it yields

 the measure theory, an upper integral and it permits an expression of roost

 of the principal results in the differentiation theory and in the integration

 theory. As it plays this fundamental role we need to address the properties

 of the variation prior to developing any other theory.

 In this section we develop the basic computational properties of

 the variation. In particular we need to focus on the variational expressions

 V(fh,B[X]) and V(fh,B(I} )

 where f is a point function, h an interval-point function, B a deriva-

 tion basis, and B[X] and B(I) sections of B corresponding to subsets

 X c r and I € I . By considering these expressions separately as functions

 of f, h, B, X, and I we can see numerous manipulations that require some

 investigation. For the first of these we observe the relationship between

 the variations relative to two different but related derivation bases.

 LEMMA 1 . 1 Let h be an interval-point function and suppose that A and B

 are derivation bases.

 1.1.1 If A < B then V(h,A) 5 V(h,B) , and

 1.1.2 if_ A then V(h,A) =V(h,B) .
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 PROOF. If A 5 B and ß^ € B then there is a ß^ € A such that
 ß^ c ß2 and hence V(h,A) < VCh^ß^) 5 V(h,ß2) . As this is true
 for all ß^ € B we must have V(h,A) ^ V(h,B) . The second assertion
 of the lemma follows easily from the first.

 The most important and frequently used of the elementary

 properties of V(h,B), considered as a function of h , is the seminorm

 property: namely that under the additional hypothesis that B is

 filtering down V(h + h' , B) 5 V(h,B) + V(hf,B) for any pair of

 interval-point functions h and h' . This property along with some

 other simpler and similar ones is our concern in the next pair of lemmas.

 LEMMA 1 . 2 Let h and h 1 be interval-point functions and let ß and ß 1

 be subsets of I x R . Then

 1.2.1 0 5 V(h,ß) < +«> ,

 1.2.2 if ß c ß» then V(h,ß) 5 V(h,ß') ,

 1.2.3 for any real number c not equal to zero ,

 V (ch,ß) = I c I V(h,ß) ,

 1.2.4 if ļhļ 5 ļh' ļ then
 _

 V (h, ß) ;=/V (h* , ß) ,

 1.2.5 V (h + h'ß) < V(h,ß) + V(h'ß) ,

 1.2.6 i£ ß and ß' are separated then

 V (h , ßUß«) = V(h,ß) + V(h,ß') .

 PROOF. Each of 1.2.1 through 1.2.5 is completely elementary. For 1.2.6

 we only have to note that if ß and ß ' are separated then any partition

 TT c ß U ß' can be split into two separate partitions it^ and tt^ with
 tt = tt^ U it2 and c ß and ^ c ß' , and conversely given any two such
 partitions tt and tt2 the set tt = tt^ U v2 c ß U ß' is again a partition.
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 LEMMA 1.3 Let h and h' be interval-point functions and suppose that

 B is a derivation basis. Then

 1.3.1 0 < V (h,B) £ +°° ,

 1.3.2 for any real number c not equal to zero ,

 V (ch,B) = |c| V(h,B) ,

 1.3.3 if |h J 5 ! h 1 I then

 V (h,B) 5 V(h',B) ,

 1.3.4 řf B is filtering down then

 V (h + h' , B) < V(h,B) + V(h',B) .

 PROOF. Each of 1.3.1, 1.3.2, and 1.3.3 follow from corresponding assertions

 in the previous lemma. For 1.3.4 note that if ßx , ß2 and ß3 are given
 in B with ß3 c ß^^ H ß2 then

 V (h + h' , B) 5 V (h + h' , ß3) 5 V(h , ß3> + V(h' , ß3)

 S V (h , ßx) + V (h', ß2) ,

 by computations above. Since B is filtering down there is such a ß3
 for any choice of ß^ and ß2 and now 1.3.4 follows immediately.

 EXAMPLE 1.4 It should be not-iced heve that the semi-norm property of the

 variation (i.e., that V(h2+h2, b; š V(hJt b; + V(h¿s B)) requires that
 B be filtering down y and this property may fail for some derivation bases.

 D* , the dual of the ordinary derivation basis } does not enjoy this property.
 Let h(I,x) - |j| if ļjļ is rational and zero otherwise , and let
 g(lyx) - |j| - h(I,x) . Then V(h, D*) = V(g,D*) = 0 and yet V(h + g s D*J = + «>.

 Our next concern is with the expressions V(h,B[X]) and V(h,B(I))

 thought of as functions of the sets X and I .

 139



 LEMMA 1.5 Let h be an interval-point function and B a derivation

 basis. Then for sets X , Y c r and I , J € I. ,
 - - -

 1.5.1 if B is filtering down,

 V (h,B[X U Y] ) SV(h,B[X]) + v(h,B[Y]) ,

 1.5.2 i£ B is filtering down and separates X and Y ,

 V (h,B[X U Y] ) = V (h,B[X] ) + V(h,B[Y]) ,

 1.5.3 if_ I and J do not overlap ,

 V(h,B(I U J) ) > V(h,B(I)) + V(h,B(J) ) ,

 1.5.4 i£ B is filtering down and additive, and I and J

 do not overlap,

 V (h,B (I U J) ) = V(h,B(I) ) + V(h,B{J)) ,

 1.5.5 i£_ B is filtering down and additive,

 V (h,B) = V(h,B (I) ) + V(h,B(R'I°)) .

 PROOF. Assertion 1.5.1 is a special case of 1.3.4 : set h = ' h and
 J. A

 h2 = Xy ^ • Assertion 1.5.2 follows routinely from 1.2.6.

 For 1.5.3 note that if p ( B (I U J) and I and J do not

 overlap then ß (I ) and ß (J) are separated and so 1.5.3 can also be made

 to follow from 1.2.6.

 For 1.5.4 if B is also additive as well as filtering down

 then given any ß^ , ß2 € B there is a ß^ c ß^ fi ß2 with ß^ € B and
 ß^ splits at I and J . Thus

 V (h,B(l U J) ) 5 V (h, ß (I U J) ) = V(h,ß3(I)) + V(h,ß3(J))

 < v(h#ß1(D) + v(h,ß2(J))

 and this together with 1.5.3 can be used to establish the desired equality.

 Similar arguments will prove the final assertion.
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 QUEEÏ 1.6 (Additivity of the variation) One might wish to address the
 problem of determining conditions under which the additive formula

 V(F + Gt BJ = V(FjB) + ViG, BJ might hold

 for additive interval functions F and G and for a derivation basis B .
 For instance such an investigation is given in Cater £18] with B = D([atb ])
 and necessary and sufficient conditions for this formula to hold are presented
 in terms of the Dini derivatives of the functions F and G. Are there

 other theorems of this type that are of any interest?

 §2. The fundamental lemma of the variational theory. Almost all of the

 important results expressible in our language arise from two deep properties

 of the variation which we present as our fundamental lemma. The hypothesis

 of local character (as well as the weaker one of 0-local character) plays a

 key role. In addition part of our lemma needs a uniformity assumption;

 because of the role it plays in Henstock's theory of integration we refer

 to this as "property H" .

 DEFINITION 2.1 An interval-point function h is said to have the property H

 relative to a derivation basis B if for every positive number e there is a

 ß € B with

 V(h,ß U) ) 2 V (h, B(I) ) + e

 for all I € I .

 The property H plays an important technical role in establish-

 ing some of the limit properties of the variation. Me address immediately

 the problem of determining some situations in which that property is available.

 Note in particular that whenever the derivation basis is additive this property

 is easily obtained; thus any natural derivation basis allows the application

 freely of these lemmas.
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 LEMMA 2.2 Let B be a derivation basis and h an interval-point

 function. Then in order that the function h shall have the property

 H relative to B either of the following two conditions suffice;

 (a) V(h,B) < +«> and B is both filtering down and additive,

 (b) V(h,B) < +® , h is an additive interval function or a non-

 negative subadditive interval function, and B is filtering

 down and has the partitioning property.

 PROOF . If B is filtering down and additive with V(h,B) < + 00 then,

 using Lemma 1.4.5 we must have

 (*) V (h,B) = V(h,B(I) ) + V(h,B(R^I0))

 for any I £ I . Given £ > 0 choose ß € B so that

 V(h,ß) 5 V (h,B) + e

 and observe that

 V (h,ß (I) ) 5 V (h,ß) - V(h,ß(R'I°))

 5 V (h,B) + £ - V(h,B(R^I°)

 5 V (h,B (I) ) + e ,

 using (*) in the final inequality, and this is the property H as required.

 The same proof works under hypothesis (b) simply by proving that (*) again

 holds in such a circumstance; we omit the details.

 It will be shown below (Chapter Five, §2) that any uniformly

 integrable interval-point function h has the property H relative to a

 basis that is filtering down and has the partitioning property. This allows

 a number of convergence properties of integrals to be proved without an

 "additive" assumption on the derivation basis. This is the technical reason

 that Henstock in a recent paper [61] was able to obtain various limit theorems

 in the setting of what he calls "non-additive division spaces".
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 Property H yields a useful property of the variation that

 it is convenient for us to express here.

 LEMMA 2.3 Let B be a derivation basis and suppose that an interval-

 point function h has property H relative to B . Then

 V(h,B) = sup {V(h,B(I)) : I U} .

 PROOF. Because we are assuming the property H for the interval-point

 function h there must be for any e > 0 an element ß € B with

 V (h,ß (I) ) < V (h,B(I) ) + e/2

 for all I € I . If c is any number for which c 5 V(h,B) then there

 must exist at least one partition t c ß for which

 1 «,*)€* » e - e/2

 and then if I is an interval for which I 3 o(it) (i.e. , each J c i
 if (J,x) (it) ,

 V(h,B(U) + e/2 > v (h,p (I) ) > En ļh(J,x) | > c - e/2 .

 Prom this we can conclude that sup V(h,B(I)) > c - e
 ICI

 for every e > 0 . But e > 0 is arbitrary and c 5 V(h,B) is arbitrary
 and this gives V(h,B) 5 sup V(h,B(I)) ; since the opposite inequality

 ICI

 holds trivially the lemma has been proved.

 We can now state our fundamental lemma which is to play an

 obvious role in the development of the measure theory, and plays a strong
 technical role in the development of the properties of integrals and deri-
 vatives in the next two chapters.
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 LEMMA 2.4 [FUNDAMENTAL LEMMA OF THE VARIATIONAL THEORY] Let B be £
 derivation basis that has g-local character and let h be an interval-

 point function.

 2.4.1 for any sequence of sets XfX^X^X^, • • • with

 00

 xc U X. ,
 i=l 1

 oo

 V (h,B[X] ) 5 l V (h,B[X. ] ) ;
 i=l 1

 2.4.2 assuming in addition that B is filtering down, for any sequence

 of nonnegative point functions f,f , f ,f , ... with

 nondecreasing , 0 5 f (t) 5 sup f . (t) , and such that each function
 i x

 f ^h has the property H relative to B ,

 v(fh,B) - lim V (f h,B) •
 n-œ n

 PROOF. We prove the first assertion (cf. Henstock [54, Theorem 44.10,

 p. 232]). It is clear that whenever Y c z , V(h,B[Y]) 5 V(h,B[Z]) so

 that there is no loss in generality if we assume that the given sequence

 {X^} is disjointed. For e > 0 choose elements í B such that

 V(h,ß [X ]) < V (h,B[X J) + e 2~n . rn n n

 Because B has a-local character and the sets {X^} are
 disjointed there must be an element ß € B with the property that

 PtXnJ C pn

 for each n .
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 Let ir c ß [X] be an arbitrary partition and define tt = n [X^] : then
 00

 |h(I,x) 1=11^ |h(I,x) I
 n=l n

 00

 5 I V (h, ß [X ])
 , n n n=l ,

 00

 5 Z (V(h,B[X ] + E 2~n) .
 1 n n=l 1

 as this holds for all such partitions tt c ß [x] we have

 oo

 V(h,B[X]) 5 V(h,ß [X]) 5 I V (h,B[X ]) + e
 i n n=l i

 and since e > 0 is arbitrary the first part of the theorem is proved.

 For the second part of the theorem (cf> Henstock [54 , Theorem

 44.9, p. 231]) suppose that e > 0 and 0 < c < 1 are given. For each

 x € R there is a least integer n (x) such that for every m > n (x) one
 has f (x) > c f (x) .

 m

 Define the sequence of sets X = {x ( R : n (x) = n} and
 n

 observe that this is a disjointed sequence whose union is all of R .

 Select an element ß^ € B so that for every I €

 v(f h,ß (I)) < V (f h,B(i) ) + e 2"n ;
 n n n

 this uses the fact that each f^h has the property H . Using the a-local
 character of B , as in the first part of the theorem, choose an element

 ß € B so that ß [X^] c ß^ for all n .

 We now compute V(fh,B) : if ïï c ß is a partition write

 again, tt = tt [X l , I = a (tt ) and let N be the first integer for which n n n n

 "fi = 0 f°r n ï N+l (this is possible because tt is finite) . Then

 145



 N

 I f (x)h(I,x) I Z ļf(x)h(I,x)ļ
 n=l n

 -1 N
 - c E E |f 1 (x)h(I,x) ļ , Tí 1 n

 n=l , n

 -i N
 - c Z V (f h, 3 (I ))

 . n n n
 n=l .

 i N = c i Z {V(f h,B (I ))+ e 2~n}
 , n n n=l ,

 "l/N I cl ' = c I V(fNh,B(In)) + cl

 5 c"1 V(f h,B) + c"1 e .
 N

 (We have used here a number of the elementary computations from the pre-

 vious section without comment.)

 In this inequality c may be arbitrarily close to 1 and

 e to 0 ; the choice of N depends on the pair c and e but it is

 clear from this inequality that

 V(fh,B) 5 sup V(f.h,B)
 i

 and the proof of the theorem is complete.

 There are some immediate corollaries that we shall state for

 future reference.

 COROLLARY 2.5 Let h be an interval-point function and f a point function.

 If B is a derivation basis that has a-local character then

 2.5.1 i£ V(h,B) «= 0 it follows that V(fh,B) = 0 , and conversely

 2.5.2 if_ V(fh,B) = 0 then V(h,B[X]) = 0 where

 X = {x : f(x) 0} .
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 PROOF. If V(h,B) = 0 then by writing = {x € R : ļf (x) | 5 n}
 we have V(fh,BI* ]) 5 n V(h,B[Y ]) S n V(h,B) = 0 by some of our

 n n

 elementary properties. But the fundamental Lemma then gives

 00

 V(fh,B) 5 £ V(fh,B[Y ]) = 0
 1 n n=l 1

 as required.

 The second part of the corollary is proved in precisely the

 same way but using the sets Y^ = { x € R : |f (x) ļ > 1/n} . The set X
 of assertion 2.5.2 is just the union of these sets and so the proof is

 obtained in the obvious manner.

 COROLLARY 2.6 Let B be a derivation basis that has q-local character

 and is finer than the topology. Then an interval-point function h has

 V (h,B(I) ) = 0 for every interval I if and only if V(h,B) = 0 .

 PROOF. Certainly if V(h,B) = 0 then V(h,B(D) = 0 for every interval.

 For the converse under the additional hypotheses on B note that if

 V (h,B ( [a,b] ) ) = 0 then V (h,B [ [c,d] ] ) = 0 for a < c < d < b since,

 using the fact that B is finer than the topology , one has
 B[ [c,d] ] 5 B([a,b] ) .

 Then by the fundamental Lemma we have

 CO

 V (h,B) = I V (h,B[ I-n,n] ] )
 n=l

 and so on the assumption that each of these vanishes so too does V(h,B) .

 EXAMPLE 2. 7 This corollary requires some hypothesis such as o-local
 character. For example it is false for the uniform basis U ; let

 {I J 0 I otherwise if x is an integer 0 otherwise

 and it is simple to compute that V(h,X}(I)) = 0 for every interval I
 and yet V(hjU) =■/-<» , ;
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 Note that this same example shows that the fundamental lemma

 itself requires the hypothesis of o-local character. For example let

 ' = l-n.n] and fn(x) « X(Xn,x)

 and then it is clear that V(h> '5[X^) = V(f hjU) = 0 for all n but
 V(hjU) is not less than either of

 1 V(h, V[Xn}) or sup V(f hjW .

 §3. The fundamental lemma of the derivation theory. There is an intimate

 relationship between the variation and the derivation expressed very loosely

 by the fact that h^ = f is almost equivalent to the assertion
 V(h - fk,B) = 0 . Although the lemma is not quite as simple as this the

 relationship is very strong and has many implications in our subsequent

 theory. Consequently statements about derivatives translate into variational

 equations and the tools we have developed in the previous sections can be

 applied to provide numerous properties of the derivatives.

 LEMMA 3.1 [FUNDAMENTAL LEMMA OF THE DERIVATION THEORY] Let h and k

 be interval-point functions/ let f be a point function, and suppose that

 B is a derivation basis that is filtering down.

 3.1.1 If V (k,B) < +« and Dfî = f then V (h - fk,B) = 0 ,
 and conversely

 3.1.2 jLf V (h - fk,B) - 0 then there is a set N c r so that

 DB[R'N] hk = f - = °-

 PROOF. To prove the first assertion let e > 0 be given and choose

 ß^ and ß^ from B so that

 |h(I,x) - f(x)k(I,x)| 5 e |k(I,x)| if (I,x) € ßx
 and

 V(k,ß2) 5 V (k,B) + 1 .
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 Since B has been assumed to be filtering down there is a ß^ é B with
 ß^ ii ß^ 3 ß^ • For this we have evidently

 V (h - fk,ß3) 5 V(e k , ß3) 5 £(V(k,B) + 1)

 and since e > 0 is arbitrary and V(k,B) is finite the assertion of

 the lemma follows.

 For the second assertion, remembering that B* is the dual
 basis for B , define the sequence of sets {y } so that x € Y if and

 n n

 only if for every element ß £ B either B ignores x or else ß con-

 tains at least one pair (I,x) for which

 |h(I,x) - f (x)k(I,x) I > lk(I'x) i .
 n

 oo

 Define N = U Y . We will show that V(k,B*[N]) = 0 and that
 n=l

 DB[R'N] ' = f '

 To see the first of these let e > 0 be given and select a
 ß € B so that V(h-fk,3 ) < E . Let denote the collection of all
 pairs (I,x) € ß for which

 |h(I,x) - f(x)k(I,x)| > I- 'I|X^ 1
 n

 By the definition of the set Yfi this collection ß * must be an element
 of B* [Y ] and hence

 n

 V(k,B*[Yn] S V(k,ßn*) 5 n V(h-fk,ß) < n £ .

 As e > 0 is arbitrary we must have V(k,B*[YnJ) = 0 and so, using the
 fact that B* has local character and that the fundamental lemma of the
 variation theory is hence available, we have

 00

 V (k,B* [N] ) S E V (k,B* [Y ]) = o
 n=l n

 as required.
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 Consequently the lemma is proved if we show that h^ = f
 for the derivation basis A = B[R'NJ . Given any integer n there

 must be an element ß € B so that

 |h(I,x) - f (x)k(I,x) I < 1

 for every (I,x) € ß[R"^N] merely because of the way in which the sets

 Y c n are defined. By J definition then this means n J

 DB[RN.NJ hk = f

 and we are done.

 EXAMPLE 3. 2 Applications of this lemma require rather more of the inte-
 gration and differentiation theory than we have so far developed but we
 can indicate here an example that shows why the dual basis must enter in.
 If

 rb

 F(b) - F(a) = f(x)dx
 •'a

 holds on every interval for the Riemann integral then this can be seen
 (see %4 below) to be equivalent to the assertion V(F - fm,Xi( [ajb] ) ) = 0
 for all [ūjb] . The lemma we have j ust proved then asserts that f is
 the uniform derivative of F on [a}b]'N where N c [a,b] is a set
 of measure zero in the sense that [N]) ~ 0 , and this amounts to
 saying that N has Lebesgue measure zero. Note that for N to have
 measure zero in the sense of U rather than in the sense of its dual

 says that N has Peano-Jordan measure zero (i.e. , that in fact N also
 has measure zero) and this conclusion is not valid here (e.g. 3 f can be

 taken to be discontinous at every rational point).
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 §4. The fundamental lemma of the integration theory ; Just as there is an

 intimate relationship between the variation and the differentiation there

 is also such a relationship available between the variation and the inte-

 gration. Loosely this can be expressed by the claim that the assertion

 H (I) = (I) dh (I 6 I+)

 is more or less equivalent to the variational equation V (H - h ,B) = 0 .

 As a consequence a variety of properties of the integral can be made to

 appear as easy consequences of the properties of the variation.

 Throughout this section we assume that B is a derivation

 basis that is filtering down and that possesses the partitioning property.

 In that case we have the following defintions:

 4.1 An interval-point function h is integrable on a set 1^ i I+
 if there is a number c such that for every e > 0 an element

 ß £ B can be found such that

 1 £(I,X> f It h(I'X) - <= I < E

 for any partition n of 1^ with ir c ß .
 4.2 Because of the assumptions on B (that it is filtering down and

 has the partitioning property) such a c if it exists is unique

 and so if h is integrable on I we write

 (I) ¿h or (B) - j (I) dh

 for this number.

 4.3 An interval-point function is integrable uniformly on 1^
 where I is a subset of I if it is integrable on each

 I € I and for every e > 0 there is a ß € B so that

 (a 00) dh " L(I,X) €tt h(I'X) < e
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 for every partition TT c ß for which (J (TT) € , where O(tt)

 denotes the union of the intervals I for which a pair (I,x)

 belongs to it .

 We can now state our fundamental lemma linking the integration

 definitions with the variation.

 LEMMA 4.4 [FUNDAMENTAL LEMMA OF THE INTEGRATION THEORY] Let h be an

 interval-point function and J € I . I£ B is a derivation basis that
 is filtering down and partitions every subinterval of J then the follow-

 ing assertions are equivalent:

 (i) h is integrable on J ,

 (ii) h is integrable uniformly on J il I , and

 (iii) there is an additive interval function H for which

 V (H - h,B(J) ) = 0 .

 In this latter case H(I) = for every subinterval I o£ J .

 PROOF. We begin by making a simple but useful observation. Integrability

 and uniform integrability can be characterized in terms of a familiar

 "Cauchy" criterion.

 4.4.1 h is integrable on J if and only if for every e > 0

 there is a ß € B such that whenever IT and TTr are

 partitions of J from ß then

 I z d,x) € TT h(I/X) " E(i' ,x') € r h(I' ,x,) ' < e

 4.4.2 h is integrable uniformly on J c I if and only if for

 every Z > 0 there is a ß £ B so that whenever tí and

 it1 are partitions from ß with o(7i) = C (tt 1 ) € J then

 * £(l' ,*• ) € u' hl1' ,x,) ' < e '

 These will be used in the proof.
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 We begin with the implication: (iii) implies (ii). If

 V(H - h,B(J)) = 0 then for any e > 0 there is a ß € B(J) for which

 V(H ~ h,B) < £ . If TT c ß is a partition then 0(ïï) € J fi I + and

 I H (0 (TT) ) - Zïï h(J.,x)ļ 5 I ļ H (I ) - h (I ,x) I < V (H-h, ß) < £ .

 By definition then h is integrable uniformly on J fl I + and H (I) = ^ dh
 there .

 Thus we have (iii) =» (ii) , and since (ii) =» (i) is obvious we

 need only show that (i) =» (iii). Given e > 0 choose ß ( B(J) so that

 it c ß is a partition of J then

 (*) (J) dh - h(I,x) < e / 8 .

 Let E be an element of J fi I and suppose that we are given two partitions

 u and if 1 from ß such that both ir and tt ' are partitions of E ; then

 there must exist a partition ir" which adjoined to v or it' yields a parti-
 tion of J ; thus setting = it U TT" and n = Tt' U tt" we have

 I I h(I,x) - Z h(I,x) I - I E _ h(I,x) - I, h(I,x) I
 1 2

 which cannot exceed e/4 because of (*) above.

 As such a choice of ß 6 B(J) can be made for any € > 0 we

 have by our preliminary observations, 4.4.1 and 4.4.2, that h is integrable

 uniformly on J fl I+ and so we may set

 H(E) - |<E) dh

 for any such E and it will follow that

 |h(E) - h(I ,x) ļ < e/2
 "l

 for partitions ir c ß of E .
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 If and E 2 are nonoverlapping members of J fl I+ then
 a further application of this inequality in the obvious manner gives

 |H U E2) - H{E1) - H(E2)| < 3 E/2

 from which we readily see that H must be additive.

 It now remains only to see that V(H-h,B(J)) = 0 . Let

 ß € B(J) be as above and let ir c ß be any partition. Write

 it' = {(I,x) € ir : H (I) - h(I,x) > 0} ,

 ir" = {(I,x) € TT : H (I) - h(l,x) < 0} ,

 E1 = O (TT f ) , and

 E" « aOT") .

 The above estimates now give

 E v |H(I) -h(I,x) I = E^, (H (I) - h (I , x) ) + Zv„ (h (I,x) - H (I) )

 = |h(E') - E^, h(I,x) ļ + |h(E") - E^,, h (I,x) ļ < e .

 As this holds for all such partitions we see that

 V (H-h,B (J) ) = V (H-h, 6) < C

 and the lemma follows.

 §5. The upper integral. For a fixed derivation basis B and a fixed

 interval -point function h the functional f -*• V(fh,B) defined for all

 point functions serves as an upper integral. It is a direct generaliza-
 tion of the classical Darboux upper integral, and includes abstractly a

 number of other concepts. For convenience we restrict attention to non-

 negative finite valued real functions.
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 DEFINITION 5.1 Let h be an interval-point function and B a derivation

 basis. Then for any nonnegative point function f we write

 hg (f) = V(fh,B)

 and refer to the functional hg as the upper integral associated with h
 and B .

 Modern notation (cf. A.I. Tulcea and C.I. Tulcea [64, pp. 1-2])

 usually requires of an upper integral that it be defined also for extended

 real-valued functions and have stronger limit properties than are available

 here without further assumptions. Our next theorem shows that these limit

 properties are available under some simple natural assumptions; and it would

 be an easy matter to extend this functional to functions that might assume

 the value + 00 .

 THEOREM 5.2 [PROPERTIES OF THE UPPER INTEGRAL] Let hg be the upper
 intergral associated with an interval-point function h and a derivation

 basis B . The following properties hold:

 5.2.1 0 < hg(f) < +» ,
 5.2.2 = 0 (the first "0" denoting the zero function) ,

 5.2.3 if f 5 g then hg(f) S hg(g) ,
 5.2.4 iJE B is assumed to be filtering down, then

 hgtf+g) 2 hgtf) + hg(g) ,

 5.2.5 hg(cf) = c hg(f) if, c is positive.
 On the further assumption that the derivation basis B is

 filtering down, has 0-local character, and is additive, the stronger

 properties below also hold:
 00 CD

 5.2.6 if f 5 E g^ then - £ hg(9 ) > and
 n=l n=l

 5.2.7 if Í9n) is an increasing sequence and f S sup g^ then

 hg(f ) - lim •
 n -*■ 00
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 PROOF. Each of these assertions is merely a translation into the present

 notation of a previous statement about the variation that has been proved

 earlier.

 EXAMPLE 5.3 (Classical upper integrāls) In the event that the derivation
 basis is U ( the uniform basis) or D ( the ordinary basis) and the function

 h is of the form h(I3x) = G(I) where G is a nondecreasing function on R

 (i.e. j considered as an interval function it is additive and nonnegative)

 then the upper integrals and h^ can be written in a more traditional
 form:

 *b

 (LU- ^ f(x)dG(x ) = (f>
 and

 (D) - f(x)dG(x) = Gmy. (f)
 J [X] UUJ

 for f > 0 . The former is called the upper Darboux-Stieltjes integral and
 the latter the upper Lebesgue-Stieltjes integral of the nonnegative function

 f with respect to the nondecreasing function G .

 These are largely incomparable notions and the notation is meant
 to reflect that. However if G(x) = x (i. e. 3 as an interval function G = m)
 then we can introduce three classical upper integrals that are closesly
 related:

 ■b

 (V) - f(x)dx = V(fm3ü([a3b ])) (upper Darboux) 3
 ■'a

 lb
 (D) - f(x)dx = V(fm3D([a3b])) (upper Lebesgue ) 3 and

 'a

 lb
 CD*)- f(x)dx = V(fm3D*([a3b])) (upper dual).

 ■'a
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 Because of the relation D* è D -S U we have immediately
 for any nonnegative function f on [a/b] :

 lb 7b 7b
 (D*) f(x)dx š (D) f(x)dx ž (H) f(x)dx .
 'a >a ' a

 Note that only the middle integral } based on D , here permits all of the
 conclusions of Theorem 5. 2 to hold as U does not have local character

 and D* is not filtering down. It is not too difficult to see what the
 U and the D integral are doing ; the D* integral is rather more
 mysterious. The following might be conjectured and we leave it as a query:

 QUERY 5.4 Is it the case that for any nonnegative function f on [a, 2?]

 Jb 7b
 (D*) f(x) dx = sup { (D) ļ g(x)dx : g š / 3 g }a >a

 is upper semicontinuous} ?

 This seems likely since if f is measurable then the (D) and the (D*)
 upper integrals coincide.

 §6. The measure theory. For a fixed derivation basis B and a fixed

 interval-point function h the set function X -► V(h,B[X] ) defined for

 all subsets X c r serves as an outer measure. It is a direct generali-

 zation of the classical Peano-Jordan outer measure that was developed in

 the last two decades of the nineteenth century; in most cases of interest

 to us it is a genuine outer measure in the modern sense of that term

 (e.g. , Munroe [91 ] ) .

 DEFINITION 6.1 Let h be an interval-point function and B a derivation

 basis. Then for any set X c r we write

 hj^X) = V (h,B[Xj )

 and refer to the set function hg as the "outer measure" associated with
 h and B .
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 Modem notation requires countable subadditivity of outer

 measures and our first theorem shows that this is available under natural

 assumptions on the derivation basis. Without those assumptions the set

 function hg will still be called an outer measure but in quotations
 ("outer measure") to indicate that the deeper properties may not be true.

 Note that the use of the same terminology for the upper integral and the

 outer measure (hg(X) and hg(f)) is justified by the fact that the
 obvious equation

 hß(X) =

 is the traditional method of deriving a measure from an upper integral and

 in our case is provided by Definition 6.1 directly. Also in our setting

 there is a particularly nice relationship existing for the standard notion

 of product of function and measure; here that product is in fact a genuine

 product, viz.

 (fh)B(X) = hg(f xx> = V (fh/B [X] ) .

 THEOREM 6.2 [PROPERTIES OF THE "OUTER MEASURE"] Let hg be the "outer
 measure" associated with an interval-point function h and a derivation

 basis B . Then the following properties hold:

 6.2.1 0 S hgtX) < +« (X c R) ,

 6.2.2 hg(0) = 0 ,

 6.2.3 if X c Y then hg(X) < hgiY) ,
 6.2.4 ii! B is filtering down then

 hg(X U Y) s hg(X) + hg (Y) ,
 00

 6.2.5 if B has O- local character and X c U X then
 -

 n=l
 00

 hßiX) < I hjjOy ,
 n=l
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 6.2.6 i£ B is filtering down and separates the sets X and Y
 then

 hg(X UY) = hg(X) + hg(Y) ,

 6.2.7 if B is filtering down, has Q-local character , and is

 additive then for any increasing sequences of sets

 / U x' » li» h^) .
 ' n=l J n-*03

 PROOF . Each of the stated properties of the set function hg is just a
 restatement of an earlier proved property of the variation.

 THEOREM 6.3 [PROPERTIES OF THE OUTER MEASURE] Let hg be the outer
 measure associated with an interval-point function and a derivation basis

 B that is assumed to be of 0~local character. Then

 6.3.1 hg is a genuine outer measure,

 6-3.2 on the additional assumption that B is filtering down and

 is finer than the topology hg is a metric outer measure,

 6.3.3 on the additional assumption that B is filtering down and

 is additive then hg has the increasing sets property.

 PROOF. That hg is a true outer measure is merely the content of 6.2.2
 and 6.2.5. Under the additional assumptions on B in 6.3.2 we see that

 B separates any two sets X and Y that are topologically separated?
 thus by an elementary property of the variation we have

 V(h,B[X u Y]) = V (h ,B[X] ) + V (h,B [Y] )

 and this shows that hg is additive over topologically separated sets.

 By definition then (e.g. , Munroe [91, Ch. 2]) hg is a metric outer measure;
 this is equivalent we should recall to the fact that all Borei sets are

 hg-measurable. Finally, the increasing sets property has already been ex-
 pressed in the previous theorem.
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 THEOREM 6.4 Let A and B be derivation bases and h an interval-point

 function.

 6.4.1 if A < B then hA 5 hg ,

 6.4.2 if_ A = B then h^ = hg .

 PROOF. These are easy consequences of our elementary computations for the

 variation since if A 5 B (or A S B) then every section A[X] 5 B[X]

 (or A[X] = B[X] ) .

 THEOREM 6.5 Let B be a derivation basis that is filtering down. Then

 for any interval -point function h , hg* 5 hg .

 PROOF. From our results in Chapter Two, §8 we know that B* 5 B whenever

 B is filtering down and so this follows from the previous theorem.

 Note that in this theorem B may not have local character or

 0- local character so that hg might not be an outer measure, but hg* is
 in fact always an outer measure.

 THEOREM 6.6 [PRODUCT OF A POINT FUNCTION AND A MEASURE] Let B be a

 derivation basis that has 0- local character and suppose that f is a

 point function and h an interval-point function. Then the outer measures

 hg and have the following relations :

 6.6.1 (fh)g(X) = 0 if and only if f (x) =0 for hg- almost every
 point x in X ,

 6.6.2 if. hg i¿ q-finite on a set X then so too is > and
 6.6.3 hg vanishes on a set X then so too does •
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 PROOF. The first and last of these assertions are just translations into

 our present language of statements proved in §2 above for the variation.

 For the second assertion suppose that

 00

 X = U X
 i n n=l i

 where < +0° an<^ write

 X = {xix : I ' f (X) I 1 < m} . mn n ' 1

 Clearly fh^(X o mn ) = V(fh,B[X ]) < mV(h,BfX ]) < m h„(X ) < + » so that o mn mn mn J3 n

 (fh)g is also CT-finite on X as required.

 As an easy application of this lemma we can easily connect the

 vanishing of the upper integral hß(f) with the vanishing of the function f .

 COROLLARY 6.7 Let B be a derivation basis» let h be an interval-point
 function and f a point function. If B has a- local character then

 hg ( I f I ) = 0 if and only if f vanishes h^-almost everywhere on R . In
 general if B is not claimed to have 0-local character but is filtering

 down and ignores no point then one has at least that hgfļfļ) = 0 entails
 f (x) =0 h^*-almost everywhere.

 PROOF. The first part of the corollary follows directly from the theorem

 and is only a translation into the present language. The latter part uses

 only the fact that under these assumptions hg^dfļ) < h^ ( | f ļ ) and B*
 must have local character.

 EXAMPLE 6.8 (Classical measure theory) The standard interval function
 mil) = |J| that expresses the length of the interval I gives rise to
 "outer measures" and m relative to the two derivation bases U

 (the uniform basis ) and D (the ordinary basis) that play historically
 important roles. We define
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 ftìjj - Peano-Jordan "outer measure"

 - Lebesgue outer measure.

 Note the following properties. In particular the properties
 of will justify our calling it Lebesgue measure (we have throughout
 been using the notation ļ for the Lebesgue outer measure of X).

 (i) my is finitely subadditive s but in general not
 countably subadditive ;

 (ii) m p is a metric outer measure that has the increasing
 sets property ;

 (iii) for any set X c R t

 mrj(X) - inf {£ 'lj' : {l'} a finite sequence of
 internals covering X } ,

 and

 m^(X) = inf {E |l'| ; { J^} a sequence of intervals
 covering *} ;

 (iv) for bounded sets X 3 m^(X) - m^(X) if and only if
 the set X has measure zero (i.e. , (A' 'xļ = 0 );

 in particular then m ^ and m ^ agree on compact sets ;
 (V)

 The two measures are obviously closely related. This relation-

 ship can be exhibited in an unusual light as well: the study of the Riemann

 integral has a somewhat distressing feature to the beginning analysis student
 in that although the Peano-Jordan measure seems the most natural one in that

 setting a number of results can only be satisfactorily expressed by using
 Lebesgue measure which at first sight seems like an intruder. However t an

 investigation of U must lead to a. consideration of the duals U* and U** t
 « 0

 and since « U = D the Lebesgue measure m^ enters the scene naturally.
 Indeed one has - m^ and Lebesgue measure is unavoidable.
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 EXAMPLE 6.9 (Peano- Jordan measurahility ) The "outer measure" is
 defined on all subsets of R but is better behaved on a special subclass

 of sets that were isolated and studied by Jordan . We shall say that a

 bounded set E is PJ -measurable if it satisfies any of the following

 equivalent assertions:

 (1) m^(I) = "fyf! fi E) + m^ď'.E) for all intervals I ;

 (2) Xj£ is Riemann integrable on every interval I ;
 (3) the set of boundary points of E has (Lebesgue or

 equivalently Peano-Jordan) measure zero ;

 (4) for every e > 0 there is a ß € U so that

 Z(I,x) Ś tt[£] *Z(I',x') € tt[ì?'F] I1 n J'l < e
 for all partitions n and tt' of the same interval

 with both if and tt ' contained in 8 •

 It is now easy to show that is additive (finitely that is)
 on the class of P 'J -measurable setsļ this follows from any one of the four
 characterizations above but perhaps from (2) this is most transparent.

 EXAMPLE 6.10 (Lebesgue measurable sets) Parallel to the characterizations

 of the class of PJ-measurable sets is a similar characterization of the
 class of Lebesgue measurable sets. Each of the following is equivalent:

 (1) ^ ^ + for all intervals I ;

 (2) rr^iT) = m^T il E) + mD(T'E) for all sets T c R ;

 (3) XgW i£_ ^-integrable on every interval I ;

 (4) there are open sets G 1 and G0 ¿ with ' m-XG- il G J 1 ¿ ' DJ 2

 arbitrarily small and G. ? E and ' G o R X E ;
 J. '

 (5) for every e > 0 there is a ß ( D so that

 Z(I,x) <E tt [5] l(I',x') € tt[ä E] I1 n < E
 for all partitions ir and tt ' of the same interval
 with it j it' c ß .
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 QUERY 6.11 For O < p 5 1 let nP denote the interval function

 I + ļl|p = rrP(I) .

 Then the measure rrp ^ evidently is related to the classical Hausdorff
 p- dimensional measure . More generally if h is a monotonically in-
 creasing function on [0,°°) 3h(0) - 0 t then h°m denotes the function

 I -»■ h(m(I)) = h('l') and (h°m)^ again represents a measure on H
 that should be related to similar ideas in the theory of Hausdorff
 measures. What is the exact relation here?

 EXAMPLE 6.12 (The Stielt jes measures) For any additive interval function

 F the measures F ^ and provide an expression of the total variation
 of the function F . This will be discussed in greater detail in §0 below.
 Here we point out some simple computations for these measures.

 (i) F^ and F are metric outer measures 3

 (U) Fd, Í Fd ,
 (iii) for any point x ,

 .FpYix},) = lim sup 'F(x+h) - F(x)' + lim sup 'F(x) - F(x-h) ļ
 h -*■ O + h -> O +

 and

 = min {lim inf 'F(x+h) - F(x) ' s lim inf ' F(x) - F(x-h)' )
 h -> 0 + h -+0+

 (iv) for G - U (a.yb.) open ,
 Is

 Fd(G) = Z Var(Fj (aļ3bļ)) .

 §7. The measure theory (continued) . Measure theory plays a number of

 important roles in analysis. For our purposes we can outline these roles

 as resting within three categories: (i) it provides relative to a given

 outer measure, ļl say, a class of ļj-measure zero sets that may serve as

 the exceptional sets for a certain class of theorems? (ii) it provides a
 class of finite and 0-finite measure sets and so a way of categorizing
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 certain objects as being not too large; and (iii) it provides a theory

 of integration. Our largest concern is with the first two of these ap-

 plications of measure theory; sets of measure zero relative to an outer

 measure hg provide the numerous exceptional sets needed in both the

 differentiation and the integration theory below. Outer measures hg
 that are finite or G-finite on a set X provide an expression of some

 familiar variational concepts (e.g. , VB, VBG*) that are frequent tools
 in analysis.

 But associated with any outer measure hg that arises in
 our setting would be a corresponding measure-theoretic integration theory

 that we will have no particular use for. We have an upper integral and

 also a Riemann-type integral to hand in most of our applications and no

 need for a measure- theoretic integral. Since the connections will not be

 immediately apparent we shall in this section show the relationship that

 exists between our upper integral and the measure- theoretic integral

 f (x)dhg(x)

 that a measure theorist would generate from hg as an outer measure.

 Throughout this section let us suppose that B is a derivation

 basis that has 0- local character and is filtering down; some of the results

 can do with less but this setting simplifies matters. For any interval-

 point function h then the set function hg is a true outer measure and
 we can construct a measure- theoretic integral as follows:

 (i) a nonnegative point function g is said to be

 h^- elementary if it is hg-measurable and countably
 valued , i.e. , if

 (*) g(t) = E a. x(E- /t)
 1 X

 for a sequence {a^} of positive numbers and a
 sequence ÍE^} of hg-measurable sets (which can
 be taken as disjoint) ;
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 (ii) for g that is h^-elementary we write

 /gdhB = 1 c e R C Vg~1({c))}

 or, using the expression (*) above,

 /gdhg = Z aihß(Ei) .

 (iii) for any nonnegative point function f we v/rite

 /fdhg = inf { /gdhjj : g ì £, g is h^-elementary} .

 We do not pause to give the traditional justifications of the

 above definitions but proceed immediately to show how this measure theoretic

 upper integral based on the outer measure h^ relates to our hg- upper
 integral .

 LEMMA 7 . 1 Let the derivation basis B be filtering down and suppose

 that h is an interval-point function and E^ , a pair of disjoint
 sets. Then if E^ i£ h^-measurable , and c^ , c^ are positive real
 numbers ,

 ^^1^ + °2XE2) = °lhB(El) + C2hB(E2) '

 PROOF. By elementary arguments of measure theory we have that

 hgíE^ U E^) = hg(E^) + hgťE^) • Given e > 0 choose an element ß € B
 so that

 5 hB(E1) + e/2 ,

 V(h,ß[E2]) 5 hgtE^ + e/2 , and

 V((c1x(E1) + c2x(E2)h,S) < hgCc^ÌEj^) + c2x(e2)) + e .

 Since B is filtering down we may choose ß in such a way that all three

 inequalities hold.
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 We may select a partition TT c ß [e^ U E^] so that

 £(I.X) Í 1. lhU'X)l - VE1 u V - tn - VE1> + W - £/2 •

 This requires

 Z(I,x) € TTtEj^l lh(I'x)! = ZTr N1'*)! - Z1T [E23 h(I'x)

 > h^) + hgtE^ - e/2 - {^(E^ + e/2 }

 > Ve!) - e .

 An identical computation would yield

 £(I,x) € ir[E2] lh(I'x)l - hB(E2) " e *

 Now using this partition TT and the above estimates we obtain

 VUCjXtE^ + c2x(E2))h,ß) > S(IřX) ç Tf (^(E^x) + c2x(E2,x)) |h(I,x) |

 s °2 z nej |fctI'x>l + c2 1 hie2)

 > ^ hgíEj) + c^Ej) - (c1 + Oj) e .

 This inequality evidently holds for all ß € B and so, since e > 0 is

 arbitrary we have established the inequality

 hB(clX(El) + c2X(K2)) - clhB(El) + C2hB(E2) *

 The opposite inequality is available for derivation bases that are filtering
 down from our elementary theory and so the lemma is proved.
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 LEMMA 7.2 Let the derivation basis B be filtering down, let h be

 an interval-point function, let be a sequence of disjoint hg-
 ineasurable sets and a sequence of positive numbers. Then

 hB<£.n =A.' - s." "iW •
 i=n i i=n

 If further B has a- local character and g is defined, where

 g(t) = E c X(E. ,t)
 n=l 1 1

 then

 " 1 nil °i hB(Ei' '

 n

 PROOF. For fixed n write = ^ • Then for the first

 part of the lemma we wish to prove that

 W * £ i"i ^«i1 •
 We already know this for n=l and n=2. For n Ì 3 and a given e > 0

 we can use the fact that B is filtering down to select a ß € B so that

 each of the following inequalities holds;

 V(gnh,ß) 5 hgíg) + e ,
 and

 V(h,ß[ U E.]) 5 h„( U E.) + e/2 for m=l,2, - ,n .
 i^m 1 a if*m 1

 n

 There must be in 3 [ U E.] a partition 7r so that
 i=l 1

 £(I,x) i w l"11-"'1 ï V j, V - E/2-
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 Putting these together, and remembering that the {e^} are disjoint and

 hg-measurable , we obtain for any m<=l,2, . . . ,n the following estimate:

 1 irFE ] lh(I'x)l - ETr " Z irr U El ¡h(I'x)l
 m i=m i

 Ł E i-1 VEi> - e/2 - « i/n, VEi> + Ē'2)

 ' VV - E •

 Now using this partition ïï and the above estimates we obtain

 W + e 1 V<9nh'6) ; fit '„<*> ihlI'x)l

 - Z i»l £ u (Ei) ci I h 41 I - £ !•! 'clhBtEi) " °i e' •

 Since the e here is an arbitrary positive number we have

 proved the inequality

 W * si"i =iW •

 As B is filtering down the opposite inequality holds as well and thus we
 have proved the first part of our lemma.

 Turning now to the second part and noting that g > g we
 n

 have immediately that

 hgia) - VV = Z¿1 ciVEi>

 for all n . Also using the fundamental lemma of the variation theory,
 since now B is taken to have cr-local character, we obtain

 hjj(g) = V(gh,B) = V(gh,B[ /^EJ) E V (gh,B[Ei] ) = Z £ cihB(E < } •
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 This proves that for all n ,

 ciVEi> - V*> - Eill cihB<Ei>

 and now the lemma follows.

 We may now prove our main theorem.

 THEOREM 7.3 Let the derivation basis B be filtering down and have

 O-local character, and let h be an interval- point function. Then

 7.3.1 for any nonnegative point function f ,

 hg(f) < /fdhg ,

 7.3.2 for any nonnegative, bounded h^-measurable point function f ,

 hg(f) = /fdhjj ,

 7.3.3 assuming in addition that B is additive, for any nonnegative

 hjj-measurable point function f ,

 hgif) = /fdhg .

 PROOF. For the first part observe that if there is no hg-elementary
 function g exceeding f then = +» so there is nothing to

 prove; if there is such a function gif then

 hg(f) 5 hg(g) = /gdhg

 and, since this holds for all such functions g , again the inequality

 must hold.

 For (.2), with f both bounded and h^-measurable let r > 1
 and suppose f(x) < M for all x . Write

 E^ = (x ( R : Mr n 5 f (x) < Mr n+"'"}

 and define
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 g(t) = Mr~n41 (En,t) .

 By our assumptions on f g is hg-elementary and f Í g 5 rf everywhere.
 Thus = ^or r > 1 • From this assertion

 (.2) easily follows.

 Finally, assertion (.3) just uses the monotone convergence

 property of the variation (§3 above) , which is available for additive deri-

 vation bases, in the traditional way to extend from bounded hg-measurable
 functions to unbounded ones. (Mote here that the additivity assumption is

 used only to assure that all the functions gh that appear have the prop-

 erty H and thus permit the fundamental lemma of the variation to be applied.

 This also would hold under weaker assumptions.)

 EXAMPLE 7.4 (The Lebesgue upper integral) Using the basis D that
 expresses ordinary derivation we have defined

 I ÍX^f(x)dx = V(fm,D[X])

 for any nonnegative function f and have referred to this as the Lebesgue
 upper integral (see §5 above). By Theorem 7.3 we see now that this is

 indeed the same integral as would be generated by using the Lebesgue outer

 measure m^ . This same observation applies to Stielt jes versions of these
 integrals in the obvious way.

 Note in particular that the Riemann^-type integral generated by
 D can be expressed also as a measure-theoretic integral at least for non-
 negative functions: thus for any interval-point function h Ł 0 and any
 point function f ž 0 if fh is D-integrable on an interval then

 f d) fdh = V(fh,D(I)) = ff<tyh I where ^ I

 is the outer measure

 * h,I(X) = v(h*V(I)lX]) •
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 §8. Generalized continuity: B-continuous functions. There are numerous

 problems in real analysis that can be expressed in terns of the variation

 relative to some derivation basis. Thus many generalizations of continuity

 (uniform continuity, right or left continuity, approximate continuity, pre-

 ponderant continuity, selective continuity, symmetric continuity, etc. ) can

 be expressed by a single definition and studied systematically. In this

 section we introduce the notion of a B-continuous function relative to a

 derivation basis B as well as the more restrictive notions of B-null and

 B-locally constant.

 DEFINITION 8.1 Let B be a derivation basis and h an interval-point

 function. Then

 8.1.1 h is said to be B-continuous at a point x if for

 e > 0 there is a ß € B with V(h,8[{x}]) < £ ;

 8.1.2 h is said to be B-continuous if for every e > 0 there

 is a P ( B with V(h,ß[{x}]) < e for all x ;

 8.1.3 h is said to be B-null if V(h,B) = 0 ;

 8.1.4 h is said to be B-locally constant if there is a

 ß € B such that h(I,x) = 0 for all (I,x) € ß .

 We shall be interested in applying these concepts mainly for

 functions h of the form Af, i.e. , for additive interval functions,

 although the definitions are useful in general. Note that the concepts

 increase in generality: a B-locally constant function is necessarily

 B-null, a B-null function is necessarily B-continuous, and a B-continuous

 function must be B-continuous at each point. It is also easy to find

 examples to show that each of the four definitions is distinct.

 Note that for additive interval functions F some connections

 are clear: if B has the partitioning property then only the zero function

 F can be B-null or B-locally constant; the notion of B-continuous or point-

 wise B-continuous is clearly related to familiar generalizations of continuity.

 In particular our next theorem and the examples that follow it should clarify
 these latter two concepts.
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 THEOREM 8.2 Let h be an interval-point function and B a derivation

 basis. Then the following are true;

 8.2.1 _if h is B-continuous then h is B-continuous at every point,

 8.2.2 řf h _i£ B-continuous at every point and B has local

 character then h ijs B-continuous ,

 8.2.3 jLf h is a continuous additive interval function and B is

 finer than the topology and straddled then h i¿ B-continuous
 at each point.

 PROOF. The first two of these are obvious. For the third, if h is a

 continuous additive interval function then at any point x and for any

 e > 0 there is a 6 > 0 so that |h([y,z])ļ < e/2 if
 x-<S<y5x5z<x + ô . Using the open set G = (x-ô,x+6) and the

 fact that B is finer than the topology there must be a ß € B with

 ß [ ix}] c ß(G) . Since for any (I,x) € ß we have ļ h (I) | < e/2 and
 since B is straddled this gives

 V(h,ß[{x}]) < E .

 This proves that h is B-continuous at x as required.

 EXAMPLE 8.3 (Uniform continuity) If U denotes the uniform derivation
 basis then a function F is U-oontinuous if and only if F is uniformly
 continuous. Since U does not have local character it is not trae that

 U-continuity at each point is sufficient to ensure U-continuity .

 EXAMPLE 8.4 (Ordinary continuity) If D denotes the ordinary derivation
 basis then it is clear that D-continuity is merely equivalent to pointwise
 continuity in the usual sense.
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 EXAMPLE 8.5 (Sharp continuity) For the sharp derivation basis iß the
 notion of vft-continuity lias an unusual aspect which is a reflection of
 the fact that ïfl is not straddled. A function F is ifl-continuous at
 a point X if and only if F is continuous and of bounded variation in

 some interval containing x .

 We prove here two theorems which relate some integrability

 and derivability results to the notion of B-continuity. These are just

 general versions of familiar results for integrals and derivatives.

 THEOREM 8.6 [CONTINUITY OF THE INTEGRAL] Let the derivation basis B

 be filtering down and have the partitioning property and suppose that

 *

 F (I) = (I) fdh (I c J)

 where f is a point function and 'n an interval-point function for

 which fh is integrable on an interval J relative to B . Then F - f h

 is B ( J) -continuous . In particular if h i£ B (J) -continuous at a point
 then so too is F .

 PROOF. In fact, by the fundamental lemma of the integration theory

 (§4 above), we have V(F - f h , B(J)) = 0 which is stronger than our
 assertion here.

 THEOREM 8.7 Let B be a derivation basis that is filtering down and

 let h and k be interval-point functions such that k is; B-continuous

 at a point x . Then if both h^ (x) and h^ (x) are finite, h
 must also be B-continuous at x .

 PROOF. Using a fixed point x there must be a positive number M so

 that for some (3^, in B we have
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 h(I,x)/k(I,x) < M for (I,x) £ ß^
 and

 h(I,x)/k(I,x) > -M for (I,x) € ß2 ,

 remembering of course to interpret 0/0 as 0 . Since B is filtering

 down there is a ß_ in B with ß c ß (ļ ß . This gives
 «3 J i ¿

 |h(I,x)ļ S M|k(I,x)ļ

 for all (I/X) € ß^ and herice for all ß € B ,

 V(h,B[{x}]) < V(hfß3 fi ß[{x}]) < M V(k,ß [{x}] )

 so that in fact V(h,B[{x}]) £ M V(k,B[{x}J) and the result follows.

 In the spirit of the last two results we can also show that

 B-continuity is closed under a natural limit operation involving the
 variation.

 LEMMA 8.8 Let the derivation basis B be filtering down and let

 h,h #ho/h , . . . - be interval- point functions such that each h is
 x z - -

 B-continuous and so that lim V(h - h,B) = 0 . Then h too is

 B- con t inuous .

 PROOF. Given e > 0 choose N so large that V(h - h,B) < e/3
 N

 and choose a ßL € B so that

 Vd^-h.ß^ < V(hN~h,B) + e/6 < e/2 .

 Take ß2 6 B so that V(hN, B2 fix} ] ) < e/2 at each x . Now if ß3 € B
 is chosen so that ß3 c ßL Pi ß2 then it is easy to see that

 v(h,ß3[{x}]) 5 v(hN-hfß1) + v(hN,ß2[{x}]) < £

 as required.
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 The first of our main theorems in this section gives a condition

 under which a function that is B-continuous will be in the first class of

 Baire. This theorem generalizes a number of classical results for approxi-

 mately continuous functions, preponderantly continuous functions, selectively

 continuous functions, and others. The condition we need is just a more de-

 tailed version of the closed Y-decomposition property but one which is enjoyed

 by all of the examples we have so far shown have the weaker version of that

 property.

 DEFINITION 8.9 A derivation basis B is said to have Y -decomposition Ł
 m

 property or the closed Y^-decomposition property where m = 2,3,..; provided
 it has the corresponding Y-decomposition property as expressed in Definition

 7o4 of Chapter Two but with the additional hypothesis that the partition that

 is required to exist there contain no more than m elements.

 THEOREM 8.10 Let B be a derivation basis that has the closed Y -decomposi- c
 tion property for some integer m . Then if F is a real function on R

 that is B-continuous, F is in the first class of Baire.

 PROOF. To show that F is Baire 1 we obtain a contradiction by a standard

 device: if F is not Baire 1 then there must exist a perfect set Q such

 that the oscillation of F restricted to Q exceeds some positive number

 e at each of its points. Choose an element ß Ç B so that

 I F (I) I < £/3m for all (I,x) €ß

 (this just uses the definition of B-continuity) and choose a decomposition

 {Qn} of Q corresponding to this choice of ß € B as in Definition 8.9.
 By Baire' s theorem one of these sets, say , is dense in a portion of

 Q , say Q fl [c,d] .
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 We obtain a contradiction by showing that the oscillation of

 F on this portion does not exceed e and the proof is complete. To this

 end observe that for any points x and y in Q. (x < y) there is in ß
 K

 a partition ir of the interval [x,y] and card (ir) £ m . Thus

 |f (y) - F (x) I 5 E |f(I) I < E/3 .

 If x and y are now arbitrary points in 3 Q il [c,d] then there

 must be points x' and y' in that are sufficiently close to

 x and y respectively so that again there are partitions from ß with

 no more than m elements of each of the intervals [x,x'] (or [x* ,x] ,

 and [y,y'3 (or Ly'/y])). This gives again, as before

 |f(x) - f(x') I < e/3 and ¡F(y) - F(y') | < e/3 .

 But we already have |f(x') - F (y') | < e/3 and thus putting these three
 together in the obvious way yields |f(x) - F(y) | < e/3 , which inequality
 holds everywhere in this portion of Q . Since this is the desired contra-

 diction the proof is complete.

 THEOREM 8 . 11 Let B be a derivation basis that is endpoint tagged and

 has the partitioning property . Then any B-continuous function has the

 Darboux property.

 PROOF. Suppose that F never assumes the value c , and define P to

 be the collection of intervals [a,b] for which (F(a) - c) (F(b) - c > 0 .

 If [a,bl , [b , b 1 ] are abutting intervals in P then [a, b'] is in P
 since

 { (F (a) - c) (F(b) - c)} { (F (b) - c) (F(b') - c} = (F(a) - c) (F(b') - c) (F(b) -c)2.
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 Since F does not assume the value c at any point x we

 can write e = |f(x) - c ļ > 0 and then there is an element ß € B
 so that if ( [x,y] ,x) or ([y,x],x) is in ß then

 ¡ F (y) - F (x) I < e/2

 which means that ļ F (y) - cļ > |f(x) - c | - -■ > 0 ; in particular
 F (x) - c) (F(y) - c) > 0 for every ( [x,y] ,x) or (Iy,x],x) in ß .

 From the partitioning property it now follows that F includes every

 interval so that (F(a) - c) (F(b) - c) > 0 always. Since this is just

 an interpretation of the Darboux property (i.e. , if F (a) < c < F(b)

 or F(b) < c < F (a) then F assumes the value c in that interval)

 the theorem is proved.

 THEOREM 8.12 Let N be a natural derivation basis that satisfies the

 intersection condition. Then any N-continuous function is in the first

 class of Baire . If in addition N is not onesided (i.e., for no x

 does [x,+ 0£>) or_ (- °°, x] belong to N(x)) then such a function is
 also Darboux.

 PROOF. This is just an application of the previous two theorems for if

 N satisfies the intersection condition then we have seen (Chapter Two,

 section 8) that a Y-decomposition and a closed Y-decomposition aire avail-

 able; in fact, checking the size of the partitions that are used there we

 see that a closed Y^-decomposition has been obtained. For the Darboux
 property we need only recall that the non-onesided assumption together

 with the intersection condition proves the partitioning property.

 We shall not give the details but any one of our intersections

 conditions from Chapter Two, §9 can be used to supply that B-continuous

 functions are Baire 1, and then again a non-onesided assumption carries

 this to Darboux Baire 1.
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 EXAMPLE 8.13 (Approximately continuous functions are Darboux Baire 1)

 If A denotes the approximate derivation basis then a function F is

 approximately continuous if and only if it is A- continuous . We have

 already seen earlier (Chapter One, that the basis A has the parti-
 tioning property anã that it has the decomposition property of Theorem
 8.10 (in fact with N=6 } so that it follows from our results that ap-
 proximately continuous functions are necessarily Darboux Baire 1. (This
 same observation applies to functions that are preponderantly continuous. )

 EXAMPLE 8.14 (Unilaterally continuous functions are Baire 1) The decompo-
 sition property of Theorem 8.10 holds for the bases RD and ID that ex-

 press onesided derivation . The corresponding continuity for these bases is
 ģust a unilateral assertion of ordinary continuity ; consequently unilater-
 ally continuous functions are (of course) Baire 1. It is easy to see that
 such functions need not have the Darboux property and this is reflected in
 the fact that neither basis RD nor LD has the partitioning property
 (in the language of Theorem 8.12 each is in fact a onesided natural basis).

 EXAMPLE 8.15 (Selectively continuous functions are Darboux Baire 1)
 O'Malley [95] has proved that a function continuous in the selective sense

 must be Darboux Baire 1 and , indeed , it is a Theorem of Neugebauer [94]
 that this notion can cìiaracterize the class of Darboux Baire 1 functions.
 In our setting these properties follow from Theorems 8.10 and 8.11.

 EXAMPLE 8.16 (B- locally constant /&-null/B- continuous) For any derivation
 basis the classes of functions that are B- locally constant, B-null or B-

 continuous are of some considerable interest and it is worth investing some
 time to discover characterizations of the classes. In the table below we

 shall* exhibit some of these classes .* an asterisk ( * ) entry indicates that
 there is further discussion below, while an entry (?) indicates that we do
 not know of an appropriate characterization of the class of functions
 indicated.
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 TABLE 8.17.1

 DERIVATION B -LOCALLY

 BASIS B CONSTANT (1) B-NULL (2) B-CONTINUOUS (Z)

 (1) T

 the trivial all functions all functions all functions
 basis

 (2) ü_
 the uniform constant constant uniformly
 basis functions functions continuous

 (2) D
 the ordinary constant constant continuous
 basis functions functions functions

 (4) A

 the approximate constant constant approximately
 basis functions functions continuous

 (5) Dm
 sections of continuous
 the ordinary ' ' at each x i X
 basis

 (6) RD

 the right Dini ^ ' (9. " right derivation ' (9. " continuous
 basis

 (7) D* (*) each
 the dual of locally f-*((ctd)) is
 the basis D recurrent ' dense in itself

 (8) S # (*)
 the symmetric # locally symmetrically
 derivation basis symmetric ' continuous

 (9) AS

 the approximate /r} ^ J approximately symmetric deri- 1 /r} ^ J summe trically
 vation basis continuous (?)

 (

 (10) Q
 the qualitative constant | constant continuous
 derivation basis
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 The entries (2,1), (2,2), Í '3,1), (3,2), (431), (4,2), (10,1),

 and (10,2) avise from the fact that the derivation bases given Inave the

 partitioning property. We should elaborate on the type of problem in-
 tended for row (5) that uses the sections D[JH of D . Let Q denote

 a family of (presumably large) sets, such as for example sets whose comple-
 ments ai'e countable (or of measure zero, or first category, or o-porous)
 and then the problem is to characterize the class of functions f for
 which there is some 0 € S for which f is D[0] - locally constant (or
 D [0] -null) ,

 The entry (6,1) defines functions f with the property that
 for any x € R there is a 6(x) > 0 so that f(y) =• f(x) for all
 y i t x,x + 6(x)) (right locally constant functions). One can show that

 for any right locally constant function f there must be a countable
 closed set C such that for every interval (a,b) complementary to C ,
 f is constant on [a,b) .

 The entry (7,1) defines functions f that are locally recurrent,
 name ly for each x € E and every e > 0 there is at least one point
 y ^ (x-z , x+c) distinct from x for which f(y) - f(x) . This terminology

 V

 has been used by a number of authors (e.g., Marcus [82 }, Salát [106 J ,

 Engquist [27], Bush [17] and Benson [4]^. Using the basis FD* which is
 the dual of rd one would have the corresponding idea of right locally re-
 current. More interesting is to study the problem of characterizing the
 class of functions that are D*[J] or RD*[Z] locally constant for X
 in various classes of sets (as above say). For this perhaps a better view-
 point is to look at the level structure of the functions and to express the
 problems in this language.

 The entries in row (8) are of some interest. A function f is
 locally symmetric if for every x € E there is a 6 (x) > 0 so that

 f(x-t-h) = f(x-h) for all 0 < h < 5 (x) . One can prove that for a locally
 symmetric functi-on f there is a countable closed set C such that f
 is constant on the complement of C . (This and related concerns can be
 found in Davies [23], Ecran [31], Euzza [104}, and Thomson [115] J
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 A function f is said to be symmetrically continuous if

 f(x+h) - f(x-h) 0 as h Q . The problem of determining the structure

 of such functions was posed by Hausdorff [38] and has been studied by a
 number of authors, (See, e. g. 3 Fvied [33] ^ Marcus [81] , Ponomarev [101],
 and Preiss [103 J.

 Finally , let us mention œiother direction that these concepts

 might lead to. Following Heindl and Kohler [40] we say the function f

 is locally increasing if for every x € R there is a 5(x) > 0 so that

 f(y) é f(x) ž f(z) for all x-6(x) < y S x g z < x+b(x) . It is clear

 that in our language such a function has the property that the interval

 function àf, the negative part of A/ s is D-lccally constant. Since
 D has the partitioning property it is imnediate that A f must vanish

 and so f is in fact increasing (in the loose sense). Of course this

 is elementary and not very interesting, but it does suggest a number of
 variants on this theme that could be put' sued.

 One such variant has been given by Omstein [98], His theorem

 can be rewritten in our language as follows: if F is approximately con-

 tinuous and A F~ is_ ¥h.^~locaViy constant then F is nondecreasing. Here
 the derivation basis for 0 5- p < 1 is a right hand basis using sets
 of density exceeding p on the right.

 §9 . The total variation of a function. Given a real function F on R

 and a set X c r there are a number of ways of constructing a measure

 u so that u (X) in some way reflects the variation of the function
 F F

 F on the set X . The most familiar of these would seem to be to take

 y (x) = lim y ín) (X) where
 F F

 u (n) (X) = inf { Z ¡F(b. ) ~ F(a. i' ) ļ : U [a. ,b. ] ^ X , b. - a. < - } . F i i' i l , lin

 This construction is due to Carathéodory and is popularly known as "Munroe's

 Method l'I" after Munroe [91] . This method has the advantage of producing

 a metric outer measure for any function F (and indeed one could replace
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 ¡F(b^) -F(a{)ļ by ļh([a^,b^])ļ where h is any interval function and
 the resulting measure still has these desirable properties) . For functions

 F of bounded variation the measure Up does indeed carry the variational
 information of F ; but for general F the method 1ms serious disadvantages.

 Ellis and Burry [16] have given an example of a continuous function F on

 the interval [0,1] for which u ([0,1]) = 0 and Bruckner [9 ] has shown
 F

 that, such behaviour is "typical" of continuous functions ("typical" in the

 familiar sense of Bruckner [10, Ch. XIII]). For the purposes of discussing

 total variation then these measures are of limited use beyond the case where
 F has bounded variation.

 In the present theory the most natural candidate for a total

 variation measure is the "outer measure" F_ associated with a derivation
 ¿3

 basis B . The choice of B would be dictated by the intended application

 and so a variety of total variation measures are available. In particular

 the measures F^ and F^ associated with the uniform and the ordinary
 derivation bases respectively are very useful. It is immediately clear

 that the finiteness of these measures should have some relation to the

 boundedness of the variation of F . Henstock pointed out some time ago

 that the concepts of VBG* and ACG* that play such an important role in

 certain investigations in integration and differentiation can be expressed

 directly in terms of the measures F^ . (See Henstock [50, pp. 56-69] and
 the more recent paper Henstock [60 ] . )

 In this section we begin an investigation of the measures F_
 B

 for F an additive interval function using the point of view that these

 measures provide variational information about F . In any study there will

 be in fact two measures Fß and Fp* where B* is the dual basis for B
 and the pair of measures together describes the total variation of F in a

 useful manner.

 Our first results connect the finiteness of the measures with

 more classical variational concepts.
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 THEOREM 9.1 Let E be a derivation basis and F an additive interval

 function .

 9.1.1 if F has bounded variation then is finite,

 9.1.2 conversely , assuming B has the partitioning property,

 if F„ is finite F has bounded variation on R,
 „ £

 9.1.3 if_ B is finer than the topology and B has the
 partitioning property then < + 00 for an open

 set G if and only if F has bounded variation on G .

 PROOF. If F has bounded variation, say v(F,R) < + 00 then for any

 ß € B we certainly have V(F,ß) 5 v(F,R) < + 00 so that F^ is finite.
 In the other direction if ß € B contains a partition of each of a finite

 sequence nonoverlapping intervals then

 £ i F(J±) I 5 V(F,ß) .

 Thus, for 9.1.2, if F is finite there is a ß € B for which V(F,ß) < +°°

 and from the above observation we see that if B has the partitioning property

 v(F,R) < V (F, ß) < +«>

 and F has bounded variation on R . Similarly the final assertion is

 obtained by using the fact that B[G] S B(G) for a B that is finer than

 the topology and that B[G] permits partitions of every subinterval of G ,
 if B itself has the partitioning property.

 THEOREM 9.2 Let B be a derivation basis, F an additive interval function,

 and suppose that FgOO < +00 for a set X c r :
 9.2.1 then if B has the Y-decomposition property, F is_ VBG

 on X , and

 9.2.2 if B has the closed Y-decomposition property and X is

 closed , F is [VBG] on X ,
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 The square bracket notation [V3G] indicates that the sequence

 of sets on which the function may be taken as VB can be chosen in such a

 way as to be closed. Similarly [ACG] may be defined. Recall that because

 of Saks [ , p. 2291 the notion [VBG*] would be merely equivalent with

 VB G* . Note that in this theorem we have not asserted the fact that F

 must be VB on X if < + » . also we see that under the assumption

 of 9.2.1 if Fg is o-finite on a set X then F must be VBG on X .

 PROOF e If < +» then there is an element ß Ç B[X] with

 V(F,ß) < + 00 and hence, using the Y -decomposition property , we may choose

 a decomposition of X into a sequence such that ß[X ] partitions

 every interval [x,y] with x,y € x^ : let ^ sequence of non-
 overlapping intervals with endpoints in X^ . Then | F ( J±) I - VtFjßiJ^)
 because B(J,) contains a partition of J. and so
 1 1

 I ¡FÍX) I 5 E V(F,ß(J )) 5 V(F,ß) < +0»

 which asserts that F is VB on each set X . This exhibits F as VBG
 00 n

 on X = U X as required.
 n=l

 For the second part of the theorem suppose that X is closed

 and that has been chosen so as to supply a closed Y- decomposition of

 X. Let = [a^,b^] (i=l ,2 , . . . ,n) be a sequence of intervals with end-
 points in X^ , such that no two of these intervals are abutting. Then
 there are disjoint open intervals {k^} so that ^ J and we can treat

 each Ji in the following manner: choose x±/yi € Xm ft sufficiently
 close to a ,b. respectively so that 3[x ] partitions each of the intervals

 •*- m

 I Vi1 ^or (or [y^/b^]) and ; this is pos-
 sible because of the nature of the decomposition. This gives
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 ¡F(J.) i « ¡F(b ) - F(ai)ļ g ļF(xi) - F(ai)l + ¡F (y±) - F(xi> ļ

 + |f {l>i) -F(yi) ļ

 S 3 V (F , ß (K^) )
 and so

 E I F(J±) I S 3 V(F,ß[Xm]) š 3 V (F, ß [X] ) < + 00 .

 From this inequality we can conclude that F is VB on each X^ and so
 [VBG] on X as required.

 EXAMPLE 9.3 ( Characterization of the class VBG*) . Using the ordinary

 derivation basis D the outer measures carry a great deal of varia-
 tional information about the function F . Certainly because of Theorem
 9.1 we know that the finiteness of on any interval [ a3b] would re-

 quire F to be of bounded variation there. More generally we can even
 characterize the class VBG * . We will restrict attention just to continuous

 functions on an interval [a,b] > although more general formulations are
 possible: the following assertions are equivalent for a continuous function
 F on an interval [a, 2?] and for X c (a,b) :

 (1) F is_ VBG Á oņ X,

 (2) [HEN STOCK] is a~ finite on X ,

 (3) [WARD] there is a continuous increasing function G on_

 [. a3b ] so that D F^(x) and D F^(x) are finite at each '

 point of X y

 (4) there is an increasing sequence of sets i^n) with X = U X ^
 and a sequence of continuous functions °f bounded

 variation on [a,ł>] so that

 V(F-G , DU I = 0 ¿ for all n .
 n , n ¿
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 QUERY 9.3.1 The class of continuous functions that are VBGA can be
 topologized in a way similar to the usual topologization of the class
 of continuous functions of bounded variation; for the latter class one

 simply takes the norm ||F|| = V(FjD) . If CVBGĄ denotes the linear
 space of all continuous additive interval functions that are VBGA then

 write CVBGĄ({E^i) } where {2?^} is an expanding sequence of closed sets
 covering the real lines for those F for which ) < for ea°h

 n ana topologize CVBG^dE^} ) with the collection of seminorms {p^}
 where pn (F) = F^(E^) . Finally then the space CVBGÁ is just the union
 of the spaces CVBG ¿({E^} ) over all such sequences {£^} and it can be
 topologized in the familiar manner.

 Can this construction be used to give any insight into the
 nature of VBG¿ functions? In particular can the type of questions
 addressed by Garg [34] for the Banach space of functions of bounded vari-
 ation be carried over to this setting?

 Our next lemma is due to Henstock [55] and is a key tool in

 the study of these total variation measures . It represents one of the main

 consequences of the additivity assumption on a derivation basis and is ,

 perhaps, the reason that in Henstock' s abstract versions of this theory he
 has incorporated the additivity assumption into his definition of a

 "division space".

 LEMMA 9.4 [HENSTOCK] Let B be a derivation basis that is additive,
 filtering down, and has the partitioning property and suppose that h is
 a nonnegative subadditive interval function, if the function H defined

 bY H(l) - V(h,B(I) ) (X Ç 1^) is finite then H is an additive interval
 function and

 V(H - h ,B(I) ) = 0

 for all I € I . If moreover B is assumed to have O- local character
 and to be finer them the topology then

 V(H - h,B) = 0
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 and consequently Fg = hg . On the further and final assumption that
 B ignores no point, Fg* = hg* .

 PROOF. For a fixed interval I and an e > 0 there must be a partition

 it. of I for which
 0

 n

 H (1) = V (h,B(I) ) 5 Z h(I.) + e
 i-1 1

 where we have written

 ÏÏq = {(I^x ) : i=l,2,...,n} .

 Using the fact that B is additive and filtering down we may choose a

 ß £ B(I) that splits at each 1^ , i.e. , so that
 n

 ß c U ß(I.) .
 i=l 1

 Let ir c ß be any partition of I ; from the subadditivity of h we have

 n n

 H (I) - £ < Z h (I. ) S Z Z. . h(J) = h (J) .
 . , i . . (J,x) € tt(I. ) . J,x) € TT i=l . , i=l . . i

 By our elementary computations for the variation we know, since B is

 additive, that H is an additive interval function and that H exceeds

 h : hence for any partition tt c ß , which we may always take to be a

 partition of I , we will have

 L ' € C -rr TT 1 I H (J) - h(J) 1=2. 1 (u x) i TT H(J) - h(J) » H (I) - E TT h ( J) < e . (J,X) ' C € -rr TT 1 1 (u , x) i TT TT

 Thus V (H-h, ß) < e and so V(H-h,B(I)) < e . Since e > 0 and I are

 arbitrary we have proved the first part of the lemma.
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 For the second part recall from §2 above that if B is of

 O-local character and finer than the topology then V(H-h,B) = 0 when-

 ever V(H-h,B(I)) = 0 for every interval I . Thus from elementary
 *

 properties of the variation we obtain

 I HgtX) * hg(X) I = ļv(H,B[X] ) -V(h,B[X])|

 5 V(H-h,B[X])

 < V (H-h ,B) = 0

 and so the outer measures hg and Hg agree on each set as stated.

 Finally using some properties of the dual basis established

 in Chapter Two, §8, let ß € BfX] and ß* € B* [X] so that we know
 ß fi ß also belongs to B* [X] and then we have

 Hg*(X) = V (H,B* [X] ) != V(H,ßf)ß*)

 5 v(H-h,ßnß*> +v(h,pnß*)

 5 V(H-h,ß) + V(h,ß*) .

 Now letting ß and ß* vary we obtain

 Hg* (X) 5 0+ V (h ,B* [X] ) = hg* (X) .

 As the other inequality, hß*(X) < Hß*(X) , would follow in the same way
 the proof of the lemma is complete.

 Henstock's lemma is really an abstract version of the classical

 Jordan decomposition theorem as our next theorem illustrates.
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 THEOREM 9.5 [JORDAN DECOMPOSITION THEOREM] Let B be a derivation basis

 that is additive , filtering downf and has the partitioning property and sup-

 pose that F is an additive interval function that has bounded variation

 on every interval. Define each of the interval functions F+ , F~ , P , N ,

 and T by writing for every interval I ,

 F+(I) = max {f (I) ,0} , F~ (I) » max {-F(I),0} ,

 P (I) = V(F+,B(I)) , N (I) « V(F~,B(I)) , arid

 T (I) = V (F , B(I) ) .

 Then

 (i) P , N , and T are additive nonnegative interval functions ,

 (ii) F = P - N and T = P + N , and

 (iii) V(P - F+,B(D) = V (N - F~ ,B(I) ) = V (T - F,B(I)) = 0
 for every interval I .

 If moreover B has q-local character and is finer than the topology then

 (iv) V(P - F+,B) = V (N - f",B) = V (T - F,B) = 0 , and

 (v) Pß = F B , Ng = F B , and Tß = Fß .
 Finally» if B also ignores no point then,

 (Vi) PB. 5 F+b, , V 5 p"B. , ai Tb. E Fb, .

 PROOF. For the most part this follows directly from the preceding lemma.

 For example, suppose that we wish to prove that F = P-N . We have, using

 that lemma for the subadditive interval functions F+ and F~ :

 F = F+ - F"

 V (F+ - F,B(I) ) = 0

 V (F~ - N,B(I) ) = 0

 so that
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 V (F - (P-n),B(I)) < V(F - (F+ -F") ,B(I) ) + V(F+ - P,B(D ) + V(F~ - N,B(I) ) =0

 for all intervals I . Since B has the partitioning property and

 F - (P-N) is additive, F - (P-N) vanishes identically proving that

 F = P-N . The remaining details are similar.

 EXAMPLE 9. 5. 1 (Decomposition theorems for functions of bounded variation)

 By using in Theorem 9. 5 the basis R or D one has the standard Jordan

 decomposition of a function F that is locatty of bounded variation. This
 is rather more interestingly expressed as an integration (using either R
 or DJ ;

 a function F that is locatly of bounded variation may be written as the
 difference of two nonnegative additive interval functions F = P-N where

 P(I) = f (jj dF f and N(I) = f ^ J) dF~ .

 Continuing this same theme we can establish in the same

 simple way some other familiar decomposition theorems for such functions.

 Here we require the integral based on D t the ordinary derivation basis.

 I DISCRETE/CONTINUOUS DECOMPOSITION ] : a function F that is locally of
 bounded variation may be written as the sum of a continuous and a discrete

 function F = F Q + F ^ where

 Fc(I) = f (I) *(CF> ')dF Vj; = f(I) *(CF> ' )dF
 and

 C„ " = {i ( J? ; F is continuous at a;} , C' = R^C„ . " , j FF

 (The integral expressing F^I) can be easily seen to have the value

 1 ctinc ' {F(c+) - F(o)} + {F(o) - F(°-})
 F

 with an appropriate term deleted from the sum if c is an endpoint of I.)
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 [LEBESGUE DECOMPOSITION ] ; a function F that is locally, of bounded

 variation may be written as the sum of an absolutely continuous and a

 singular function F = F__ + F where

 Fac(I) = f(I) x(hF* ')dF Fd(I) = S(I) XfV> ' )dF
 and

 à = {x £ R : F' (x) exists finitely } and A ' =
 r r r

 (The integral expressing F (I) can also be written in the form CLO

 FaQ(ï) = f(x)dx where F(x) - Fr (x) for x € and f(x) = 0
 otherwise . )

 Given the apparatus we have developed the proofs of the

 decomposition properties are remarkably simple , and the form of the

 decomposition may be suggestive of generalizations .

 The next theorem plays a key role in a number of investigations

 in the differentiation theory. Because it is so intimately connected with

 the classical Vitali theorem we have so labelled it.

 THEOREM 9.6 [VITALI THEOREM FOR LEBESGUE- STIELT JES MEASURES] Let B be

 a derivation basis that is straddled , filtering down, additive , finer than

 the topology , and has g-local character and the partitioning property.

 Suppose that F is a continuous function having bounded variation on every

 interval and let T be its corresponding total variation function. Then

 if denotes the usual Lebesgue-Stielt jes outer measure generated by T

 we must have

 FB = FB* = TB = TB* = UT '

 PROOF. We already know from the previous theorem, the Jordan decomposition

 theorem, that in this situation FQ = T^ and F^* = Tg* f so we can
 focus attention just on T which is essentially a continuous monotonie

 nondecreasing function on R , and y which is the usual Lebesgue-Stielt jes

 measure generated by T (by the Carathéodory process outlined at the opening
 of this section) . We will prove that
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 T - ^ U - T * B - U T - T B* *

 and since we know already that T_,* S TL, the theorem will be proved.
 D D

 To see that y^ £ Tg* suppose that X c r and that
 ß* € B* [X] : then applying the Vitali covering theorem relative to the

 measure yT (for a proof of the Vitali covering theorem for Lebesgue-
 Stieltjes measures see, for example, de Guzman 137, p. 27]) there must

 be a sequence {(I^,x^} c ß* with 1^ and I_. nonoverlapping for dis-
 tinct i and j and such that

 00

 vx n=l u, v - 0 • n=l

 This gives

 CO oo

 V (X) S Z « 2 TCI ) £ V(T,ß*)
 n=l n=l n

 and hence letting 3* vary we have y_(X) 5 T_* (X) for any X as re-
 r o

 quired to establish the inequality y^ < Tg* .

 To see that Tg £ y^ let X c r and e > 0 be given and
 then, using a well known property of Lebesgue-Stielt jes measures, there
 must be an open set G ^ X such that

 yT(G) s yTCx) + e .

 Because B is finer than the topology there is a ß € B for which
 ß [G] c ß (G) . Writing f°r sequence of closed intervals whose

 interiors are the components of the open set G we must have

 00

 T 00 S V (T, ß [X] ) S V (T, 13 [G] ) 5 V(T,ß(G)) S Z T(I ) = y (G) £ y_(X) + e .
 n=l n T

 Äs E > 0 is arbitrary and this holds for any X c r we have proved that

 Tg S yT as required. The theorem now follows.
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 The scope of this theorem is severely limited by restricting

 it to functions of bounded variation on each interval . One method whereby

 these results can be lifted to a larger class of functions is presented in

 the next definition. The class of functions so presented form a generali-

 zed version of the class of functions that are continuous and VBGA .

 DEFINITION 9.7 Let B be a derivation basis and h em interval-point

 function. We shall say that h is CVBG(B) on a set X c r if there

 is an expanding sequence of sets with

 00

 X = U X
 i n n=l i

 and a sequence of functions {g } that are continuous and of bounded vari-
 n

 ation on each interval so that

 V (h - G ,B[X ]) = 0
 n n

 for each n •

 Note that a function h that is CVBG(B) on a set X is

 necessarily B-continuous at each point of X under the natural assumption

 that any function that is continuous is also B-continuous, This is the

 case with most derivation bases (although it would not be true for the

 sharp derivation basis D^) . Our next theorem takes the Vitali theorem
 and extends it from Lebesgue -Stielt jes measures to more general measures

 h„ for functions that are CVBG(B) , under certain hypotheses.

 THEOREM 9.8 [VITALI THEOREM FOR CVBG(B) FUNCTIONS] Let B be a

 derivation basis that is straddled , additive , filtering down , finer than

 the topology, and has ū-local character and the partitioning property.

 Then if h is an interval-point function that is CVBG (B) on a set X ,
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 9.8.1 hg(Y) = hg* (Y) for all Y c x ,

 9.8.2 hg and hg* are a-finite on x ,

 9.8.3 hg({x}) = hg* ( {x}) - 0 foe all x € X so that, in
 particular h is^ B-continuous at each point of X .

 PROOF. Let {Xr} be an expanding sequence of sets covering X and
 {Gn} a sequence of functions continuous and of bounded variation on
 each interval such that v(h - = 0 for all n . Then for

 any Y c x we must have by the Vitali theorem and by the increasing
 sets property,

 hg(Y n Xn) = (Gn)B(Y n xn) = (Gn)g*(Y n xnj = hg*(Y n xn>

 and so

 hg(Y) = lim hg(Y fl X^) = lim hg* (Y 0 X^) 5 hg* (Y) .

 But since hß* < hg always in this situation it follows that for any
 Y C X ' hB*Y* = as required.

 EXAMPLE 9.9 (Characterization of the class ACGa ). Parallel to the
 characterization in example 9. Z above of the class VBGĄ we can provide
 a similar characterization of the class ACGĄ , again using the deriva-
 tion basis D .

 Lhe following assertions are equivalent for g continuous function F on
 an interval [a,fc] and a closed set X c (asb) :

 (1) F is_ ACGą cri X ,

 (2) o- finite on x ana F^(N) = 0 foi 1 every
 set N ex for which |¿V| = 0

 (3) there is an increasing sequence of sets {J^} with
 x = U xn and a sequence {£j 0f absolutely con-
 tinuous functions on [a,£] so_ that
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 V(F - G ,D[X ]) = 0 * for all n .
 n n *

 QUERY 9.10 It seems likely that there is a Ward type characterization

 of the class ACGĄ to add to example 9. 9. Thus ,

 (4) there is an absolutely continuous increasing function

 G on_ [a,2>] so that D Fq(x) and £ F 'q(x) are
 finite at each point of X .

 Is this equivalent with (1)3 (2), and (3)? Saks [105, p. 237] asserts

 this only in the case that X be an open interval.

 EXAMPLE 9.11 (Zero variation) For an arbitrary function F and a set

 X c R the expressions , F^*(X) t and | F[X] | are quite independent.
 But there are some interesting interrelations t particularly in the event
 that one or moi'e vanishes. Eere De use the notation = {y : F(x) = y

 for some x € Z} so that F must be interpreted as a point function

 (although | F[JQ | can be determined solely from AF ).

 These results are known: let F be continuous on R and

 let Xc R .

 9.11.1 i£ I Pli] I = 0 then F^*(X) = 0 , (Thomson [1131 )

 9.11.2 - 0 if an& °nly if F is, VBG* X
 and [FEA-] ļ = 0 (Henstock [60 3 Theorem 4]) .

 EXAMPLE 9.12 (Total variation of a typical continuous function) Using the

 word "typical" in the sense of Bruckner [10, Chapter XIII ] we can show that

 the measures A/D , , and (that we know are closely related for
 continuous VBGA functions) have a certain predictable behaviour. Here

 C[a,b] is the usual Banach space of continuous functions on the interval
 'asb] .
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 A typical continuous function f in_ C{a,b ) (i.e. 3 for a residual set
 of f in that space) has

 Vf([a,b') - bftf(laM) = 0

 white A f^ is non o- finite on any set- of positive measure. (Bruckner [9]

 for vy and Thomson 013 for AfD and A f^Ą . )

 EXAMPLE 9.13 (Lebesgue differe?itiation theorem) We indicate here an

 interesting if unorthodox proof of the Lebesgue differentiation theorem
 (i.e. , the assertion that continuous functions of bounded variation must

 have finite derivatives almost everywhere) . Lebesgue 's proof relied
 heavily on the integration theory he had developed and since then numerous

 proofs have been given. The proof we give here exploits the properties of
 the variation and should not be considered elementary since it uses the
 Vitali theorem. Nonetheless the computations are quite simple:

 Let F be a continuous function that is VBGĄ on a set X . Then
 F'(x) exists finitely almost everywhere in X , and F'(x) exists

 finitely or infinitely F^-almost everywhere in X .

 The proof (cf. Thomson [II41 ) follows from three simple steps.
 The first step requires showing that the finiteness of on a set Y c x
 requires that both £ F(x) and D F(x) be finite a.e. in Y .

 For the second step note that for a continuous function
 F ' (x) either exists finitely or infinitely or else there are rational
 numbers r and s with |rj / ls| such that both r and s are de-

 rived numbers of F at x . Let X ve = {a: € X ; r and s are derived
 numbers of F at x} . Then V(F - rm, D* [* ]) = V(P - sw,D*U ' Ì) = 0. rs ' rs

 But the identities FD ~ FD* and = Wq* on X then lead easily to
 the assertion

 M W * W - W W •
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 From this we conclude that the set of points x in X at which the

 right derivative F+' (x) [and hence similarly the left derivative
 F '(x)] does not exist finitely or infinitely has both and
 measure zero.

 The final step then needs only a proof that the set of points

 x at which Fj_' (x) = ±°° and yet F ' (x) = +°° is countable. With
 these three steps then the theorem now follows easily.
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 INDEX OF NOTATIONS

 A < B II, §1(11)

 BIX] II, §1(10)

 B(X) II, §1(10)

 B* II, §8(8.1)

 D_ F = f II, §2 (A)
 B

 D_ F. - f II, §2 (A)
 B K

 I>_ F (x) II ,§ 2 (A)

 p_ F (x) II ,§ 2 (A)
 Ł3

 hg II,§2(B) ; III, §5, §6
 h+ , h" III, §9(9. 5)

 V (h,B) II ,§2 (B) ;III ,§1

 V(h,B) II, §2 (B) ;III,§1

 E*h or Z(I,X) € TTh(I'x) "'SIW

 /(I)dh II ,§2 (C)
 7[x]dh II, §2 (B)

 special derivation bases :

 A approximate derivation basis II ,§3 (3.8)

 C composite derivation basis II, §3 (3.9)

 C composite derivation basis
 E relative to E={e } II, §3 (3.9)

 n

 D ordinary derivation basis
 (endpoint tagged version) II, §3 (3.4)

 D° ordinary derivation basis (full version) II ,§3 (3.4)
 u

 D sharp derivation basis II, §3 (3.5)

 DD modified ordinary derivation II, §4 (4.11)

 N natural derivation basis relative to
 a family of filters {n(x) ; x 6 r} II, §3(3. 8) and II, §9
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 RD, LD right and left Dini derivation basis II, §3(3. 7)

 PS modified symmetric basis II,§5(5.10)

 RAp (0 Sí P < 1) right density p basis III ,§8 (8. 16)
 S symmetric derivation basis II, §3 (3.10)

 T trivial basis II, §3 (3.1)

 U uniform basis II, §3(3. 2)

 U* sharp version of uniform basis II, §3 (3.5)

 properties of a derivation basis;

 additive II, §4 (4.7)

 C -complete II, §5 (5.9)

 endpoint tagged II, §4 (4. 3)

 filtering down II, §4 (4.1)

 finer than the topology II, §4 (4.9)

 decomposition properties II, §7

 H-complete II, §5 (5.9)

 ignores no point II,§4(4.10)

 intersection conditions II, §9 (9. 6)

 local character II, §6 (6.1)

 0-local character II, §6 (6. 2)

 partitioning property I I, §5 (5.1)

 separates II, §4 (4.5)

 splits II, §4(4. 5)

 straddled II, §4 (4. 3)
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