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Preface. The material presented here is a preliminary version of a pro-
jected monograph on the subject of differentiation and integration theory
on the real line. I would like to thank the editors of the Exchange for
their encouragement in this project and their willingness to present this
admittedly tentative version. I trust the reader too will be as generous

in overlooking the obvious rough edges.

The intention of this study is to present a language and a frame-
work within which a large portion of classical real analysis permits a rela-
tively clear and simple expression. Our unifying concept is that of a deri-
vation basis. Relative to any derivation basis there are three fundamental
related concepts, giving rise to a derivation theory, an integration theory
and a measure theory. Maﬂy of the concerns of analysts over the years can
be considered as entirely natural problems that arise within such a setting
and by placing them within this setting one acquires a convenient way of ex-
pressing the problems, a clearer picture of the many interrelations between

problems, and a. unified methodology for attacking the problems.

Our language draws on two main sources: the abstract differen-
tiation theory introduced some sixty years ago by R. de Possel and devel-
oped since then by numeroué authors, and the abstract integration theory
(generalized Riemann integration) introduced by R. Henstock some twenty
years ago and developed since then mainly by Henstock himself and his
students. As we choose to place everything just on the real line we will
not require the full apparatus of these two abstracﬁ theories nor will we

require of the reader any familiarity with them.
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The first chapter is only an attempt to motivate the general
theory and to give an indication of the form it is to take. One gener-
ally needs a good bit of motivation in order to pursue an abstract theory
and the ideas here are no exception. The fact that there are by now
dozens of distinct derivation and integration processes and hundreds of
papers generated in an attempt to sort out their properties certainly
provides adequate motivation for a general theory. Indeed numerous
authors have responded to this situation (which Professor Garg describes
as a "jungle") by putting forth concepts designed to unify and simplify.
0f the many unifying attempts in the theory of integration on the real
line that of Henstock appears to be the most successful. Here we take
this a step further and show that Henstock's ideas also provide a unifi-
cation of the many dérivation processes and that they provide at the same
time a better view of the historically close connection between integra-

tion and differentiation.

) The second chapter introduces the notion of an abstract deriva-
tion basis on the real lipe and develops all of the terminology needed for
the remainder of the work. The ideas are really quite simple but they
apparently are rather compact and the notation takes a bit of familiarity;
for this reason we have liberally given examples (all in italics) to help
illustrate the ideas and to ease somewhat the burden on the reader. There
is always the danger in the development of an abstract language that the
author will create merely his own private fantasy, unshared by others;
certainly our subject already has a numker of apparently profound but
clearly unreadable works. For this reason the terminology has been kept
to a bare minimum and mainly suggestive notation and labelling has been

used, although of course the risk remains:

The third chapter develops the properties of the variation.
This concept is a common generalization of such diverse notions as Peano-
Jordan measure, upper Darboux integrals, upper Lebesgue and Lebesgue-
Stieltjes integrals, total variation of a function, Burkill integration
and Hellinger integration. The variation is the most convenient tool for

developing properties of the derivation or the integration and it provides
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remarkably simple proofs of a variety of well known theorems. 1In addition
there are a number of concepts which arise directly or indirectly from a
consideration of the variation and these too will appear in this chapter;
thus the measure theory and the theory of the upper integral are given

here as well as such notions as a generalized continuity.

Chapters four and five, which give treatment of the abstract differ-
entiation theory and the integration theory, will appear in a later issue of

the Exchange.

Proofs are given for all the main results. For the illustrative
examples usually only a statement of the result appears with, perhaps, a
reference to the literature where one is known. A number of items in the
text have appeared as queries; this is meant to indicate only that at the
time of writing this question occurred to the writer with no corresponding
answer coming to mind. Answers to the queries, suggestions and critical

comments would be most welcome.
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CHAPTER ONE

INTRODUCTION

§1. Abstract differentiation theory. Our concern throughout is with

abstract differentiation theory in its simplest setting, the real line.
In that setting much of the usual machinery of that theory becomes empty
and most of the traditional problems of the subject meaningless. However,
new problems and new machinery arise naturally by reviewing classical
analysis in such an abstract setting. It is hoped that such a study will
throw some light on a number of problems in analysis and will enrich the

general subject of abstract differentiation theory itself.

We begin with a very sketchy review of the abstract theory:
Let (X, Yn, H) be a measure space and select from 7Yn a distinguished
class of sets I Cyn so that 0 < U (I) < +® for every I € 1 . The
class I 1is to play the role of the "intervals" and so we shall refer to

them as “generalized intervals”.
{

DEFINITION 1.1 A differentiation basis B on the measure space (X, Yn ., 4)

is a filterbase on the product set I X X .

That is B is a collection of subsets of 1 X X, so that each
B € B contains numerous pairs (I,x) (I an interval and x € X) , and
B has the filterbase properties: (a) @ £ B, (b) if Bl and Bz
belong to B then there is a 63 c ﬁl N Bz that also belongs to B.

For any function F : I - R we may define its derivative at a

point x € X with respect to this differentiation basis DB by writing

DB F(x) = 1lim F(I)/p(I)

where the limit is taken in the sense of the filterbase B. 1In the
simplest language Dy F(x) = ¢ if for every € > 0 there is a

B € B so that

|F(ry/u@@) - c| <€ for all (I,x) € B.
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In less simple language this can be written by setting
D(F,x;B) = {F@)/u@@) : (I,x) € B}

and then {D(F,x;B) : B € B} is a filterbase on the real line and it

converdges. to the derivative if such exists.

The central problem of abstract differentiation theory can be
formulated with a minimum of terminology now; a function f on X is
locally integrable if it is integrakle on each set I € I , and if so

we may write rE(1) = I fdu (I € I) for its indefinite integral.

BASIC PROBLEM OF ABSTRACT DIFFERENTIATION THEORY. Given a class F of
locally integrable functions, what are the necessary and sufficient condi-

tions that a basis B should have in order for the assertion
DB Ff (x) = £(x) p-almost everywhere in X

to hold for every functicn f in the class F ?

The charm and challenge 6f this problem is in the quite surpri-
sing fact that the answer lies not in measure-theoretic considerations
nor in topological considerations but in the geometry of the differenti-
ation basis B . For a full explanation of this vague term and the world
of Vvitali conditions, halo conditions, etc. to which the problem leads
the reader might consult Bruckner [.8 ) for an overview and then de Guzman

[37] and Hayes and Pauc [39] for a serious study of the subject.

I1f we restrict our attention to the real line with Y as
Lebesgue measure then we are naturally drawn to use genuine intervals
fa,b) for the class I . Thus, if I is the collection of all closed
bounded nondegenerate intervals on the real line R , a differentiation
basis B 1is a filterbase on T X R . Such objects are the principal

object of our study in the present work.
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We are not however interested in the basic problem given above,
for in the setting of the real line almost any reasonable differentiation
basis would differentiate the integrals of any locally integrable function

even if for U we take Lebesgue-Stieltjes measures U generated by a

continuous bounded variation function G . Our prograi instead is to seek
other problems natural to real analysis and to discover the geometry of a
differentiation basis that lies at the heart of the problem. This is com-
pletely within the spirit of abstract differentiation theory but will lead

us to entirely different notions.

In the next three sections we show how the notion of an abstract
differentiation basis on the real line arises naturally in the study of

three quite different concepts.

§2. Generalized derivations. It is common now, in the study of real functions,

to replace the derivative (which may not exist) by the extreme derivates
(which do exist). Thus for any function F one introduces the bilateral

derivates defined as

{
lim sup Fly) - F &)

D F (x)
y>X y—-X

and
DF(x) = 1lim inf’ Fly) - F (x)

y-+X y-x

and the four unilateral derivates (also called Dini derivatives)

+5F(x) = lim sup Ely) —E() '
y+x+ y—-Xx
*DF(x) = lim inf L0 ZEF)
y+x+ y-x
"DF(x) = 1lim sup Fly) —F&)
y+X - yox
DF(x) = lim inf SO ZEC)

yaX— y-x
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These derivation processes are the most natural but they do not
exhaust the many other reasonable (and unreasonable) ways in which the
derivative has been generalized. For later reference (as well as to im-
press on the reader the bewildering variety of such inventions) we list
those generalized derivatives that are known to us. Since our concern is
to present a unified and simplified treatement of these derivation pro-
cesses we should first confront the confusion into which some order is to

be thrown.

(i) uniform derivation. A function f 1is said to be a uniform

derivative of a function F on a set X provided

lim [F(x+h) -F(x)]/h = £(x) uniformly for x € X.

h+0
While such. a derivation should have limited interest as being far too
restrictive this process plays an historically important role and will
play an important illustrative role in our general theory. A number of
authors have used this concept (e.g., Weinstock [117], Lahiri [74], Bhakta
and Mukhopadhyay [ 6 ], Manna [80]).

(ii) sharp derivation. For any function F we define the sharp

extreme derivates as

E#F(x) = lim sup F—&E—EZ‘—LZ—)-
(y.z) > x,x) 7Y
y#z
and )
p*rx) = 1im ing I =F2)

(y,2z) > (x,%x) y-z

y#z

These evidently satisfy the inequality

# #

D'F(x) SDFX) =< DF(x) = D'F(x

and so represent not a weakening of the cordinary derivation process but a
sharpening of it and hence the name. It would be appropriate to name them

after Peano who first introduced them in 1892 (Peano [99]) but his name is
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now firmly attached to a different process. Some authors have referred
to this as "strong" derivation but that term is reserved for quite a
different notion in general differentiation theory (cf. Saks [L05, p. 106])
and would interfere with the terminology needed for vector-valued exten-
sions of this concept. Bruckner [10, p. 69] suggests "unstraddled" but

only in passing.

The concept itself might at first sight appear too restrictive
to play any serious role. For example, in order for a sharp derivative
D#F(x) to exist in an interval F must be continuously differentiable
there. Even so the sharp derivation can be used to clarify the nature of
assertions about other derivations. For example the following two classi-
cal theorems for the Dini derivatives (the first due to Dini himself and
the second to W.H. Young) are much clearer when expressed in terms of the

sharp derivation.

then F is

+ . . .
THEOREM 1. If DF is continuous at a point X5

differentiable at xO

W

' . . : + -
THEOREM 2. If F is continuous then residually DF(x) DF(x) .

In their sharper versions (the latter of which is due to Bruckner and

Goffman [ll]) we have

+
THEOREM 1'. If DF is continuous at a point xo then F has

a sharp derivative there.

<+
THEOREM 2'. If F is continuous then residually Q# F(x) = D F(x}
= D F(x) .

Any study of this derivation process should begin with a reading
of Peano's original paper ([99]) which contains a number of basic observa-
tions. (For some more recent studies see Esser and Shisha [30], Bhakta

and Mukhopadyay [ 6], Belna, Evans and Humke [ 3].)
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(iii) density derivation. The most profound and useful of the gener-

alizations of the ordinary derivation process was given by Denjoy {24) anad
by Khintchine [70]. For any function F the derivate ap-D F(x) is the

infimum of all numbers ¢ for which the set

R -Fe)
R

has x as a point of dispersion (i.e., of outer density zero).

This, together with its corresponding lower derivate, is the
process of bilateral approximate derivation. One sided versions are
available merely by considering the appropriate one sided density condi-

tion, and we label these as
+—= + - -
ap- D F(x) , ap- D F{x) , ap- D £(x) , and ap- D F(x)

and refer to them as the approximate Dini derivatives.

There is an extensive literature devoted to the study of these
derivations and a formidable range of results has been obtained. The sur-
vey article of Bruckner and Goffman [12) provides a recent and quite compre-

hensive review of the subject.

By relaxing the density requirements in the above definition we
can obtain a number of generalizations of the approximate derivative. For
a pair of number (p, A) chosen from the interval [0,1) define the
derivate ap(plk)-s F(x) to be the infimum of the numbers c¢ for which
the set

_F(y) -F(x)
Y : y - x

has outer right upper density less than 1-p and outer left upper density

less than 1-X .



Although these derivations are of much less significance than
the approximate given above they do play a role in some investigations.
Denjoy [24]) studied the ap L1 process and some investigations of

2'72
Denjoy and Khintchine'(gg. Saks [105, pp. 295-297]) involve the process

0,0 -

In their study of Perron type integrals Sarkhel and De [107] have
been led to consider a different type of modification of the above density
condition: a set E is sparse on the right at a point x if for every
€ >0 there is a & > 0 so that every interval (a,b) € (x, x+§) with
(a-x) <8 (b-x) contains a point y such that |E N I| < |I| € where
I = (x,y). Clearly, a sparse set has lower density zero but examples are
given [107, p. 30] to show that its upper density may be arbitrarily close
to 1 . Using this notion of sparse in place of density zero we obtain

the "proximal derivation”" process.

(iv) category based derivation. It is only natural, given the success

and importance of the density based derivation process, that one tries to
utilize other measures of size. Thus one could consider using the concept
"first category in some neighbourhood of x" in place of "density zero at x"
in the previous definitions. This leads to the notion of a qualitative
derivation introduced by S. Marcus [82]. A number of authors have shown
that such derivations share many properties of the ordinary derivative; for
example, it is shown in Bruckner, O'Malley and Thomson [13] that a qualita-

tively differentiable function is in fact differentiable.

. . . . . . 2
(v) selective derivation. A selection is a function s:R° * R that

is symmetric (i.e., s(x,y) = s(y,x)) and for any x <y , has

X < s(x,y) <y . This concept was used by Neugebauer [34] to characterize
those functions which are in the first class of Baire and have the Darboux
property, and (solving formally a long standing problem of W.H. Young) to
characterize those functions which are everywhere the derivative of some

continuous function. These considerations have led O'Malley [95]) to define



a derivation process relative to a selection and he has used this class
of derivations to shed some light on other types of derivatives. (We
might mention as well that the notion of a selection has been used to
provide a modification of the Riemann-Stieltjes integral; see for ex-

ample Baker and Shive [ 2].)

Thus if s 1is a selection one has defined

Bs F(x) = lim sup [F(s(x,y)) - F(x))/[s(x,y)-x]
yX
and )
D F(x) = lim inf [F(s(x,y)) - F(x)1/[s(x,y)—x] .

Y>X

One then studies the properties of selective derivates and selective deri-
vatives relative to general selections or selections having some further
properties; since a number of different derivations can be realized as
selective derivatives this gives a general approach to studying a certain
class of generalized derivations. (See the article of 0O'Malley [95] for

details.)

O'Malley has also ‘defined a related class of "bi-selective

derivations".

(vi) parametric derivation. Evans and Humke [29]) define a derivation

process of the form

Qw F (x) lim inf [Fx-¢(h)) - F(x- ¢th) ~h)}/h

h 0+

and

D F(x) = lim sup [F(x-¢()) - F(x- o¢kh)-h)1/h
® h >0+

where ¢ 1is an appropriate monotonic function considered as a "parameter",
and they obtain numerous properties of such derivates and derivatives.
Other variants on this theme are possible by the choice of similar "para-
meters". In a sense, in fact, the selective derivative is a certain type

of parametric derivative.
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(vii) neighbourhood filter derivation. For each x € R suppose

there has been given a filter N({x} converging to x ; then one defines

DN F(x) to be the infimum of the numbers ¢ so that

y : Ely) ~F(x) ;:i(X) < c } U {x} € N(x)

Similarly QN F(x) 1is the supremum of the numbers c¢ for which

v F(z}),:i(x) > ¢ | U {x} €N .

If one takes for N(x) the usual neighbourhood filter on the
real line at x then DN reduces to ordinary derivation. If one takes
for N(x) the collection of all sets 1 that have inner density 1 at

X then DN realizes the approximate derivation ap-D.

Although this is a most useful and most general manner of ex-
pressing a derivation process there appear to have been only two publi-
cations investigating the notion: the original work of Swiatkowski [111]
(in Polish) in which the idea was introduced and an article of Mastalerz-
Wawrznczak [83] obtaining a version of the Goldowski-Tonelli theorem for

such derivations.

A special case of the neighbourhood filter derivation has been
considered by Csaszar [22]. Let S be a o-ideal of subsets of R , i.e.,
if A €S and BCA then B €S (S is hereditary) and S 1is closed
under countable unions. Define F to be the filter of sets that are
complements of sets in S and at each point x use N(x) = F. Then
the derivation D, corresponds to that of Csaszar: because N(x) is
the same filter at each point and because it is closed under countable

rather than merely finite intersections further properties should be

available. See [22] for an account of these.

A similar theory of limits based on a system of filters has been

investigated by Jedrzejewski [€6].
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(viii) path derivation. For a measurable function F that has an

approximate derivative ap-D F(xo) at a point there is a particularly
convenient expression of that derivative: for some set E measurable
and with density 1 at Xq the function F has a derivative at X
relative to E equal to the number ap-D F(xo). i.e.,

lim [F(y) -F(x))/[y-x] as y * x with y € E is this number. This
realization of a generalized derivation as a derivation relative to some
set has a number of convenient properties. For this reason the notion of
path derivation was introduced in an attempt to unify a variety of themes

in differentiation theory.

A system E = {Ex : x € R} 1is a system of paths if each E, is
a set of real numbers havihg X as a point of accumulation. Then deriva-

tion relative to the paths in E is defined as

D_ F(x) = lim supF(')-F(x)
E y+x Yy—-X
yEEx
and
D, F(x) "= lim inf Fly) - F(x)

Y+ X y—-x
y'GEx

The theory of such derivates and théir corresponding derivatives proceeds
by investigating properties that arise in the derivates from assumptions
about the thickness of the paths and the manner in which pairs of paths
Ex and EY intersect. (See Bruckner, O'Malley and Thomson [13] for some
such results.)

A special case is obtained by fixing a set Q that has 0 as a
point of accumulation and defining E to be the system {Q + x : x € R} .
If we denote the corresponding derivation D as [Q] -D we have the

E
"congruent derivation" of Sindalovski [109].
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A special case in turn of the congruent derivative can be
obtained by fixing a sequence {hn} convergent to zero and taking for
Q@ the range of that sequence. If we denote the derivation as [{hn}]-—D

we have the sequential derivation of Petruska and Lazcovich [73].

Finally, a more elaborate path derivation can be defined re-

lative to a sequence {En} of sets that cover the line: one writes

sup lim sup Elil;:flﬁl
n y =X y-x
y€En

[{En}l ~D F(x)

and

inf lMLMfF()-Fu)
n yrx y-x
€
YEn

[{E_}] -D F(x)

This is the "composite path derivation" of O'Malley and Weil [97]. It is
motivated by O'Malley's observation in [96] that an approximately differ-
entiable function permits a decomposition of the line into sets {En} for

which ap-D F(x) = [{En}] -D F{x) must hold.

‘ This type of derivative was first studied by Ridder [103] and
Tolstov [116] in order to provide a Perron type characterization of the

general integral of Denjoy.

(ix) symmetric derivation. One of the most familiar and useful of

the many generalized derivations is obtained by writing

sym-D F (x)

= 1lim inf [F(x+h) - F(x-h)]/2h
h - 0+
and
sym-D F(x) = lim sup [F(x=h) - F(x-h)]/2h .

h—+ 0+

This process has been extensively studied by numerous authors
and there are a great many results that have been obtained. A list of
references would be too lengthy and almost certainly incomplete; the in-

terested reader should consult Khintchine for the earliest and Preiss
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and Larson for the most recent of the deep results known for this deri-

vative. Bruckner [10, p. 168] lists some bibliography.

By combining the idea behind the symmetric derivation process
with some of the previously mentioned ideas one can arrive at an “"approxi-
mate symmetric derivation", "preponderant symmetric derivation”, “symmetric
path derivation", etc.. These ideas have been pursued by a number of authors

(e.g., Evans [28], Larson [76], Mukhopadyay [93]).

(x) relative derivation. By altering the difference quotient in each

of the preceding derivations one can arrive at the notion of "relative
derivation" or derivation relative to a function G . 1In place of a quotient
[F(y) -F(z)]/(y-2z) write [F(y)-F(z)1/(G(y)-G(z)] . The study of such
derivatives goes back quite far; Lebesgue made a number of contributions.
Several resuits are given in Saks [105, pp. 272-277] and (in rather more ar-

cane language) in Kenyon and Morse [68].

A similar alteration was made by Besicovitch [5 ] who studied the
limits of the quotient |[F(y)-F(z)]/[ly-2]% for O < s < 1 and obtained
results closely related to Hausdorff dimension (as might be expected). A
common generalization of this relative derivation and Besicovitch's frac-
tional derivation is obtained by écnsidering simply the quotient h(I)/g(I1)
with I = [z,y] and where h and g  are arbitrary (not necessarily
additive) interval functions. This study along with a corresponding in-
tegration theory was initiated by Burkill [14], [15] and has been continued
by numerous later authors (e.g., Kempisty [67], Henstock [41], [42]), Cesari
{201).

All of the examples of derivations given above, from the Dini
derivation through to Burkill's general derivates can be expressed vaguely

in the form

GD h_(x) = 1lim inf h(I)/g(I)
9 I=x
and
GD h (x) = lim sup h(I)/g(I)
g I=>Xx
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under various interpretations as to what I = x (™ I shrinks to x "}
might mean. Such generalized derivation processes as can be expressed
in this manner include a broad spectrum of generalized derivatives and
we propose to study just this type of derivative. We must ignore then
a number of other ideas such as the introduction of convergence factors
{Cesaro derivatives, Lp-derivatives), higher order derivatives (Peano
derivatives, second symmetric derivatives), and vector-valued functions,

but this still leaves an extensive theory.

To set up such a theory within the context of a derivation basis
using the terminology in §1 above let I denote the family of all nonde-
generate compact intervals. Then we shall be studying the following

notions.

DEFINITION 1. By a differentiation basis on the real line we mean a

filterbase of subsets of I X R .

DEFINITION 2. If B is a differentiation basis on the real line then

by the extreme B-derivates of a function F we mean

Dy Fx) = inf sup F(I)/]|T]
BEB (I,x) €P
and
Dy F(x) = sup ~  inf F(oy/lz| .

BEB (I,x) €

This then captures most of the ideas of differentation theory;

we in fact will go somewhat further and define a derivation basis B to

be any nonempty family of subsets of [ X R . This very general object
and the notions that arise from it are the subject of our study and they

provide a unified approach to the study of generalized derivations.
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i3. Riemann type integrals. We have promised in the previous section that

our study is concerned exclusively with derivation bases (i.e., families
of subsets of I X R and especially filterbases on I x R) . That this
should have even the most remcte connection with integrals of Riemann type
may appear strange. To see how this connection arises let us set deriva-
tion bases and filterbases aside and follow the history of Riemann type

integrals.
It was Cauchy [19] who proved that for any continuous function

n
f on an interval [a,b] the limit of the sums z f(Ei)(xi - xi—l)
: i=1

cver partitions of the interval [a,b] with the limit taken in a now
familiar sense can be used to compute the inteéral. It was then only
left to Riemann a half century later to take Cauchy's theorem as a
definition of "integrability" and to proceed from there. This defi-
nition of an integral as a limit of Riemann (Cauchy?) sums has a natural
and simple appeal. It also has some decided advantages over more modern

integration techniques. For example, (i) a generalization to Stieltjes

n .
integrals as 1lim I £(£.) (G(x.) - G(x,
j=p & i i-

l)) is immediate, (ii) generali-

n
zations to integrals of arbitrary interval functions as' lim I h([xi_

.xi])
i=1

1

giving Burkill or Hellinger integrals is equally immediate, (iii) vector-
valued integration presents no barrier - indeed since the process is merely
a sum followed by a limit our functions may assume values in a topological

semigroup and the formal definition remains unchanged.

This procedure, of defining an integral as a limit of Riemann
sums, has been severely discredited by a generation that now considers an
integral to be nothing more or less than a countably additive signed measure.
Within that viewpoint the Riemann definition of an integral is considered to
be intimately joined to a finitely additive measure (Peano-Jordan measure)

and hence forever doomed to enjoy no adequate limit theorems; consequently



any of the presumptive adyantages that such a Riemann type definition
possesses should be cheerfully abandoned in favour of the deeper ana-
lytic properties available in measure theory. Thus, for example,
Luxemberg [79] shows that the convergence properties of the Lebesgue
integral arise from the countable additivity of Lebesgue measure.

For measure theorists there is no issue here.

However, on the real line there is a certain convenience pro-
vided by an integral defined as a limit of Riemann.sums; and the Riemann
integral lacks no convergence properties - it is merely somewhat short of
integrable functions with which to express them. In fact Lebesgue himself
showed that his integral was expressible as a limit of Riemann sums
(Lebesque [77]) but the limit proved too intractable to be taken as a
definition. The issue is simple: the usual limit operation that is used
in the calculus to define the Riemann integral is too coarse and allows
too few functions to be integrable, therefore a finer limit operation

should be substituted.

If we express this in the correct language the solution will be
apparent. By a partition 7 of the interval [a,b] we mean that
m = {(Ii,xi) :i=1,2,...,n} where .Ii are nonoverlapping subintervals
of [a,b] whose union is [a,b] and x, is a point of the interval
[a,b] (in fact in most applications X, € Ii). By II we mean the
collection of all such partitions of [a,b] . For a function £ on

[a,b] we write

SIEM = 0y eq £00 |1]

and for any subset HO of I we write

S(f,Ho) = {s(f,m) : neno} .

The usual convergence notion used in the calculus can be described by

writing for any & > 0 ,

Mg = {mell : if (I,x) €T then 1] < &} .
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Then {HG : § >0} is a filterbase on Il and convergence of the corres—

ponding filterbase {s(f,lI;) : § > 0} is equivalent to the Riemann inte-

$

grability of f in the classical sense.

Now we can give a precise formulation of the extension problem

for the Riemann integral: find a filterbase F on Il that is finer than

{H6 : § >0} and provides an abundance of functions £ for which S(f,F)

converges.

Surprisingly this formulation returns us to our starting point.
In order to find an appropriate extension of the Riemann integral it would
be enough to £ind a differentiation basis B such that each element £ € B
contains a partition of the intexrval [a,bl . Then if we write for each such
B, HB ={m €l : mc B} we will have that {HB : B € B} is a filterbase
on II . 1In fact there are a number of generalized derivations whose differ-
entiation bases have this property that partitions always exist and each such
derivation yields an extension of the Riemann integral in the above prescribed
manner. The table below tells the story. The differentiation basis that
expresses the generalized derivative listed in the first column provides a
natural extension of the Riemann integral. The classical name for the

extension (where it has been previously named) is listed in the second column.

Except for the Riemann integral which, of course, is defined as
a limit of Riemann sums these characterizations are quite recent. Lebesgue
did point out ([77]) that his integral could be obtained as a limit of
Riemann sums but although a number of authors did pursue the idea the simple
characterization here was discovered much later. 1Independently Kurzweil [72]
and Henstock [45] found the characterization of the Denjoy-Perron integral.
Henstock pointed out that similar Riemann sums characterizations of the
approximate Perron integral (Henstock [47]) and the general Denjoy integral
(Henstock [54, p. 222] and the corrected version in {60, pp. 2-3]) were
also available. It was McShane [89] and [90] who noted the adjustment
needed in order to characterize precisely the Lebesgue integral in this way.
The interpretation of these facts within the setting of derivation bases
is really very obvious but has received no explicit comment from previous

authors.
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TABLE 3.1

DIFFERENTIATION BASIS

CORRESPONDING EXTENSION OF
THE RIEMANN INTEGRAL

uniform derivation

classical Riemann integral

sharp derivation

classical Lebesgue integral

ordinary derivation

integral of Denjoy and Perrcn

approximate derivation

approximate Perron integral
(of J.C. Burkill)

composite path derivation
(under some hypotheses)

general Dengjoy integral

selective derivation

(unnamed)

qualitative derivation

(unnamed)
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This Table alone should be sufficient motivation to pursue a
study of derivation bases. That this collection of integrals which for
so long were considered as dramatically different should be so easily
unified certainly suggests that the underlying structure is of some in-
terest. But apart from this unification there are other strong reasons
for wishing to study these ideas systematically. Numerous other inte-
gration procedures on the real line have also been invented and these too
can be placed within this setting. Thus the various Stieltjes integrals
(the Riemann-Stieltjes, Lebesgue-Stieltjes, Darboux-Stieltjes, Perron-
Stieltjes, etc.), the integrals of arbitrary interval functions (Burkill,
Hellinger, Burkill-Cesari), and a variety of modifications of these pro-
cedures (mean-Stieltjes, modified-Stieltjes, "belated" integrals, Lane
integral) can receive a systematic study. As the list of integration
procedures on the real line devised to handle specific problems is proving

to be endless any attempt to simplify matters should be welcome.

§4. Measure theory. We have seen that the study of differentiation bases

leads to a number of solutions to the extension problem for the Riemann
integral. There is a parallel problem in measure theory which we discuss

here.

Let us begin by sketching the development of measure theory in
the nineteenth century. Using the terminology of the previous section we
may define the Peano-Jordan outer measure EXE) of a set E contained
in the interval [a,b] as follows: for any partition T of [a,b] set

m = : . .
m(m,E) = I {IIiI (I,,x,) €7, x, €E}

and for any subset HO of I gdefine

E(HO,E) = sup {m(m,E) : 7 € Ho} )
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Then for the measure of the set E we take
m(E) = lim m (Il E)

in the sense of the filterbase {m(H6,E) : § > 0}. This is essentially
the definition of Stolz [ ] although the filter approach does not make

this entitely transparent.

This manner of defining a measure has a number of advantages:
(i) the generalization to Stieltjes measures G(E) is managed merely by

replacing m(m,E) by m(T,E;G) = L {lG(Ii)l  (I,x) €7, x, €E},

(ii) a further generalization in the same spirit places the Darboux-

Stieltjes upper integral in the same setting - take
m(m,E;£,6) = £ {|f(x,)6(x,)] : (1,,x,) € T, x, € E}
i i i"i i

and then the resulting measure (£G) (E) would be the same as the upper

b
Darboux-Stieltjes integral I |f(x)]xE(x)d|G| , (iii) an extension to
a

measures generated by interval functions whose values lie in some abstract
structure could be accomplished by replacing EKHO,E) with the set

m(HO,E) = {m(m,E) : 7 € HO} and so producing a set-valued measure.

The Peano-Jordan measure has one useful limit property: if
{Fn} is a shrinking sequence of closed subsets of [a,b]l] then
ﬁ(r]Fn) = lim ﬁ(Fn). It also has a property which to a twentieth
century eye seems highly undersirable, m(E) = m(E) for all E C [a,b],
but to the mathematicians of the previous century would have seemed a

sine qua non of any measure theory. When Lebesgue began searching for

a measure theory with which to generalize the integral he was led to an
entirely different method of construction, largely because of the influ-
ence of Borel. But this method of construction of Stolz car be extended

merely by searching for a finer filterbase than {Hé : § >0} .
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In fact then there is associated with any derivation basis on
the real line a fully developed measure theory and it should be studied
along with the corresponding integration theory and differentiation theory.
From this viewpoint all the apparatus of Lebesgue's theory of measure

arises naturally as part of the study of the ordinary derivative.

Even better is the fact that a number of variational ideas
that have played a key role in various studies in differentiation theory
and in integration theory are expressible directly in terms of the measures
that arise. Thus for a function F there will be a measure FB corres-
ponding to any derivation basis; in the particular case where B expresses
the ordinary derivative this measure F

B
F has bounded variation or is VBG, , or AC, or ACG, on a set. Also

carries information as to whether

because the same structure is used to define the measures, the derivatives,
and the integrals, the interrelations are frequently very easy to establish
and the role of certain classical hypotheses becomes rather transparent.
§5. Th program. Our program in this study is to use the notion of an
abstract derivation basis as a unifying concept in the treatment of a
variety of ideas in classical real analysis. In particular, by devel-
oping in this setting the three basic concepts of the integral, the
derivative, and the variation we can give a simpler and more directed

account of a great many concerns of real analysts.

A largely suppressed motivation for this study rests on the
fact that these ideas should have some considerable impact on the study of
differentiation and integration in higher dimensions. Authors such as
Mawhin and Pfeffer have obtained some interesting results; Henstock has
devoted much time in the development of an abstract theory that will apply
in higher dimensional and even infinite dimensional spaces (our bibliography
lists his contributions); McShane in [89] and later work has introduced
these ideas into the study of stochastic integrals. There are a number
of other themes that are being or could be studied (Burkill-Cesari in-

tegration for example) in this sefting. Although we do not here pursue
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any of these ideas it is possible that a detailed study of derivation
bases on the real line will provide some clues as to the type of results
that might be sought in higher dimensions; thus Bruckner [ 7] has obtained
analogues of classical theorems for the Dini derivatives in higher dimen-
sions and one could expect that more of the detailed knowledge of deriva-

tives on the real line could be lifted to higher dimensions.
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CHAPTER TWO

DERIVATION BASES

§1. Basic definitions. The focus of attention is on intervals and interval

functions. Indeed, as J.C. Burkill pointed out, "almost every process of
analysis involves the manipulation of functions of intervals, which are not
usually additive" [14, pp. 275-276]. We actually go somewhat further and
study what we call "interval-point" functions and shall hazard the propcsi-
tion that every process of classical real analysis can be realized as the
manipulation of such functions. 1In this section we present the terminology
needed for an investigation of these interval-point functions and their re-

lated concepts.

(1) [intervals] The collection of all closed bounded intervals is

denoted as I . By I+ we mean all finite unions of intervals.

(2) [interval functions] An interval function is a mapping from
I having real values. We prefer upper case letters F, G, H,

etc. for such functions.

If f:R+* R then Af denotes the interval function defined
by Af([x,yl) = f(y) - £(x) . For many applications it is best
not to distinguish notationally between a function F: R * R

and its corresponding interval function AF .

(3) [additive interval functions] An interval function F is
additive if F(I U J) = F(I) +F(J) for any pair of nonover-
lapping intervals I and J for which I U J is an interval.
Such an F can always be extended to I+ and this will be

done without comment.
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(4)

(5)

(6)

(7)

[point functions] A function £ : R* R 1is called a
point function, merely to distinguish it from the other

types of functions under study.

[interval-point pairs] Our concern in the sequel is with
pairs (I,x) where I € 1 and x € R and with the col~-

lection of all such pairs, namely the product set I x R.

We use lower case greek o, fB,Y etc. usually to denote

subsets of I x R.

[partitions] A finite subset ™ of I X R is a partition
if

= X)) 1 =1, ro oo
{(Ii xl) i 1,2,3 ,n}

has Ii and Ij nonoverlapping for distinct i and j.

. n
It is said to be a partition of U I, and where that set
i=]1

(which of course belongs to I+) is also an interval we have
more or less a traditional partition except that the associated
points xi are carried along. Kurzweil [65, p.v515] calls
them "pointed partitions", Henstock [55] calls them "divisions",

and McLeod [88] calls them "tagged division".

[interval-point functions] A function h : I X R+ R is called
an interval point function. We consider point functions

f : R+ R and interval functions F : ] = R as special cases
of interval-point functions by agreeing that £(I,x) = f£(x)

and F(I,x) = F(I). In this way we even have the product fF
defined as an interval-point function, by (fF)(I,x) = £(x)F(I) .

The special interval (and hence interval-point) function
I~ II[ , the length of the interval I is denoted as m so

that m(I) = m(I,x) = fII for all I €1 and x € R.
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(8) [Riemann sums] If h is an interval-point function and

T is a partition then the sum
z {h(I'X) H (-le) € ‘"}

is our version of a Riemann sum and we use the shorthand

Z“h, Z"h(I,x) ;, or h(I,x) to denote such sums.

L
(I,x)€m
In particular the traditional Riemann sum

f(Ei)(xi-x )

1 i-1

[l e ]

i
assumes the form

Z"fm or an(x)m(I)

where T 1is the partition T = {Ii,Ei) :i=1,2,...,n}

with Ii = [xi_l,xi]

(9) [derivation basis] A derivation basis is a nonempty collection

of subsets of 1 x R.

(10) [sections of a derivation basis] For any B ¢ I x R and

any X C R we write

B(x) = {(I,x) eg : I CX} and PBIX) = {(I,x) €B : x € X}.
Then if B 1is a derivation basis so too are the objects
B(x) = {B(X) : B € B} and B[x] = {BIX] : B € B}

which are called sections of the derivation basis B .
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(11)

The square bracket sections BI[X] are used frequently
especially in the measure theory. The round bracket
sections B(X) will be used only in the case of X = I
an interval or X = G an open set. In the latter case

the section B(G) would be considered in the language of

 abstract differentiation theory (cf. Hayes and Pauc [39,

p. 12]) a "G-pruning".

[partial order of derivation bases]. The collection of
derivation bases is partially ordered in a natural way:
if A and B are derivation bases such that given any
element B € B there is an element o € A such thét

& € B then we say A is finer than B and write A = B.

This then induces an equivalence relation: A is said to
be equivalent to B and we write A=B if A =<B and
B=A.

(This partial order suggests a natural way of combining two
derivation bases B1 and B2 . One can write Bl v B2 and
B1 A B2 for the two derivation bases

B. vB

.

{Bl Up, : B, €B, , B, € B,}

and

oo
>
oy
}

1" P2 Py NPy =B €B + B, €B} -

Note that Bl/\B2 = Bi = Bl v B2 (i=1,2). A number of later

ideas permit an expression in this language: for example a
derivation basis B that has the property B =B A B is
said in §4 below to be filtering down. The derivation bases
D, RD, and LD that represent the ordinary derivation, right
derivation and left derivation (see §3 below) are directly re-
lated by the assertion D = RD v ID. We do not intend to use
this terminology in the sequel but mention it parenthetically

as it may prove useful in some contexts.)
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§2. The three fundamental concepts arising from a derivation basis. As

has been mentioned in the introduction there are three fundamental objects
of study in the theory of derivation bases; loosely these are a differen-
tiation theory, an integration theory, and a measure theory. These concepts

dominate the theory.

A. [DIFFERENTIATION THEORY] Let B be a derivation basis and let h and

k be interval-point functions.

(a) [exact derivatives] A function £ is an exact B-derivative
of h relative to k if for every € > O there isa P €B
with

Ihiz,x) - £Ok(,x)| = e |x(T,x)]
for all (I,x) € P .

In symbols we may write D £ .

B Ny =
In the special case k=m we return to conventional rather than
relative derivatives and then f is an exact B-derivative of h
if for every € > 0 there is a B € B with

Ef%fil - £(x) < g for all (I,x) € 8

and we write DB h=¢£f.

(b) [extreme derivates] The upper and lower extreme B-~derivates

of h relative to k at a point x are

DB hk(x) = inf sup h{I,x)/k(I,x)
BeB (I,x) €
and
Dy hk(x) = sup inf  h(I,x)/k(I,x} ,
BeEB (I,x)¢€P

subject to the interpretation of 0/0 as O and c¢/0 as

+® or -« depending on the sign of ¢ .



In the special case where k=m we return to conventional
rather than relative derivates and we do not have to worry
about division by zero; the notation will be simply

ﬁé h(x) and h(x) .

Dy

B. [MEASURE THEORY] Let B be a derivation basis and let h be an

interval-point function.

(a) [the variation] For any nonempty subset P of I X R

we write

V(h,B) = sup {Zn |h(x,x)|] : mc B, ™ a partition}
and refer to V(h,B) as the variation of h over B8;
for B =@ we take V(h,g} =0 .

The variation of h over B is defined as

V(h,B) = inf V(h,B) .
BEB

(b) [the variational measure] For any set X C R the B-
variational measure of h on X is the variation of

h over the section B[X] of B, i.e.,

hB X} = v(h,B[X]) .

(c) [the upper integral]l] For any set X C R the B-upper

integral of h over X is

B- [[X] d|n| = v(n,BIX]) ,

in short, then merely another notation for the measure

hg (x) .

96



C. [INTEGRATION THEORY] Let B be a derivation basis and h an interval-

point function.

(a)

(b)

(the B-integral] The B-integral of h over the interval
I0 is any number c¢ for which, given € >0 , a B € B
can be found so that

IZ(I,x) eq BExL -] <e

for every partition m of I _,mC B .

0

[B-integrable] The function h is B-integrable over I0
if such a number c¢ exists and is unique; implicit in
this is the requirement that every P € B contain a parti-

tion of the interval I0 .

If h is B-integrable over an interval I we write this

0
number c¢ as

(B)I dh or J dh
(IO) (Io)

if the context is clear.

If h is the product of a point function f and an interval

function G then we would prefer the notation

d(fG) = J f ac .
'J(Io) (1)

The use of the round bracket notation in the integral and the square

bracket notation in the upper integral is intended to reflect the fact

that

f

J(I) dh

arises from the derivation basis B(I) and that

(

| 1x) ab



arises from the derivation basis B[X] and the connection between the
two concepts is only strong in certain examples, but not in general.
This really reflects the classical distinctions between integration
thought as a "function of sets™ or as a "function of intervals" which
distinction often causes the student some pain when he thinks simulta-
neously about the nature of the Riemann~Stieltjes and the Lebesgue-

Stieltjes integrals.

§3. Fundamental examples of derivation bases. In order to give some substance

to the preceding material, which will certainly strike most readers as for-
biddingly abstract, we now present a series of examples to motivate and illu-
strate the theory. Later examples in the text will make use of this termino-
logy and notation. 1In each case some brief mention will be given to indicate
the nature of the three fundamental concepts as they are realized in that

setting.

EXAMPLE 3.1 (The trivial derivation basis) The derivation basis
T = {g}

is called the trivial basis. It is finer than every other basis. The
variation V(h,T) clearly vanishes for any interval-point function h

and so any measure also vanishes. There is no integration theor
Y g Y

available as this basis does not supply any partitions.

The derivation theory is also satisfyingly trivial in that one
always has

QTh () = += and Dy hk(x) = -

k

Dp by = f

is invariably true.
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At first sight one might expect to exclude such objects from con-
sideration and restrict the definition of a derivation basis to disallow
the inclusion cf the empty set; the only reason we do not do so is to pre-
serve the fecture that whenever B s a derivation basis then so too is
any section B[X] or B(I). Note however that any basis B that contains

the empty set is equivalent to T .

EXAMPLE 3.2 (The uniform derivation basis) For any positive number §
we write

Bs = U(Lz) : Tel, €I, |I| <8}
and refer to the derivation basis
U= {86 : 8 > 0}

as the uniform basis.

It should be apparent that U expresses uniform derivatives and
the Riemann and Riemann-Stieltjes integration procedures. It is less

obvious that o yields the classical Peano-Jordan measure.

EXAMPLE 3.3 (The refinement basis) Let S be any set of real numbers that

has no point of accumulation and for any such S write
BS ={(la,bl,xz) :a<b,a<z<b, SN (a,b) = #}
and

R = {BS : SCR, S has no accunulation points} .

This basis has its greatest interest in the integration theory
and expresses an integral based on a familiar partition-refinement type .
limit as has been used in the study of certain versions of the Riemann-
Stieltjes integral (e.g., Pollard [10Q, Getchell [351). The differenti-
ation theory is essentially the same as that for U and just expresses

unt form derivatives.
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Note that R 1is finer than U, <.e., in symbols R = U, since
ifa B € U is given one can select a set S so that BS cp. In
particular the integration theory provided by R 1is slightly more general
than that given by U (as is familiar from elementary analysis) although
both give precisely the classical Riemann integral when applied to a
funetion of the form f(x)m(I). The difference between the two bases
emerges for Stieltjes type integrals [fdg; 1in our setting the familiar
advantage that the basis R has over U <is expressed by the fact that R
has the additive property defined in §4 below.

EXAMPLE 3.4 (The ordinary derivation basisl For any positive function &
on R define the collections B‘5 and 860 by

BGO = {(I,z) : T€l,xz¢€eI, |I|<é&(x)}

and
Bs = {(Lx) : I €1, x anendpointof I, |I] < 8(x)}.
Then the derivation bases

o

° = {85 : 6 a positive function on R}
and
D ={B; : & a positive function on R}

are two versions of the ordinary derivation basis. The former will be

called a full version and the latter an endpoint tagged version.

It is not difficult to see that the extreme derivates Dy Flx)

b F(x) are just the usual bilatercl extreme derivatives of

D,
F, DF(z) and D F(x) , and that the assertion Dy F = f just says
that f 1is the derivative of F .

It is far from obvious though that the measure theory here gives

>

the integration theory yields the Denjoy-Perron and Denjoy-Perron-Stieltjes

and my, equivalent to Lebesgue outer measure on the line and that

integrals.



These twe bases treat additive interval functions in the same
way and only diverge in their treatment of nonadditive interval functions
or arbitrary interval-point functions. Mainly D <is to be preferred as
it has some sharper properties. This feature of ordinary derivation is
common: there are a number of applications where a choice between a full
version or an endpoint tagged version needs to be made differently depend-

ing on the theorem desired.

Note that D=<D°<U and D<R.

EXAMPLE 3.5 (The sharp derivation basis) In the basis D we required of
the pairs (I,x) appearing that =z be an endpoint of I . If we remove
the restriction that x even belong to the interval I and adjust so
that I 1is "close" to x then we arrive at the sharp derivation process.
For a positive function § on R write

]

Bs {(I,x) : T €1,z €R, IC (x-8x),x+8(x))}
and then
oo # . .
D" = {66 : 8§ a positive function on R}

is called the sharp derivation basis.

It should be clear that the D# derivates and the D# derivative
18 just the "sharp" differentiation we have described in the introduction;
it is however surprising and perhaps curious that the integration theory
developed by this bastis includes a characterization of the Lebesgue integral.

Note that D < DF and D° < D# but that neither U nor R are
comparable with of . It is useful to introduce a sharp version of the
uniform basis by writing for any positive number & ,

#
Bs

{(I,z) : I1€1,2z€R, Ic (x-8, 2z+6)}

and

{BG# : 8 a positive number} .

vt

Then certainly U = U#

and " = U# ; interestingly, and significantly,
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the integration theory for the U# hasis gives the Riemann integral
where one might have expected from these relations that it would only

give a restricted version of it.

EXAMPLE 3.6 (The dual of the ordinary derivation basis) The basis D
has a dual in a sense that will be formalized in g;ﬁielow. D' denotes
the derivation basis that contains all elements B* ¢ I x R that have
the following property: <if x € R and € > 0 are given then there is
at least one mumber y # x such that |y - z| < e and (lz,yl,z)

(or C[y,x],i)) belongs to B* . ‘

This bastis has the remarkable feature that it reverses the roles
of the upper and lower extreme derivates: for a function F the D and p*
derivates are related by

D, F(z) = Eb* F(z) and Eb F(x] = Dys F(x) .

Also an assertion Dps F = f 1is equivalent to the fact that at each
point x the number f(x) is a derived number for the function F

(so that in particular such f need not at all be uniquel.

There is no integration theory available as D* need not contain
enough partitions but the measure theory does play a role in the subsequent
theory. Note that D* <D s a fact that will not hold necessarily for all
dual bases but does for most familiar ones.

EXAMPLE 3.7 (Dini derivation) In order to express one-sided derivatives

and Dini derivatives we need one-sided versions of D . For any positive

function § on R define
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RBy = {([z,yl,x) : 0<y-z<48(x)},
LB = {(1y,=),x) : O0<z-y<d(z)},

RO = {RB; : 8 a positive function on R}
and |

ID = {LBs : § a positive function on R} .

We refer to these as the right and left Dini derivation bases. Note that
RD<D and ID <D and that D' <RD and D* = ID (in fact D* > RD U LD).

EXAMPLE 3.8 (Filtered or natural derivation) Suppose that there is given
a system {N(z) : x € R} of filters such that each N(z) 1is a filter
converging to =x . The derivation process generated by such a system of
filters can be described by the following derivation basis. A choice
relative to the system {N(xz) : x € R} 1s a function m on R such that

each n, € N(x) : corresponding to any choice m we write

w
I

{(ly,2l,x) : y=zx, 2>z, zénx

or

N
|

=z, y<x,y€nl}
and

N

{Bﬂ : M a choice} .

This type of basis is sufficiently general that it can be studied
and characterized in our abstract terminology and henceforth when it appears
it wtll not be hidden in italiecs but will join the main body of the text.

For various choices of the system N one has the derivation bases
D,RD or ID. If each N(x) <is defined to be the collection of all sets
having imner density 1 at & then the corresponding derivation basis is

written as A and called the approximate derivation basis.
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EXAMPLE 3.9 (Composite path derivation) In order to define a derivation
basis that captures the notion of a composite path derivative (as given
in §2 of Chapter One) we must proceed in a slightly different manner:
given a sequence E = {En} of closed sets such that U En =R and

a positive function & on R x N (i.e., for z € R and for

n=1,23,... there is a positive number &(x,n) defined) we write

BE’,G = {(lx,yl,2) : for some n € N , x,y,z € En

x<z<y and 0< y-x < &(z,n)} .

Then the basis C, defined for a fixed sequence E = {En} is
c., = {8, : 68 a positive function on R % N} .
E E, S
The properties of the bastis Cp depend usually on properties possessed
by the sequence E . In order for Do F=f to hold it is necessary
' E

and sufficient that f(x) be the derivative cf F at zx relative tc
any set E_ tnat contains .

For a more general basis write
c = U {CE, : B = {EW} any sequence of closed sets covering R}.

This basis expresses the general notion of composite path derivation. In
particular if there is some sequence {Pn} of closed sets covering R
for which f(x) s the derivative of F relative to each P containing

x, then D, F =f. Note that C = C, for any sequence E .
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EXAMPLE 3.10 (The symmetric derivation basis) The symmetric derivative
can be expressed naturally by a derivation basis as follows: if & 1is

a positive function on R denote B&S as

Bés {(lx-h,z+hl,z) : @< h < 8(x)}

and

s = {BGS : 8 a positive function on R} .

Except for the obvious relaticn S =< DY this basis is quite

remote both in methods and properties from the other bases defined above.

§4. Elementary properties. The definition of a derivation basis requires

only that one has a nonempty collection of subsets of I X R . As the
example of the trivial basis (Example 3.1) shows there can be no theorems
at all in this generality. This is similar to the situation in a develop-
ment of topology where a general topological space has scarcely any genuine
theorems; as in topology where the theorems flow from strong assumptions
{(separation properties for example)} we need here a number of assumptions
that can be used to develop a theory. In this section we outline just the
simplest and most elementary of these and present a few examples to help
illustrate. In §5, §6, and §7 below we will investigate the deeper and

more powerful assumptions that are needed to give the heavier results of

the theory.

DEFINITION 4.1 [FILTERING DOWN] A derivation basis B is said to be

filtering down if for every Bl and 82 in B there is an element
B, € B with
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The main intention ¢f this property is to allow limit operations,
for then (unless B is trivial) B is a filterbase and the derivation
theory and the integration theory that arise from B can be expressed in
terms of such a limit. In Henstock's development of this type of theory
he uses the phrase “"directed in the sense of divisions" in more or less
the same sense (see Henstock [55]) and in his lectures refers to this in-
formally as "B shrinks"”. If B is nontrivial (i.e., not equivalent to
the trivial basis) and is filtering down one can replace B by the filter

~o ~

B on I xR generated by B and then, since B = B , the ensuing theory

is unchanged.

EXAMPLE 4.2 The derivation bases T ,U ,R, D' , v/ ,p,0° , N, and S

are all filtering down. The example D" (the dual of D) 1is not filtering
down and this accounts for some of its unorthodox behaviour (as for example

the fact that a D*-derivative need not he uniquel.

DEFINITION 4.3 [STRADDLED, ENDPOINT TAGGED] A derivation basis B is
said to be straddled if for every P € B and any pair (I,x) € B one

has x € I . A derivation basis is said to be endpoint tagged if moreover

for suchApairs (I,x) the point x must even be an endpoint of the

interval I .

EXAMPLE 4.4 All the bases we have defined in the previous section are
straddled with the exception only of the sharp bases v? and D¥ .

Only the bases D , RD , ID , N have been defined in such
a way as to be endpoint tagged. The basis D' has not been defined
this way but a moments reflection will show that there is a basis equi-
valent to D' that is endpoint tagged.
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DEFINITION 4.5 [SEPARATION PROPERTIES] Two subsets Bl and 82 are

said to be separated if for any pair (Il,xl) € Bl and any pair (12’x2) € 52
the intervals Il and I2 are nonoverlapping. A derivation basis B is
said to separate two sets X , Y C R if there is an element B € B such

that PB[X] and BI[Y] are separated.

EXAMPLE 4.6 The basis D separates any two sets X and Y that are
topologically separated (i.e., such that there are disjoint open sets
G] and 62 with X ¢ GJ and Y C 02); the basis U does not have
this property.

DEFINITION 4.7 [ADDITIVE PROPERTY] A derivation basis B 1is said to be
additive if for every interval I , B = B(I) U B(R\IQW . Equivalently

this says that for any pair Bl p Bz from B and any interval I there
isa B € B for which

BCB (D U B, NI,

We can say that P splits at I here in the sense that for every pair

(7,x) € B either JCI or else J and I do nct overlap.

EXAMPLE 4.8 The uniform derivation basis U and the refinement basis R
help demonstrate the additive property. The former is not additive and
the latter is. It is precisely this fact that makes the basis R prefer-
able in defining Stieltjes-type integrals. This distinction also shows
that the two versions of the ordinary derivation basis D° and D are
slightly different in their effect: the former is not additive while the
latter, the endpoint tagged version, is additive and again is to be pre-
ferred in a development of a Stieltjes-type integral.
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DEFINITION 4.9 [FINER THAN THE TOPOLOGY] A derivation basis B is

said to be finer than the topology if for every open set G ,
B[G] = B(G)

Equivalently this asserts that for every element Bl € B and every

open set G there is an element Bz € B for which
c
leG] Bl(G) .

EXAMPLE 4.10 Neither of the bases U nor R are finer than the topology
although all of the other bases we have defined are.

DEFINITION 4.11 [IGNORES A POINT] A derivation basis B is said to

ignore a point x if there is an element P € B for which there is

no pair (I,x) € B for any I € I . Equivalently B ignores the

point x if the section B[{x}] is equivalent to the trivial basis.

EXAMPLE 4.12 Usually we will invoke definition 4.11 in a form to exclude
the possibility that a basis ignores a point. Most of the bases we have
so far defined ignore no point. However, a basis may ignore every point
and yet not be trivial (i.e., is not equivalent to the trivial basis).
The composite path basis has been defined in such a way that it ignores

every point.

We give a further example here of a basis which ignores each
point, is nontrivial and might have some interest. From the ordinary deri-

vation basis D we collect sections as follows:
DD = {BIERN] : B €D and N C R s a set of measure zero} .

While this basis does inherit some properties from D 1t nonetheless
ignores every point. The statement Dy F = f 1is equivalent to the

assertion F'(x) = f(x) almost everywhere.
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§5. The partitioning property. One of the most interesting and useful

properties to emerge in this study of derivation bases arises from the
observation that a number of important derivation bases contain an abun-
dance of partitions. While the properties of the previous section have
only relatively minor and predictable consequences in the theory the

partitioning property has deep and far ranging consequences.

DEFINITION 5.1 A derivation basis B is said to have the partitioning

property if for every P € B and every interval I there is a partition

m of I contained in B .

EXAMPLE 5.2 The bases U (the uniform derivation basis) and R (the

refinement basis) can be easily seen to have the partitioning property.
Of course it is this fact that permits a Riemann integral to be defined
in terms of U -limits or R -limits.

EXAMPLE 5.3 (The partitioning property for the ordinary derivation basis)
The partitioning property for the bases D and p° follows from an ele-
mentary compactness argument;bindeed this property is equivalent to com-
pactnéss and the various characterizations of compactness (Heine-Borel,
Bolzano-Weierstrass) can be deduced in turn from the partitioning property
(see Example 5.6 below). This has a curious history. It was proved, of
course, by Henstock [45) and by Kurzweil [72] in their development of the
generalized Riemann integral that now bears their name. Henstock since
has traced the history of the idea back further; in [50, p. 124) he pro-
vides the references Hildebrandt (63], W.H. Young and G.C. Young [118],
and Lusin [78) all of whom use an idea of this sort. Recently the history
has been pushed back even further to the close of the last century by the
references Goursat |36) and Cousin [21]) (we have obtained these latter two
references through Professor G. Goodman). Possibly one can go even earlier

but for now we should, as does Mawhin [85], label this "Cousin's lemma".
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EXAMPLE 5.4 (The partitioning property for the approzimate derivation basis)
That the approximate der@Patzon basis also possesses this property was first
indicated by Henstock Lg7] using a standard category argument. This same
type of argument has been formalized by Romanovski (see Kestelman [69,

p. 217)) and can be considered an abstract presentation of a partitioning

property. Romanovski's lemma can be written ae follows:

let V be a collection of intervals that is hereditary (i.e., if

Icd €V then I €V), that contains every I with the property

J c IO = J €V, and that has the property: if P is perfect and

every interval contiquous to P 1is in V then for some I €V ,

IO NP#gJ. Then V contains a partition of every interval.

The role that Romanovski's lemma plays in the theory of inte-
gration is closely related to the role the partitioning property in general

must play.

This partitioning property has many implications for the
differentiation theory, the measure theory, and the integration theory
associated with a derivation basis. Immediately we see that the precise
setting in which the integration theory must take place is in that of a
derivation basis that is filtering down and which enjoys the partitioning
property. Indeed corresponding to any such derivation basis is a Riemann

type integral.

This property has many far reaching effects; we will isolate
one particularly useful one. If P is a class of intervals it is said to
be additive if whenever [a,b] and [b,c] belong to P so also does
[a,c], and P is said to be B-lgggl for a derivation basis B if there
is in B at least one element P such that for every (I,x) € B it is
the case that I € P . We then have the following elementary, but useful,
theorem. We call this the partitioning argument: loosely it asserts that
if a property of intervals is additive and holds locally for any appropriate

derivation basis, then that property holds globally.
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THEOREM 5.5 [the partitioning argument] Let P be a class of intervals

that is additive and B-local for a derivation basis B that has the parti-

tioning property. Then P contains all intervals.

The following examples illustrate the variety of applications

of this principle.

EXAMPLE 5.6 (The Bolzano-Weierstrass theorem) The partitioning property
for the derivation basis D 1is proved by a compactness argument; conversely
the partitioning argument can establish any of the several equivalent ex-
pressions of compactness on the real line. For an example we show that any
set S that has no accumulation points must bz finite in any interval

which is the Bolzano-Weierstrass theorcm. Say that [a,b] belongs to P
if and only 1f S N [a,b] is finite. Then clearly P 1is additive and
since S has no accumulation points it is easy to see that P is D-local.
By the partitioning argument it follows that P contains every interval and
this proves our claim. Note that the basis D¥ (which also has the parti-

tioning property) could have been used here.

Similar arguments can be used to obtain the Heine-Borel theorem.

EXAMPLE 5.7 (A monotonicity theorem) Let F be a real function whose
lower bilateral derivate D F(x) <is everywhere positive. Then a com-
pactness argument would show that F 18 strictly increasing. The same
can be based on a partitioning argument using the derivation basis D :
let la,b) belong to P <if and only if F(b) - F(a) > 0 . Then P 1isc
clearly additive and our assumptions on the derivate of F show that P

18 D-local. Thus every interval [a,b] belongs to P and so F 1is
strictly increasing.

While this is not too surprising an application it is re-
markable that the same argument will give a monotonicity theorem for a
number of generalized derivates provided only that the associated deri-
vation basis has the partitioning property. Thus one has this same
feature for approxzimate derivates, preponderant derivates, qualitative

derivates, and selective derivates with an identical simple proof in each
case.
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EXAMPLE 5.8 (A Darboux property) If F 1is an everywhere approximately
continuous function then it has the Darboux property. To prove this
using a partitioning argument let A denote the derivation basis that
expresses approximate derivation and which is known to have the parti-
tioning property (see §9 below for more details). It is enough if we
show that F nonvanishing would require that it be olways positive or
else always negative. Say that [a,b] belongs to P 1if and only if
F(a)F(b) > 0 : then P 1is additive and an easy argument shows, since
F does not vanish, that P is RA-local. By the partitioning argument
P contains every interval and that proves our claim.

This same argument can be used for a variety of generalized
notions of continuity to show that functions continuous in such a sense
must have the Darboux property (e.g., preponderantly continuous, select-
tvely continuous).

The partitioning argument is just a formulation of some very
familiar arguments in analysis. The formalization is convenient in that
it can suggest methods of proof that might not otherwise come to mind; for
example many properties of approximate derivatives and approximately con-
tinuous functions can be proved by this argument that have in the past
been approached by more complicated methods. Note that these ideas have
been given formal treatments in the past: thus there are the "full cov-
ering properties" of Thomson [115), the "interval-additive propositions"
of Ford [32], the "creeping lemma" of Moss and Roberts [92], and the
"local, additive families" .of Shanahan [108].

The partitioning property has an important implication for
the variation of additive interval functions and nonnegative subadditive

interval functions which we express in the following lemma.

LEMMA 5.9 Let B be a derivation basis that has the partitioning

property and let h be an additive interval function or a nonnegative

subadditive interval function. If V(h,B(I)) = 0 for an interval I

then h vanishes on every subinterval of I ; if V(h,B) = 0 then h

vanishes identically.
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PROOF. Since lhl is a nonnegative subadditive interval function when
h is additive it is enough to prove the lemma for the subadditive case.
For any € > 0 if V(h,B(I)) = O then there is a f € B for which
v(h,B(I)) <€ . If JC1I then, by partitioning property, there is

a partition ™ of J with m C B . Thus

h(J) =2 h(1') = v(h,B8(1)) < ¢

(r',x") e
and so h(J) <e for all JC I and all € > 0 . Hence h vanishes on
every subinterval of I as required. The final assertion of the lemma
now follows easily since if V(h,B) = 0 then V(h,B(I)) = 0 for every

interval I .

This property of derivation bases that have the partitioning
property is important on its own and can be used even when the basis is

not partitioning.

DEFINITION 5.10 [H-COMPLETENESS] Let B be a derivation basis and H
a family of nonnegative subadditive interval functions. B is said to be

H—comglete if for any h € § for which V(h,B) = 0 one has h =0

An important special case occurs if C is the collection of
all continuous subadditive interval functions: such an h 1is continuous
if for every € > O there is a & > 0 so that h(I) < € whenever
III < d . A basis that is at least C-complete has a number of desirable
properties. C-completeness or H-completeness relative to any collection

H is, by lemma 5.9, weaker than the partitioning property. The termin-
ology is from Henstock [50].

EXAMPLE 5.11 (The symmetric basis is C-complete) The derivation basis S
that expresses symmetric derivation does not have the partitioning property
but is C-complete. This follows from a weak type of partitioning property

available for S that a student of Henstock's, J.J. McGrotty [87], has
discovered:
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let B€S, and ¢ € R then there must exist a set C c (0, +») that

is both closed and countable such that B contains a partition of every
interval of the form le-t,c+t] for t ¢ C.

This suggests however a modification of the symmetric
derivation basis that could possibly be used to develop an integration
theory (in particular that would invert the symmetiric derivatives of
continuous functions). To each B € S ome can find a countable set

Na so that B contains a partition of every interval |[x,y] for

which z ¢ NB and y ¢ NB . Then if one defines
PS = {pUB' : Bes,B'ED[NBI}

this enlarged derivation basis should have the partitioning property,
should be filtering down, etc.. We leave it as a query as to whether
this can be pursued to give an interesting integration theory, and
especially as to whether it is related to Denjoy's symmetric totaliza-
tion process (Denjoy [251).

EXAMPLE 5.12 (The Dini derivation bases are C-complete) It is easy to
see that neither of the bases RD nor LD that express the one-stided
derivations have the partitioning property. That they are C-complete
can be obtained from a form of a partitioning property that is related
to a notion of Lebesgue:

if B € RD and la,b] is an interval then there is a transfinite in-

ereasing sequence {Ei} such that a and b appear in the sequence

and every pair.

([E.oi:t].p E‘I:) ,@_1_’_ g’l:< ts&,l:_{_]

belongs to B .
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On the basis of the above property of RD we can see that
RD 1is C-complete; for if h 1is a continuous nonnegative subadditive
interval function and V(h,B) < & for some B € RD then for any interval
{a,b) there is such a sequence {Ei} linking a and b and by arguing
along the sequence in an obvious fashion one obtains that h(la,b]) < €,
and hence the result. (This can be proved of course much more eimply than
employing the above "Lebesgue chain" but it seems appropriate here to con-
nect the idea with some kind of partitioning argument.)

(Perhaps more surprising is the fact that the dual basis rRD*
defined in §8 below has almost the same "partitioning property" as that
above: for that basis each ﬁ* € RD* permits such a transfinite sequence

{gi} for which each term ([Ei’ Ei01] Ei) € % and so it too must be
C-complete.)

EXAMPLE 5.13  (Composite path derivation) For a fized sequence {En} of
elosed sete covering the real line we have defined the composite derivation
basis (relative to E = {En}) as Cyp = {BE 53 8§} where

BE,G = {(lx,yl, 2 : =x,Y,28 € En for some n, x s zsy,

and O0<y -zx< 8(z,m)} .

We can prove the following: if for each n every point of En is a point
of bilateral accumulation of E 11 then Cp has the partitioning property.

The general composite derivation basis C which is essentially
Just U {C, : all such E = {En}} does not have the partitioning property
and as it stands is not quite suitable for a Riemann-type integration theory.
Henstock suggests the following modificaticn (Henstock [60, p.3 )): to each
sequence E = {En} of closed sets covering R let AE denote the points
inavy E that are isolated on cne side at least in E s this set Ay
18 evidently countable (c¢f. Saks [105,p. 2601). Define ’

PC = {BE,(5 UB" : Bpg €Cp, B' €DIALT,

all sequences E = {En} }.
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Then the arguments in Henstock [60, p. 3 ] can be used to show that PC
has the partitioning property and Henstock claims that the resulting
integral will be, because of Tolstov [116], equivalent to the general
integral of Dengjoy.

§6. Local character. The derivation basis U which expresses uniform

derivation and the derivation basis D which expresses ordinary deriva-
tion have a number of features in common: Loth are filtering down and
both have the partiticning property. Indeed D =U so that D is a
finer filterbase than U . The integration theories that arise in the
two theories are of course similar in many ways; but the integration
theory for D extends the integration theory for U in some powerful

- ways. Thé scope of the limit thecrems available in the D setting is
truly impressive. It is natural to ask for the abstract property resi-
dent in the derivation basis that expresses these limit properties.
Some authors have fixed on the fact that U is defined as {86 : 6 > 0}
fﬁr fixed positive numbers ¢§ and that D employs positive functions
§ . Thus we have the introduction of the function & as a "gauge" and
attention focused on this distinction (e.g., in McLeod [88]). McShane
interpreted this distinction in his setting ([89]) by the phrase "point-
wise character". The clearest expression of this property is however
given in Henstock [55] using the terminology "decomposable" and "fully
decomposable". We will use different language so that we can reserve the
term "decomposition" for a concept that is a decomposition in the usual

sense of that word.

DEFINITION 6.1 [LOCAL CHARACTER] A derivation basis B is said to have

local character if

B=U xERB[{x}]
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Less compactly this requirement can be written as follows: if to each
x € R an element Bx € B is given then there is a B ¢ B for which
BcU x:ER.Bx[{x}] (i.e., for which B[{x}] ¢ Bx for all x € R) .

Loosely put this just asserts that B is completely determined by its
sections B[{x}] as is the case for the ordinary derivation basis but

is not the case for the uniform basis.

Henstock also uses a weaker concept in his investigations.
The stronger concept (local character) is a natural one to impose in
differentiation theory, but for a great many of the results of his inte-
gration theory either in our setting on the real line or in a very abstract

setting one only needs a “countable" version of this property.

DEFINITION 6.2 [O-LOCAL CHARACTER] A derivation basis B is said to have

O0-local character if for every sequence of disjointed sets {Xn} one has

BLU x] = U BIx] .
=1 n=1 "

Less compactly written this says that given any such sequence {Xn} and

any sequence {B_} € B there is a € B for which
b 4 n
c
B[xn] ﬁn for all n .

Certainly a basis that has local character must have O-local
character; the converse is not true as the example of the basis DD below

(Example 6.5) will show.

In our development we will see that these properties of
local character and U-local character will provide all of the needed
convergence results. In particular in their presence the measures h

become genuine outer measures (i.e., countably subadditive set functions)

and the integrals J(I)fdh assume all of the power of the Lebesgue
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integral as regards taking limits inside the integral. 1Indeed, as Henstock
has remarked [ ], these properties in our setting do for integration theory

what "countable additivity"” does in the measure theoretic setting.

The examples indicate which bases possess which properties.

EXAMPLE 6.3 Neither. U nor R have local character or o-local character.
They do have a weaker version of these properties however: <if {Bn} i8 a
finite sequence of elements of U (or of R) and {Xﬁ} a corresponding
sequence of disjointed sets then there is an element B € U (or in R)
such that ﬁ{Xh] c ﬁn for each n .

EXAMPLE 6.4  All of the bases D, DO, D*, D#, N, S, RO, aind 1D have

local character merely because of the marnner in which they were defined.

EXAMPLE 6.5 (A basis with o-local character but not local character)
The basis DD defined by sectioning the ordinary basis D by sets of

full measure, ti.e.,
DD = {B[R\N] : B €D and N € R of measure zero} ,

does not have local character because if x € R 18 given there is in DD
an element Bx with Bx[{x}] = g so that local character would imply
that § € DD which is false. It does have o-local character however.
To see this let {Xk} be a sequence of disjointed sets and ﬁk a sequence
from DD : for each Bk there is an element Bk' from D and a set Nk
of measure zero so that Bk = Bk' [H\\Nk]. Define

-

N = Y W
k=1

and select a B' in D so that B'[Xk] c ﬁk' ; then the element B 1in
DD defined as B = B'{RE\N] <is the one needed to verify the o-local
character property.

k
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This same observation applies to the modified version of
the symmetric basis PS (Ezample §.10). Neither has local character
but each can be proved to have o-local character.

§7. Decomposition properties. We begin by illustrating a most common

device in differentiation theory. For example, in the study of the Dini
derivative fg F(x) one might encounter a situation in which everywhere
on a set X one has +QhF(x) > c . In some sense then one expects the
function F(x) - cx to be increasing on X although that cannot preci-
sely be the case. What is available, however, is a decomposition of the
set X into a sequence of sets {Xn} on each of which the function

F(x) - cx is indeed increasing. To see how this may be done, classically,
we choose a number 0 < 8§(x) < 1 at each point x € X so that for any
0<y-x< 86(x) one has F(y) - F(x) > c(y-x) . This function §

induces a decomposition on X by writing

X . ={x€ex: 2" ssm < 2™ 052, Gen 2™

mJ

IA

for m = 0,1,2,3,... and j=0,%¥1,%2,%¥3, ... . On each set xmj it

is easy to see that F(t) -ct is increasing.

This device is much used in differentiation theory in the
study of all manner of generalized derivatives but in spite of the fact
that it recurs as a theme in a number of instances it has not been singled
out and formalized prior to its mention in Bruckner, O'Malley, and Thomson

(13] as a "§-decomposition". This will play a role in our theory as well.

DEFINITION 7.1 Let § be a positive function defined on a set X .

Then by a 8-decomposition of the set X we mean a sequence {Xn} which
is a relabelling of the double sequence {ij} defined above. Such a

decomposition has the following properties:
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(1) {Xn} is a disjointed seguence whose union is X ,

(ii) if two points x and y belong to the same set X
n

then |y-x| < min {6(x), 65(y)}, and

(iii) if x € X 1is a peint of accumulation of some set xn
then every point y in the set xn N (x-86(x),x+86(x))
has |y-=x| < min {6(x), &6(y)} .

DEFINITION 7.2 Let B be a derivation basis and let X C R . By a

decomposition property of the derivation basis B we mean an assertion

that for every B € B there exists a decomposition {Xn} of the set X

for which each section B[Xn} enjoys some stated property.

DEFINITION 7.3 - Let B be a derivation basis and let X C R be a closed

set. By a closed decomposition property of the derivation basis B we

mean an assextion that for every B € B there is a decomposition of the
set X , {Xn} , such that sections B[Xn] and B[?;] enjoy ‘some stated
property.

There are a number of decomposition properties that are useful
in the development. We shall give several general decomposition properties
that are shared by a number of derivation bases as well as find, for a
particular example of a derivation basis, a decomposition property that is
peculiar to it. Indeed in this theory it is most useful to sort out in
advance of the study of some derivation process the decomposition properties
that will be available for its corresponding basis. Our first general prop-
erty shall be labelled as a Y-decomposition property after W.H. Young and
G.C. Young who first proved a number of the results for the Dini derivatives

that we are able to generalize by utilizing this decomposition property.
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DEFINITION 7.4 A derivation basis B will be said to have the

Y-decomposition property if for every set X C R and every P € B there

is a decomposition of the set X into a sequence of sets {xp} with the
property that ﬁ[xn] contains a partition of any interval with endpoints

in xn . B is said moreover to have the closed Y-decomposition property

if for X closed such a decomposition can be founé so that moreover if

y € i; and x € X is sufficiently close to y then B[ﬁ;] contains

a partition of the .interval ([x,y] (or [y,x] if vy < x)

(In particular note that B[i;] would then always contain a
partition of any interval ([a,b] with a, b € 2; and a and b are not
isolated on the right and left, respectively, in i; , while if a and b
are so isolated one can at least find points a' < a and b' 2 b arbitra-
rily close to a and b respectively and so that partitions are available
for the intervals [a',al , [a',b') , and [b',b] ; from this one can at
least obtain approximate results for [a,b] (e.g., any additive interval
function h would have h([a,b]j) = h([a',b']) -h(fa', a]) -h({b,b']) and in-

formation about the three terms on the right of this equality would be availahle.

EXAMPLE 7.5 (A decompostion property for the uniform basis) The basis
U has both the Y-decomposition property and the closed Y-decomposition
property (from 7.7 below and because RD = U). It is easy to see that it
has a much stronger property: if B € U and X bounded is given there

i8 a finite decomposition of X , {XI’XZ""Xk} such that B[Xk] containsg
any interval point pair (la,bl, ¢} for which ¢ € [a,b] and la,b] lies
inside the bounds of Xk .
EXAMPLE 7.6 (A decomposition property for the sharp basis) The basis
D¥ has a decomposition property almost as strong as that for U : if
B € o and X c R is given then there is a decomposition of X 1into a
sequence of sets {Xh} such that for any interval [a,b] that lies
within the bounds of X, there is an element (la,b), c) € BLX T .
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EXAMPLE 7.7 (Decomposition properties for the Dini derivation bases)
The bases RD and LD have the Y-decomposition property and the closed
Y-decompogition property. In fact, given B € RD and a set X there
18 a decomposition {x} of X so that any interval [a,b] whose
right endpoint i8 in X~ and which lies inside the bounds of X, must
have the element (la,bl,a) € BLX ] .

To see this let 6(x) be given so that
B={(lz,y)l,x) : 0< y-x< &(x)},

and let {X } be a §-decomposition of X . Then {x} must have the
stated property and this decomposition can be used to verify the conditions
needed for the Y-decomposition property. For the closed Y-decomposition
property the same with X closed works.

EXAMPLE 7.8 (A decomposition property for the ordinary basis) The basis
D has the following decomposition property that is stronger than the
Y-decomposition property: if B € D and X ©¢ R 1is given then there is a
decomposition {Xh} of X with the property that B[Xh] contains a parti-
tion T (containing no more than two elements) of any interval la,b] that

lies within the bounds of Xh and intersects X, -

EXAMPLE 7.9 We shall give some gemeral methods later in §9 to show that
the derivation bases that express approximate derivation, selective deri-
vation, qualitative derivation, and preponderant derivation all have the

Y-decomposition property and the closed Y-decomposition property.

EXAMPLE 7.10 (Decomposition properties for the symmetric basis) The
symmetric derivation basie S has the following closed decomposition
properties which are of some use in establishing a number of properties

of symmetric derivatives.
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(A) If Xc R 1is closed and B € SIX] there exists a dezompo-
sition {X } of X with tke property that if « € X 1is a
right hand limit point of Xn then for y € X, y>&x and
sufficiently close to x there must be a point z € (x,y)NX,
for which (I ,z) , (Iy,y) and (I,z) all belong to X

where
”Ia: = [z - (y-2) , o + (y-3)) ,
Iy = [y - (z-x) , y + (z-z})1 , and
Iz = [z - (y-z) , 2 + (y-z)} |

8o that F(Iz)

(The same assertion holds for x a left limit point of Xn

]

F(Ix) + F(Iy) whenever F 1s additive.

with appropriate changes of course.)

(B) This decomposition {Xn} can_be arranged as well so that

whenever x 18 a right hand limit point of Xn and y >z
is a left hand limit point of X, and I* denotes the interval

N&,,
-
+

(2 - (yz) , EH 4 (ym)) =

then there are (Ii,:ci) €BlXx] , 1 =20,1,...,5 so that

r

P4 = oz b -0t Ry

()

for additive F .

QUERY 7.11 What are the appropriate decomposition properties for the

dertvation basis that expresses the approximate symmetric derivation?
For a first application of the Y-decomposition properties we

establish a useful criterion for a derivation basis to have the partitioning

property.
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THEORM 7.12 Let B be a derivation basis that has the closed Y-decomposition

property and has the following local property as well: if B € B, x € R and

€ > 0 then there are numbers vy and 2z with x - €<y<x<z2<x+ € so

that P contains a partition of the intervals [y,x] and ([x,z] . Then B

has the partitioning property.

PROOF. Let B € B be given. We need to prove that § contains a partition
of every interval. Let J denote the collection of all intervals [a,b]

such that B contains a partition of every subinterval of [a,b] and write
¢ = U {(a,b) : [a,b} € T} .

The set G is open and the theorem is proved if we are able to show that
G =R for if [c,d)] € G then since a finite number of elements J will
cover [c,d] we can obtain a partition of [c,d] . To obtain a contradic-
tion suppbse that the set Q = R\G is nonempty. We already know that it
must be closed: if [c,d) is an interval contiguous to Q then f con-
tains a partition of every subinterval [a,b] with c<a<b<d . By
the hypothesis of the theorem p must contain a partition of [c,a] and
[b,d) for some such a and b so that we now have that f contains a
partition of [c,d] and also every subinterval. Consequently Q can have

no isolated points.

Using the closed Y-decomposition property we can decompose Q
into a sequence of sets {Qn} such that B[Qn] contains a partition of any
interval [x,y] with endpoints in Qn and B[Qh] contains a partition of
[x,y] provided x,y € 55 and not isolated on the right and left respectively.
By Baire's theorem (sce Saks [105, p. 54]) one of these sets (Qm say) 1is
dense in a nonempty portion of Q (Q I [c,d] say). A consequence of this
is that B must contain a partition of any subinterval of [c,d] . To see
this we only have to subdivide any such interval into subintervals that are

contiguous or complementary to @ , and subintervals [x,y] with
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x,y €00 [¢c,4] = aﬁ N [c,d] for which x is not isolated on the right
and y 1is not isolated on the left. Since B contains a partition of any
interval of either of these types we can find a partition of every subin-
terval of [c,d] as claimed. But then QN (c,d) = g which is impossible.

This contradiction proves the theorem.

§8. The dual basis. Conventional abstract differentiation theory is dominated

by the duality between the notions of a full cover and a fine (or Vitali)
cover. That general theory commonly proceeds by making some assumption on the
nature of these covers, most frequently that some version of the Vitali cover-
ing theorem is available (e.g., see Hayes and Pauc [39, Chapter II]). On the
real line we require a more delicate approach which we achieve by the notion
of a dual basis; in this way theorems which would normally require a Vitali-
like assumption merely require the appearance of the dual basis. Thus our
viewpoint should be that in the study of a derivation basis B , particularly
in the study of the differentiation theory that arises, the dual basis B*

must take a natural appearance.

DEFINITION 8.1 Let B be a derivation basis. A subset B* of I x R is
said to be B-fine if for every B € B and every x € R either B[{x}] = @
or else B* NB[{x}] # § . The collection of all B-fine subsets of I x R

is denoted as B* and referred to as the dual of B .

Usually we shall assume that B ignores no point so that the
condition in 8.1 need only read that B* NP ({x}] #@ for ali B € B and
all x € R . We choose to call the derivation basis B”* the dual of B
because of the fact that under most circumstances (see Theorem 8.6 below)
the dual of B* , (B*)* , is equivalent to B (i.e., B=B**). In fact
if B is filtering down and ignores no point then B** is the filter

generated by the filterbase B.

EXAMPLE 8.2 The dual basis of the trivial basis T consists of all subsets
of 1 xR and so in particular T =~ T".



EXAMPLE 8.3 The dual basis of D 1is the basis D* <introduced in §3 above.

EXAMPLE 8.4 The dual basis of D° is the same as the dual basis of U.
From this we see that the second dual of U, gt s 18 equivalent to D° .

There are a number of natural questions that we can now answer
for dual bases. Some of these are trivial and some quite surprising. For
most derivation bases B (those that are filtering down and that ignore no
point) the dual basis B* behaves in a startling manner with respect to
derivation: for interval point functions h and k the bases B and B*

interchange the upper and the lower derivations so that
QB hk(x) = DB* hk(x) and DB hk(x) = EB* hk(x)

A referee of an earlier version of this theory has remarked that this might
be gquite shocking to some readers and recommends that it be emphasized that
fﬁis interchange is just our abstract expression of a well known fact re-

garding the computation of a "lim sup" : a lim sup can be viewed as a "sup

- inf" or equally well as an "inf - sup” by a familiar device. One has for

example
lim sup f(y) = 4inf sup {f(y) : 0 < y-x < 8}
yrx+ d>o0
and
lim sup £(y) = sup { inf £(x+n ) - {hn} a sequence Y 0}

y*rx+ n
The remaining properties should be less "shocking".

LEMMA 8.5 Let A and B be derivation bases that ignore no point. If
A<B then A* ¢ B* ; if A=B then A* = B* .
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PROOF. If PB* € A* is given and A < B then for any B, €B and
X € R there is an element Bl € A with Bl c Bz and so

B* N B, xh >2p* N B, [{x} #9
by the definition of the dual A* . Consequently PB* € B* and hence

A* ¢ B* as required. The final assertion follows from this in an obvious

manner.

THEOREM 8.6 Let B be a derivation basis and B* its dual. Then the

following must hold:

8.6.1 if B* € B* and B*cyc 1 x R then necessarily vy € B* ,

8.6.2 B* has local character, and

8.6.3 if B ignores no point then B** > B .

If we assume as well that B is filtering down and ignores no point then

the following also hold:

8.6.4 B*>B,
8.6.5 if B € B and B* € B* then B N B* € B* ,

8.6.6 if B has local character then B** is the filter generated by

the filterbase B on I x R, and

8.6.7 if B has local character then B** =B .

PROOF. Assertions 8.6.1 and 8.6.2 are obvious. For 8.6.3 if B ignores

no point then B* also can ignore no point; thus if B* € B* and B €B

we have

B*NB [{x}] = B* [{x}INPB#P

so that by this symmetry when B is in B it is also in B** .
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For 8.6.4 under the additional assumptions here any pair
Bl and Bz in B have Bl n B2 [{x}) # 8 (since there is a _
BB c Bl n ﬁz and B3 [{x}] cannot be empty) so that each element of
B is in B* . For 8.6.5 if B € B and B* in B* are given and

x € R and Bl € B are also given we certainly have

B, N B, NB* ix}h B, N B* [{xh # ¢
for any B, € B with B, C B, . This shows that BN B* is in B*

as required.

Finally we need only show that given an element B** of
B** there is a B € B for which B C B** for then our assertions
would follow from 8.6.1 and 8.6.3. To this end we fix x € R and de-
termine a Bx € B so that ﬁx[{x}] c B** . If this were not possible

i.e., if there is no such Bx » then one can define
B* = {(I,x) : I €1, (I,x) ¢B*™}UT x@®\{x} .

By our assumptions on B** we see that B* U B [{x}] # # for every
y € R and every P € B : for y # x this is immediate and for y = x
this is because B** can contain no PB[{x}] for B € B . But this
contradicts the fact that B** ¢ B** for this B* so defined is an

element B* that does not meet B** at the point x .

Hence we have for every x € R and element Bx € B for
which Bx [{x}] € B** . Because B has local character we may find an
element P of B so that PB[{x}] ¢ Sx for each x ; this is of course

the required P that is a subset of ﬁ** and the proof is complete.
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EXAMPLE 8.7 The assumption that a basis ignores no point is important
in order for the dual basis to have any properties. For example the
basis DD <ignores every point and it follows that its dual Dt eon-
tains every subset of 1 x R and in particular DD is equivalent to
the trivial basis.

Thus even though DD < D one does not have pp* c p*
as Lemma 8.5 would show, and other properties of the dual that require

a basis not to ignore a point also fail.

THEOREM 8.8 Let B be a derivation basis that is filtering down and does

not ignore a point c € R . Then the derivates of an interval-point function

h relative to an interval-point function k at c¢ with respect to B and

its dual B* have the following relationship:

QB hk(c) = DB* hk(c) and DB hk(c) = EB* hk(c)

PROOF. Suppose that B hk(c) < r ; then there is a B € B so that

h(I,c)
k(I,c)

for all (I,c) € B . Let PB* belong to B* so that by definitian

B*[{c}] must meet B : this gives
h(I,c) . *
lnf{_—k(l,c) : (I,c) €8B } < r,

and hence EB* hk(c) = r . As this holds for all such r we have estab-
lished the inequality D« hk(c) = ﬁé hk(c)

In the opposite direction if Bﬁ hk(c) > r then every P € B

must have at least one element (I,c) for which

h(I,c)
k(1,c)
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"and we can define the collection

h(I,c)

* - —_—r =
ﬂ = {(Ilc) : I €1 'k(I,C)

r} U T x (RN\{c}) .

From the above remarks B* must belong to B* and so

h(IlEl_ . *
inf { K(T.o) ° (I,c) € B } z r

which proves that EB* hk(c) > r , yielding the inequality

D (hk(c) z Dy hk(C)

and the theorem follows.

§9. Natural derivation bases. If we are given a family of filters

{N(x) : x € R} such that N(x) is a filter convergent to x then we
have defined in §3 above a derivation basis generated by the family
{N(x) : x € R} and denoted for convenience N . Not only does this
formulation express a great many familiar derivation bases (approximate,
selective, path derivation etc.) it is a sufficiently general object on
its own that it can be studied abstractly toc some advantage. Indeed
there is a characterization of such derivations in terms of the simple

language we have previously developed.

THEOREM 9.1 Let B be a derivation basis that is filtering down, endpoint

tagged, finer than the topology, and has local character. Then there is a

system of filters {N(x) : x € R} with each N(x) a filter converging to

the point x such that the derivation basis N generated by the family is

equivalent to B . If B does not ignore a point XO then the filter

N(xo) is nontrivial (i.e., {xo} ¢ N(xo)) .

PROOF. For each x € R and P € B let MB(X) = {y €R: ([x,y]l,x) or
(ly,x},x) is in B} , and let N(x) be the filter generated by the filter-

base {Mﬁ(x) U {x} : B € B}.
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The characteristics of a derivation basis that make it
expressible as a filtered derivation process occur frequently enough

to warrant a new definition.

DEFINITION 9.2 [NATURAL DERIVATION BASIS] A derivation basis that is
filtered down, endpoint tagged, finer than the topology, has local

character and ignores no point is said to be a natural derivation basis.

In any discussion of a natural derivation basis we will move
freely between the generating filter family and the basis itself; certain
properties prove to be more readily expressible in terms of the nature of
the sets in the filters N(x) than in the compact language of the deriva-
tion basis terminology. Note especially that a natural derivation basis
is additive as the next lemma shows. ‘If N is a natural derivation basis

then always N <D and so N* ¢ D* .

LEMMA 9.3 If a derivation basis B is filtering down, endpoint tagged

and finer than the topology it is necessarily additive. 1In particular

every natural derivation basis is additive.

PROOF. Given Bl , Bz €B and I = [a,b] define the open sets

= = _ b-a
Gl R\ 1{a,b} and G2 (a 7

Since B 1is finer than the topology we may select elements 53 , 64 €B
c . . .
so that BB[Gl] Bl(Gl) and B4[G2] c Bl(Gz) . Finally, since B is

b-a b-a b-a
,a+4)U(b-—4,b+—4—-).

filtering down we may select an element f € B with B C Blﬂ Bzﬂ B3ﬂ B4 .
The lemma is proved now merely by showing that this B splits at I ,
i.e., that if (J,y) € B then J cannot overlap I , and this follows
easily from the construction and the fact that Yy here must be an endpoint

of J .



REMARK 9.4  Natural derivation is very general. Suppose that a function
F 1is given and some generalized derivation process has yielded the extreme
derivates GD F(x) and GD F(x) such that each is a derived number of the
function F at x and GD F(xz) < GD F(z) . Then write for any € > 0

n(x) = (zx-e,x+e) N {y : GD F(z)-€ < il ;:5(‘“ < GD F(z) +¢}

and let N(x) be the filter generated by the filterbase
{ne(:c) s e >0} .

Each N(x) 1is a nontrivial filter converging to x and the corresponding

derivation basis N has Dy F(z) = GD F(xz) and Dy F(z) = TD F(z) .

In particular evefy generalized derivative whose values are
restricted to lie at derived numbers (unlike the symmetric derivative but
like the approximate) gives rise to a natural derivation process that ex-
”presses it, but tailored, it must be noted, to the particular function

under investigation.

There are a number of more delicate properties of natural
derivation bases that are expressible in terms of the sets that appear
in the families N(x) . One group of these, called intersection condi-
tions, is particularly useful. These are related to similar notions
explored in Bruckner, O'Malley and Thomson [13].

DEFINITION 9.5 Let {N(x)} be a system of filters with each N(x)

X€R

converging to x . A system {nx}xGR is said to be a choice from N

if each nx € N (x)
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DEFINITION 9.6 A system {N(x)}xER will be said to have the stated
intersection condition if corresponding to any choice {nx}xGR from

N there is a positive function & on R so that whenever
0 < y-x< min {8§(x), 6(y)}

the two sets nx and ny from the choice intersect in the described

manner:

9.6.1  [INTERSECTION CONDITION] M, n ny N [x,yl #8 ,

9.6.2 [INTERNAL INTERSECTION CONDITION] N, n ny N (x,y) #9 ,
9.6.3  [EXTERNAL INTERSECTION CONDITION [p) , p > O]

N, N ny N (x~-p(y-x), x] # @
and
nxﬂnyﬂ ly , y+ply-x)# 98 ,

9.6.4 [ONESIDED EXTERNAL INTERSECTION CONDITION {pl, p > 0]
as for 9.6.3 but only one of the two intersections need

be nonempty.

Our first result shows that in the presence of an intersection

condition the derivation basis inherits some strong properties.

THEOREM 9.7 Let N be a natural derivation basis that satisfies the

intersection condition (9.6.1). Then N has the Y-decomposition property

and the closed Y-decomposition property. If in addition each set nx € N(x)

is twosided at x (i.e., the sets [x,+®) and (-%, x] do not belong to

N(x)) then N has the partitioning property.

PROOF. Let B € N be given. Then by the definition of N there is a
choice 7 , {n(x) : x € R} , so that

B=1{(ly,z], x) : y,z €n(x) , y S x=<2z2}.
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Corresponding to this choice 7 there is a positive function § on R
so that if O< y - x < min {8(x), 8(y)} then the intersection condition

9.6.1 is met for m(x) and n(y) .

If X CR is given then let {Xn} be a 8-decomposition of
the set X . If x,y € xn with x < y then by the nature of the decom-
position m(x) N n(y) N [x,y] contains a point z say. If z =y then
the pair ([x,y},x) belongs to B[xn] ; 1if =z = x then the pair
([x,y],y) Dbelongs to B[Xn) ; if x < z <y then both pairs ([x,z], x)
and ([z,y}, y) belong to B[Xn] . Thus we see that B[Xn] contains in
any case a partition of any interval with endpoints in xn . This proves

the Y-decomposition property.

If X is closed and {xn} denotes the same decomposition
then for any point x in the closure of Xn , but not in Xn , we must
have Xn N (x - 6(x) , x + §(x)) nonempty and every point y in that

intersection will satisfy
|x - y| < min {8(x), S(y)}

by the nature of the §-decomposition. Again then the above arguments supply
a partition of [x,y] or |[y,x] . This proves that the closed Y¥-decomposi-~-

tion property holds.

Finally to see that the partitioning property holds we need
only appeal to Theorem 7.12 since B has the closed Y-decomposition
property and the twosided éssumptions that are given in the statement of
our theorem give precisely the local property needed for 7.12. This then

completes the proof.

EXAMPLE 9.8 (Intersection conditions for the approximate derivation)
Let {N(x) : £ € R} be a system of filters with the following density
restrictions: each n, € N(x) has lower (inner) density on the right
at x exceeding p and on the left exceeding X . We say then that

N is ¢f (p,A)-density type. Type (1,1) <is defined by having density
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equal to 1 and for 0 = p,A < 1 the "exceeding" is used. The corres-
ponding natural derivation bases can be used to express the standard
density derivations: (1,1)-density type for the approximate derivative,
L%:-%) -density type for the preponderant, and (0,0)-density type for
the weakest density derivation.

The following density types have the following intersection

properties:

(1,1) -density type - intersection condition,
internal intersection condition, and
external intersection condition [p)
for all p > 0 ;

(p,A) -density type - intersection condition and

p+A=1 internal intersection condition;

(p,A) -density type, - intersection condition,

P >‘% and A > % external intersection condition p

for some p > 0 .

Note as a consequence of these intersection conditions that a
natural derivation basis of (p,A)-density type with o + A > 1 (in parti-
cular the approximate derivation basis) has the partitioning property.

EXAMPLE 9.9 (Intersection conditions for paths) A system {Ex > x € R}
where each E, 18 a set having x as a point of accumulation gives rise
to a system of filters by taking merely for each N(x) the filter gener-
ated by the filterbase {Ex N(x-€e,x+¢€):e>0}. In this case the
intersection conditions assume a simpler form; for example this N has
the internal intersection condition if and only if there exists a positive

funetion § on R so that if 0 < y-x < min {8(x), &(y)} then
E n Ey N (x,y) # 4 . '

Thus our intersection conditions for a natural derivation
basis translate into direct assertions about the intersections of the paths
for path derivations. (See Bruckner, 0'Malley and Thomson [13] for an
account expressed in simpler language.)
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QUERY 9.10  (Selective derivation) The idea behind 0'Malley's notion
of selective derivation is very closely related to the internal inter-

section condition. There are two problems here that are worth considering.

#1. If f is the selective derivative of a function F (for a given
selection) is there a choice of paths {Ex : x € R} possessing the in-
ternal intersection condition so that f 1is the path derivative of F
for the system {E:c s x € R} ?

#2. If DN F = f for a natural derivation. basis N that possesses the
internal intersection condition is there a selection so that f can be

realized as the selective derivative of F relative to that selection?



CHAPTER THREE

THE VARIATION

§1. Elementary properties. Recall that for an.arbitrary interval-point

function h and any derivation basis B the variation of h over B
has been defined by setting V(h,B) = inf {v(h,B) : B € B} where
V(h,¥) = 0 and for a nonempty B C I X R we have defined

v(h,B) = sup {2 ( |n(1,x)| : ™ a partition, ¥ C B} .

I,x) €T
This concept is fundamental to all of our concerns in this study; it yields
the measure theory, an upper integral and it permits an expression of most
of the principal results in the differentiation theory and in the integration
theory. As it plays this fundamental role we need to address the properties

of the variation prior to developing any other theory.

In this section we develop the basic computational properties of

the variation. In particular we need to focus on the variational expressions
v{(fh,B[X])) and V(fh,B(I))

where f 1is a point function, h an interval-point function, B a deriva-
tion basis, and B[X] and B(I) sections of B corresponding to subsets
'XCR and I €1 . By considering these expressions separately as functions
of £, h, B, X, and I we can see numerous manipulations that require some
investigation. For the first of these we observe the relationship between

the variations relative to two different but related derivation bases.

LEMMA 1.1 Let h be an interval-point function and suppose that A and B

are derivation bases.

1.1.1 if A<B then V(h,A) = V(h,B) , and

1.1.2 if A=B then V(h,A)

il

v(h,B) .
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PROOF. If A <B and Bz € B then there is a Bl € A such that
El c Bz and hence V(h,A) = V(h,Bl) = V(h,Bz) . As this is true
for all Bz € B we must have V(h,A) = Vv(h,B) . The second assertion

of the lemma follows easily from the first.

The most important and frequently used of the elementary
properties of V(h,B), considered as a function of h , is the seminorm
property: namely that under the additional hypothesis that B is
filtering down Vv(h + h',B) = Vv(h,B) + V(h',B) for any pair of
interval-point functions h and h' . This property along with some

other simpler and similar ones is our concern in the next pair of lemmas.

LEMMA 1.2 Let h and h' be interval-point functions and let pB and B°

be subsets of I X R . Then

1.2.1 0 < V(h,p) <+ ,
1.2.2 if B ¢ B' then V(h,B) < V(h,B") ,

1.2.3 for any real number ¢ not equal to zero,

V(ch,B) = lc| v(n,p) ,
1.2.4 if |h| =< |h'| then

v(h,pB) :';"v(h',ﬁ) ,
1.2.5 v(t + h',B) = Vv(h,B) + V(h',B) .,

1.2.6 if P and PB' are separated then

v(h,BUB'Y = vVv(h,B) + V(h,B') .

PROOF. Each of 1.2.1 through 1.2.5 is completely elementary. For 1.2.6
we only have to note that if P and PB' are separated then any partition

m € BUP' can be split into two separate partitions m and T, with
m=T U T, and m C B and m, < B' , and conversely given any two such

partitions ™ and m, the set 7 = ™ u L C B UB' is again a partition.



LEMMA 1.3 Let h and h' be interval-point functions and suppose that

B 1is a derivation basis. Then

1.3.1 0 = v(h,B) = += ,

1.3.2 for any real number c¢ not equal to zero,

V(ch,B) = |c| v(n,B) ,
1.3.3  if |h] = |h'| then
V(h,B) = v(n',B) ,

1.3.4 if B is filtering down then

v(h + h' ,B) = v(h,B) + v(h',B)

PROOF. Each of 1.3.1, 1.3.2, and 1.3.3 follow from corresponding assertions
in the previous lemma. For 1.3.4 note that if Bl ' Bz and B3 are given
. . c
in B with B3 ﬁl n Bz then

V(h + h' ,B) =Vv(h + h',B

) =v(h .33) + V', B,)

3
v(h, Bl) + v(h', Bz) '

3

1A

by computations above. Since B is filtering down there is such a B3

for any choice of Bl and Bz and now 1.3.4 follows immediately.

EXAMPLE 1.4 It should be noticed here that the seminorm property of the
vartation (i.e., that V(hi +h2, B) s V(hl s B) + V(h2, B)) requires that

B be filtering down, and this property may fail for some derivation bases.

D', the dual of the ordinary derivation basis, does not enjoy this property.
Let h(I,x) = |I| <if |I| 4s rational and zero otherwise, and let

g(IL,x) = |I| - h(I,x) . Then V(h,D*) = V(g,D*) = 0 and yet V(h+g, D*)=+w,

Our next concern is with the expressions V(h,B[X]) and V(h,B(I))
thought of as functions of the sets X and I .
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LEMMA 1.5 Let h be an interval-point function and B a derivation

basis. Then for sets X,YCR and I, J € 1+ p

1.5.1 if B is filtering down,

v(h,B{XUY]) = Vv(h,B[X]) + V(h,B[Y]} ,

1.5.2 if B is filtering down and separates X and Y ,

v(h,B{xUY]) = v(h,BI[X]) + v(h,B[Y]) ,

1.5.3 if I and J do not overlap ,

v(,B(1UJ)) = v(h,B(I)) + v(h,B(3)) ,

1.5.4 if B 1is filtering down and additive, and I and J

do not overlap,

V(h,B(1UJ)) = v(h,B(1)) + V(h,B(I)) ,

1.5.5 if B is filtering down and additive,

v(h,B) = v(h,B(I)) + V(h,B(R\IO)) .

PROOF . Assertion 1.5.1 is a special case of 1.3.4 : set hl = XX h and
h2 = Xy h . Assertion 1.5.2 follows routinely from 1.2.6.

For 1.5.3 note that if B € B (1 UJ) and I and J do not
overlap then PB(I) and B(J) are separated and so 1.5.3 can also be made

to follow from 1.2.6.

For 1.5.4 if B is also additive as well as filtering down
then given any Bl ' Bz € B there is a B3 c Bl n BZ with B3 € B and
BB splits at I and J . Thus

v(h,B(xUJ)) = V(h,B3(IUJ)) = V(h,BB(I)) + V(h.B3(J))

1A

V(h,Bl(I)) + v(h,Bz(J))

and this together with 1.5.3 can be used to establish the desired equality.

Similar arguments will prove the final assertion.
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QUERY 1.6 (Additivity of the variation) One might wish to address the

problem of determining conditions under which the additive formula
V(F + G,B) = V(F,B) + V(G,B) might hold

for additive interval functions F and G and for a derivation basis B.
For instance such an investigation is given in Cater [18] with B = D([a,b])
and necessary and sufficient conditions for this formula to hold are presented
in terms of the Dini derivatives of the funetions F and G. Are there

other theorems of this type that are of any interest?

§2. The fundamental lemma of the variational theory. Almost all of the

important results expressible in our language arise from two deep properties
of the variation which we present as our fundamental lemma. The hypothesis
of local character (as well as the weaker one of O-local character) plays a
key role. In addition part of our lemma needs a uniformity assumption;
secause of the role it plays in Henstock's theory of integration we refer

to this as "property H".

DEFINITION 2.1 An interval-point function h 1is said to have the property H
relative to a derivation basis B if for every positive number € there is a
B € B with

V(h,B(1)) = V(b BI)) + €

for all 1 € I+ .

The property H plays an important technical role in establish-
ing some of the limit properties of the variation. We address immediately
the problem of determining some situations in which that property is available.
Note in particular that whenever the derivation basis is additive this property
is easily obtained; thus any natural derivation basis allows the application

freely of these lemmas.
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LEMMA 2.2 Let B be a derivation basis and h an interval-point

function. Then in order that the function h shall have the property

H relative to B either of the following two conditions suffice:

(@) Vv(h,B) < +© and B is both filtering down and additive,

(b) V(h,B) < +o® , h is an additive interval function or a non-

negative subadditive interval function, and B is filtering

down and has the partitioning property.

PROOF. If B 1is filtering down and additive with V(h,B) < +® then,

using Lemma 1.4.5 we must have

(*) V(h,B) = V(h,B(I)) + V(h,B(RNI))

for any I € 1 . Given € > 0 choose B € B so that
v(h,B) = Vv(h,B) + €

and observe that

V(h,B(1)) £ v(h,B) - V(h,ﬁ(R‘\IO))
< v(h,B) + € - V(h,B(R~I")

= vh,B(I)) + €,

using (*) in the final inequality, and this is the property H as required.
The same proof works under hypothesis (b) simply by proving that (*) again

holds in such a circumstance; we omit the details.

It will be shown below (Chapter Five, §2) that any uniformly
integrable interval-point function h has the property H relative to a
basis that is filtering down and has the partitioning property. This allows
a number of convergence properties of integrals to be proved without an
"additive" assumption on the derivation basis. This is the technical reason
that Henstock in a recent paper [6l] was able to obtain various limit theorems

in the setting of what he calls "non-additive division spacas".
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Property H yields a useful property of the variation that

it is convenient for us to express here.

LEMMA 2.3 Let B be a derivation basis and suppose that an interval-

point function h has property H relative to B . Then

V(h,B) = sup {Vv(nh,B(I)) : I €1}.

PROOF. Because we are assuming the property H for the interval-point

function h there must be for any € > 0 an element P € B with
V(h,B(1)) = V(h,B(I)) + €/2

for all I € I+ . If c is any number for which c¢ = V(h,B) then there

must exist at least one partition 7 € B for which

L g.x)€m |h(g,x)| >c-€e/2
and then if I is an interval for which I 2 o(m) (i.e., each J C I

if (J,x) € m,
V(h,B() + /22 V(B 2L Iha,x)| >c-€e/2.

From this we can conclude that sup V(h,B(I)) > ¢ - ¢
1€l

for evexy € > 0 . But € > 0 is arbitrary and c < v(h,B) is arbitrary

and this gives V(h,B) = sup V(h,B(I)) ; since the opposite inequality
1€]

holds trivially the lemma has been proved.

We can now state our fundamental lemma which is to play an
obvious role in the development of the measure theory, and plays a strong
technical role in the development of the properties of integrals and deri-

vatives in the next two chapters.
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LEMMA 2.4 [FUNDAMENTAL LEMMA OF THE VARIATIONAL THEORY] Let B be a

derivation basis that has U-local character and let h be an interval-

point function.

2.4.1 for any sequence of sets x,xl,xz,x3,... with

v(h,B[X]) = L Vv(,B[X.]1) ;
i=1 .

2.4.2 assuming in addition that B is filtering down, for any sequence

of nonnegative point functions f'fl'fz’f3"" with {fi}

nondecreasing, 0 = f(t) = sup fi(t) , and such that each function
i

fih has the property H relative to B,

v(fh,B) < l1lim V(fnh,B) .

I >

PROOF. We prove{the first assertion (cf. Henstock [54, Theorem 44.10,
p. 232]). It is clear that whenever Y C 2 , V(h,B[Y]) = V(h,B[2]) so
that there is no loss in generality if we assume that the given sequence
{xi} is disjointed. For € > 0 choose elements Bn € B such that

V(B (X 1) = VHnBIX ] +e 277

Because B has 0-local character and the sets {Xi} are

disjointed there must be an element £ € B with the property that
c
BIX) € B

for each n .
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Let T C B[(X] Dbe an arbitrary partition and define mo= n[xn] : then

|
™
™

L |n,x| In(z,x) |

= I v(h,Bn[xn])
n=1

oo
= I (V(BIX ] +¢€ 27 .
=1

as this holds for all such partitions 7 C B[X] we have

-

V(h,B[X]) = Vv(h,B(X]) = I V(h,B[Xn]) + €
=1

and since € > 0 is arbitrary the first part of the theorem is proved.

For the second part of the theorem (cf. Henstock (54, Theorem
44.9, p. 231)) suppose that € > 0 and O < c< 1 are given. For each
x € R there is a least integer n(x) such that for every m = n(x) one

has fm(x) > c f(x).

_ Define the sequence of sets xn = {x € R : n(x) = n} and
observe that this is a disjointed sequence whose union is all of R .

Select an element Bn € B so that for every I € I+
-n
< .
V(fnh,Bn(I)) = V(fnh,B(I)) + €2

this uses the fact that each fnh has the property H . Using the O-local
character of B , as in the first part of the theorem, choose an element

B € B so that B[xn] c Bn for all n .

We now compute V(fh,B) : if 7 ¢ B is a partition write
again, “n = H[Xn] ’ In = U(Hn) and let N be the first integer for which

“n =@ for n = N+1 (this is possible because 7 is finite). Then
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V(fnh,Bn (In))
-n
{V(fnh,B(In)) + €2 '}
N
= c E V(ho,B(In)) + €

S ¢ V(Eh,B) + te.

(We have used here a number of the elementary computations from the pre-

vious section without comment.)

In this inequality ¢ may be arbitrarily close to 1 and
€ to O ; the choice of N depends on the pair ¢ and € but it is

clear from this inequality that
V(fh,B) < sup V(fih,B)
i
and the proof of the theorem is complete.

There are some immediate corollaries that we shall state for

future reference.

COROLLARY 2.5 Let h be an interval-point function and £ a point function.

If B ‘is a derivation Basis that has O-local character then

2.5.1 if v(h,B) = 0 it follows that V(fh,B) = 0 , and conversely

2.5.2 if v(fh,B) = 0 then V(h,B[X]) = 0 vwhere

X ={x : £(x) # g} .
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PROOF. If v(h,B) = 0 then by writing Xn = {x €R : If(x)| < n}
we have V(fh,B[Yn]) =n V(h,B[Yn]) <nvV(h,B) = 0 by some of our

elementary properties. But the fundamental Lemma then gives

V(fh,B) = I V(fh,B[Yn]) = 0
n=1

as required.

The second part of the corollary is proved in precisely the
same way but using the sets Yn = {xX € R : lf(x)l > 1/n} . The set X
of assertion 2.5.2 is just the union of these sets and so the proof is

cbtained in the obvious manner.

COROLLARY 2.6 Let B be a derivation basis that has O-local character

and is finer than the topology. Then an interval-point function h has

V(h,B(I)) = 0 for every interval I if and only if V(h,B) = 0 .

‘PROOF. Certainly if V(h,B) = 0 then V(h,B(I)) = 0 for every interval.
For the converse under the additional hypotheses on B note that if
v(h,B([a,b])) = O then V(h,B[[c,d]]) =0 for a<c<d< b since,
using the fact that B is finer than the topology, one has

B[[c,d]} = B(la,b]l) .

Then by the fundamental Lemma we have

v(h,B) =
n

vV(h,B[[-n,n]])
1

e 8

and so on the assumption that each of these vanishes so too does V(h,B)

EXAMPLE 2.7 This corollary requires some hypothesis such as o-local

character. For example it is false for the wniform basis U : let
|I| if =z s an integer
hil,xz) =
0 otherwise

and it is simple to compute that V(h,U(I)) = 0 for every interval I
and yet V(h,U) = +»
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Note that this same example shows that the fundamental lemma
itself requires the hypothesis of o0-local character. For example let

X = [-n,n] and fn(x) = x(Xn,x)

n

and then it is clear that V(h,U[Xn]) = V(fnh,U) =0 for all n but
V(h,U) <is not less than either of

z V(h,U[Xn]) or sup V(fnh_,U) .

§3. The fundamental lemma of the derivation theory. There is an intimate

relationship between the variation and the derivation expressed very loosely
by the fact that DB hk = £ 1is almost equivalent to the assertion

V(h - fk,B) = 0 . Although the lemma is not quite as simple as this the
relationship is very strong and has many implications in our subsequent
theory. Consequently statements about derivatives translate into variational
équations and the tools we have developed in the previous sections can be

applied to provide numerous properties of the derivatives.

LEMMA 3.1 [FUNDAMENTAL LEMMA OF THE DERIVATION THEORY] Let h and k

be interval-point functions, let £ be a point function, and suppose that

B is a derivation basis that is filtering down.

3.1.1 If V(k,B) <+« and hk = f then V(h - £fk,B) =0 ,

Pg
and conversely

3.1.2 if v(h - £fk,B) = 0 then there is a set N C R so that

- * -
DB[R\\N] hk = f and V(k,B"[N]) 0.

PROOF. To prove the first assertion let € > 0 be given and choose

Bl and Bz from B so that

A

Ih(1,x) - £C)K(I,x)| <€ |k(@,x)] if (I,x) € B,
and

V(k,B,) = V(kB) +1.
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Since B has been assumed to be filtering down there is a BB € B with

Bl n B2 2 B3 . For this we have evidently
v(h - fk.B3) = V(ek, 33) < g(V(k,B) + 1)

and since € > 0 1is arbitrary and V(k,B) is finite the assertion of

the lemma follows.

For the second assertion, remembering that B* is the dual
basis for B , define the sequence of sets {Yn} so that x € Y if and
only if for every element B € B either B ignores x or else B con-

tains at least one pair (I,x) for which

. .
|h(I,%) - £GOX(I,x)| = Ik(n x|
[s <]

Define N = U Y, - We will show that V(x,B*[N]) = 0 and that
n=1
=f .

Peiran] Pk

To see the first of these let € > 0 be given and select a

B € B so that V(h-fk,B) < € . Let Bn* denote the collection of all
pairs (I,x) € B for which

|n(1,x) - F(x)k(I,x)| = llg(i,x)l ]

By the definition of the set Yn this collection Bn* must be an element
of B*[Yn] and hence

V(k,B*[Yn] S V(B +) < n V(h-£fk,B) < n € .

As € > 0 1is arbitrary we must have V(k,B*[Yn]) = 0 and so, using the
fact that B* has local character and that the fundamental lemma of the

variation theory is hence available, we have

(=]

V(k,B*[N]) = I vVv(k,B*[Y ]) =0
n=1 n

as required.
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Consequently the lemma is proved if we show that £

Dp By =
for the derivation basis A = B[RN\N] . Given any integer n there

must be an element B € B so that

'h(le) - f(X)k(I'x)I < lk(irx)l
for every (I,x) € B[R™N] merely because of the way in which the sets

Yn C N are defined. By definition then this means

Pgip~ny P = F

and we are done.

EXAMPLE 3.2 Applications of this lemma require rather more of the inte-
gration and differentiation theory than we have so far developed but we
can indicate here an example that shows why the dual basis must enter in.
If

b

F(b) - F(a) = [ f(z)dx

a
holds on every interval for the Riemanm integral then this can be seen
(see §4 below) to be equivalent to the assertion V(F - fm,U(la,bl)) =0
for all l[a,bl . The lemma we have just proved then asserts that f 1is
the uniform derivative of F on [a,b]\N where N < [a,b] <is a set
of measure zero in the sense that V(m,U*[N1) = 0 , and this amounts to
saying that N has Lebesgue measure zero. Note that for N to have
measure zero in the sense of U rather than in the sense of its dual
says that N has Peano-Jordan measure zero (i.e., that in fact N also
has measure zero) and this conclusion is not valid here (e.g., f can be

taken to be discontinous at every rational point).
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§4. The fundamental lemma of the integration theory. Just as there is an

intimate relationship between the variation and the differentiation there
is also such a relationship available between the variation and the inte-

gration. Loosely this can be expressed by the claim that the assertion
H(I) = [(I) dh (I € I+)

is more or less equivalent to the variational equation V(H - h,B) = 0 .
As a consequence a variety of properties of the integral can be made to

appear as easy consequences of the properties of the variation.

Throughout this section we assume that B is a derivation
basis that is filtering down and that possesses the partitioning property.

In that case we have the following defintions:

4.1 An interval-point function h 1is integrable on a set I0 € I+
if there is a number c¢ such that for every € > 0 an element

B € B can be found such that

| Lig,x) en PEX - c | < €

for any partition T of I_ with mwC @B .

0]
4.2 Because of the assumptions on B (that it is filtering down and
has the partitioning property) such a ¢ if it exists is unique

and so if h is integrable on I we write

{
J(I) dh or (B) - J(I) dh

for this number.

4.3 An interval-point function is integrable uniformly on 1

0]

where IO is a subset of I+ if it is integrable on each

IE€ IO and for every € > 0 there is a B € B so that
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for every partition w C B for which o(mw) € IO , where o(m)
denotes the union of the intervals I for which a pair (I,x)

belongs to T .

We can now state our fundamental lemma linking the integration

definitions with the variation. -

LEMMA 4.4 [FUNDAMENTAL LEMMA OF THE INTEGRATION THEORY] Let h be an

interval-point function and J € I+ . If B is a derivation basis that

is filtering down and partitions every subinterval of d then the follow-

ing assertions are equivalent:

(1) h is integrable on J ,

(ii) h is integrable uniformly on J I I+ , and

(iii) there is an additive interval function H £for which

V(H - h,B(J)) =0 .

In this latter case H(I) = J dh for every subinterval I of J.

(1)

PROOF. We begin by making a simple but useful observation. Integrability
and uniform integrability can be characterized in terms of a familiar

"Cauchy" criterion.

4.4.1 h is integrable on J if and only if for every € > O
there is a B € B such that whenever T and 7' are
partitions of J from f then

| h(I,x) - I h(r',x")| < e

(I,x) €m (I',x') em

4.4.2 h 1is integrable uniformly on J ¢ I+ if and only if for
every € > 0 there is a P € B so that whenever 7 and
T' are partitions from B with o(m) = o(n') € J then

g B - I h(r',x")| <e.

2 (i,x) € (r*,x') em

These will be used in the proof.
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We begin with the implication: (iii) implies (ii). If
V(H - h,B(J)) = 0 then for any € > 0 there is a f € B(J) for which
VH - h,B) <e . If mcCP is a partition them o(m) € JN I, and

|H(o(m)) - I h(I,x)| = L H(1) - h(I,x)| < V(H-h,B) < € .

By definition then h 1is integrable uniformly on J N I+ and H(I) = J(I)dh

there.

Thus we have (iii) = (ii), and since (ii) = (i) is obvious we
need only show that (i) = (iii). Given € > 0 choose 8 € B(J) so that

m CPB is a partition of J then
. o5 |
(*) l J(J) déh Lp h(I,x) l <e/8 .

Let E be an element of J 1 1+ and suppose that we are given two partitions
T .and 7' from B such that both T and 7' are partitions of E ; then
there must exist a partition 7" which adjoined to W or 7' vyields a parti-
tion of J ; thus setting “1 =7 Un and ﬂ2 = 7' U "™ we have

|zﬂl h(I,x) - 2“2 h(I,x) | = | I h(,x -

h(I,x) |

-n-|

which cannot exceed €/4 because of (*) above.

As such a choice of B € B(J) can be made for any € > 0 we
have by our preliminary observations, 4.4.1 and 4.4.2, that h 1s integrable

uniformly on J N I+ and so we may set
H(E) = dh
@ = [ e
for any such E and it will follow that
|[HE) - I h,x)) < es2
1

for partitions Wl CB of E.
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If El and E2 are nonoverlapping members of J 1+ then

a further applicaticn of this inequality in the obvious manner gives
- - <
la(zl UE) H(E,) H(Ez)! 3e/2

from which we readily see that H must be additive.

It now remains only to see that V(H-h,B(J)) = 0 . Let
B € B(J) be as above and let T € B be any partition. Write

ot = {(1,x) € T : H(I) - h(I,x) = 0} ,
m™ = {(I,x) € ™ : H(I) - h(I,x) < 0} ,
E' = o(n') , and

E" = o(m") .

The above estimates now give

L [H(1) - h(I,x) | L. (H(I) -h(I,x) + I, (hil,x)-H())

|H(E") - L, n(I,x)| + [H(E") - I, h(I,x)]| <e.

""
As this holds for all such partitions we see that
V(H-h,B(J)) = V(H-h,B) < ¢

and the lemma follows.

§5. The upper integral. For a fixed derivation basis B and a fixed

interval-point function h the functional £ - V(fh,B) defined for all
point functions serves as an upper integral. It is a direct generaliza-
tion of the classical Darboux upper integral, and includes abstractly a
number of other concepts. For convenience we restrict attention to non-

negative finite valued real functicns.
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DEFINITION 5.1 Let h be an interval-point function and B a derivation

basis. Then for any nonnegative point function f we write
hB (f) = V(£fh,B)

and refer to the functional hB as the upper integral associated with h
and B .

Modern notation (cf. A.I. Tulcea and C.I. Tulcea [64, pp. 1-2])
usually requires of an upper integral that it be defined also for extended
real-valued functions and have stronger limit properties than are available
here without further assumptions. Our next theorem shows that these limit
properties are available under some simple natural assumptions; and it would
be an easy matter to extend this functional to functions that might assume

the value +,

THEOREM 5.2 [PROPERTIES OF THE UPPER INTEGRAL] Let hB be the upper

intergral associated with an interval-point function h and a derivation

basis B . The following properties hold:

5.2.1 0= hg(f) < += ,

5.2.2 hB(O) = 0 (the first "0" denoting the zero function),

5.2.3 if f£Sg then hy(f) = hy(g) ,

5.2.4 if B is assumed‘to be filtering down, then
hy(£+9) < hg(f) + hg(q)

5.2.5 h.B(cf) = c hB(f) if ¢ is positive.

On_the further assumption that the derivation basis B is

filtering down, has O-local character, and is additive, the stronger

properties below also hold:

[+2]
5.2.6 if £ = L

g then (£) = L (g.) , and
ney B T hy n=1hB n

5.2.7 if {gn} is an increasing sequence and f =< sup gn then
n

hB(f) < lim hB(gn) .

n-—>o
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PROOF. Each of these assertions is merely a translation into the present
notation of a previous statement about the variation that has been proved

earlier.

EXAMPLE 5.3 (Classical upper integrals) In the event that the derivation
basis is U (the wniform basis) or D (the ordinary basis) and the function
h 1is of the form h(I,x) = G(I) where G <is a nondecreasing function on R
(i.e., considered as an interval function it is additive and nonnegative)
then the upper integrals h.U and hD can be written in a more traditional
form:

(U) - Kf(:c)dG(x) = GU([an]) (f)
and

—

(D) - I flz)d6(z) = G 0 (f)
[x] Pl

for f =0 . The former is called the upper Darbouaf-Stiethes integral and

the latter the upper Lebesgue-Stieltjes integral of the nonnegative function

f with respect to the nondecreasing function G .

These are largely incomparable notions and the notation is meant
to reflect that. However if G(x) =x (i.e., as an interval function G = m)

then we can introduce three classical upper integrals that are closesly

related:

b :

(U) - flxlde = V(fm,0(la,bl)}) (upper Darboux),
‘a
b

(D) - flx)de = V(fm,D({a,bl)) (upper Lebesgue), and
‘a
b .

(D*) - flz)dx = V(fm,D*(la,b1)) (upper dual).
‘a
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Because of the relation D' =Ds U we have imnediately

for any nomnegative functiorn f on l[a,b] :

b ™ ™
(D*)f flx)dx = (D)J flx)dx = (U)J Flx)dx .
a a a
Note that only the middle integral, based on D, here permits all of the
conclusions of Theorem 5.2 to hold as U does not have local character
and D* is not filtering down. It is not too difficult to see what the
U and the D integral are doing; the D' integral is rather more

mysterious. The following might be conjectured and we leave it as a query:
QUERY 5.4 Is it the case that for any nomnegative function f on la,b]
é ™
(D*)J f(z) dx = sup {(D)J glz)de : g = f, g
a

a
18 upper semicontinuous} ?

This seems likely since if f 1is measurable then the (D) and the (D%)
upper integrals coinecide.

§6. The measure theory. For a fixed derivation basis B and a fixed

interval-point function h the set function X - V(h,B[X]) defined for
all subsets X C R serves as an outer measure. It is a direct generali-
zation of the classical Peano-Jordan outer measure that was developed in
the last two decades of the nineteenth century; in most cases of interest
to us it is a genuine outer measure in the modern sense of that term

(e.g., Munroe [91]).

DEFINITION 6.1 Let h be an interval-point function and B a derivation

basis. Then for any set X € R we write
hB(X) = V(h,B[X])

and refer to the set function hB as the "outer measure" associated with
h and B .
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Modern notation requires countable subadditivity of outer
measures and our first theorem shows that this is available under natural
assumptions on the derivation basis. Without those assumptions the set
function hB will still be called an outer measure but in quotations
("outer measure") to indicate that the deeper properties may not be true.
Note that the use of the same terminology for the upper integral and the
outer measure (hB(X) and hB(f)) is justified by the fact that the

obvious equation
hB(X) = hB(Xx)

is the traditional method of deriving a measure from an upper integral and
in our case is provided by Definition 6.1 directly. Also in our setting

there is a particularly nice relationship existing for the standard notion
of product of function and measure; here that product is in fact a genuine

product, viz.

(fh)g(X) = hg(f X,) = V(fh,B[X]) .

THEOREM 6.2 [PROPERTIES OF THE "OUTER MEASURE"] Let hB be the “"outer

measure" associated with an interval-point function h and a derivation

basis B . Then the following properties hold:

6.2.1 0= hB(X) =+ (X ¢ R) ,

6.2.2 hg(g) = 0,

6.2.3 if X c Y them hgp(X) = ha(Y) ,
6.2.4 if B is filtering down then

hB(X Uy s hB(x) + hB(Y) '

6.2.5 if B has 0-local character and X C U Xn then
n=1

=]

hg(X) = I hp(x) ,

n=1
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6.2.6 if B is filtering down and separates the sets X and Y

then

hB(x Uy = hB(X) + hB(Y) ’

6.2.7 if B is filtering down, has O-local character, and is

additive then for any increasing sequences of sets {Xn}

o

hB u Xn = lim hB(Xn) .

n=1 n-—>o

PROOF. Each of the stated properties of the set function hB is just a

restatement of an earlier proved property of the variation.

THEOREM 6.3 [PROPERTIES OF THE OUTER MEASURE] Let hB be the outer

measure associated with an interval-point function and a derivation basis

B that is assumed to be of O-local character. Then

6.3.1 hB is a genuine outer measure,

6.3.2 on the additional assumption that B is filtering down and

is finer than the topology hB is a metric outer measure,

6.3.3 on the additional assumption that B is filtering down and

is additive then hB has the increasing sets property.

PROOF. That hB is a true outer measure is merely the content of 6.2.2
and 6.2.5. Under the additional assumptions on B in 6.3.2 we see that
B separates any two sets X and Y that are topologically separated;

thus by an elementary property of the variation we have
V(h,B[X U Y]) = v(h,BI[X]) + V(h,B[Y])

and this shows that hB is additive over topologically separated sets.
By definition then (e.g., Munroe [91, Ch. 2]) hB is a metric outer measure;
this is equivalent we should recall to the fact that all Borel sets are

hB—measurable. Finally, the increasing sets property has already been ex-

pressed in the previous theorem.



THEOREM 6.4 Let A and B be derivation bases and h an interval-point

function.

A
then h

A = Pg-

PROOF. These are easy consequences of our elementary computations for the

6.4.1 if A = B then h, = h'B'
B

6.4.2 if A =

n

variation since if A £ B (or A = B) then every section A[X] = B[X]
(or A[X] = BIX]) .

THEOREM 6.5 Let B be a derivation basis that is filtering down. Then

for any interval-point function h , hB* = hB .

PROOF. From our results in Chapter Two, $§8 we know that B* < B whenever

B is filtering down and so this follows from the previous theorem.

Note that in this theorem B may not have local character or
g-local character so that hB might not be an outer measure, but hB* is

in fact always an outer measure.

THEOREM 6.6 [PRODUCT OF A POINT FUNCTION AND A MEASURE] Let B be a

derivation basis that has O-loccal character and suppose that £ is a

point function and h an _interval-point function. Then the outer measures

hB and (fh)B have the following relations:

6.6.1 (fh)B(X) =0 if and only if £(x) = 0 for hB—almost every
point x in X,

6.6.2 if h.B is o-finite on a set X then so too is (fh)B , and
6.6.3 if hy vanishes on a set X then so too does (fh)g .
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PROOF. The first and last of these assertions are just translations into
our present language of statements proved in §2 above for the variation.

For the second assertion suppose that

where hB(xn) < +° and write

Xn = {x € X [£x)| = m} .

Clearly th(an) = V(fh,B[xmn]) = mV(h,B[xmn]) =m hB(Xn) < +© so that

(fh)B is also 0-finite on X as required.

As an easy application of this lemma we can easily connect the

vanishing of the upper integral hB(f) with the vanishing of the function f.

COROLLARY 6.7 Let B be a derivation basis, let h be an interval-point

function and f a point function. If B has O0-local character then

hB(Ifl) = 0 if and only if f vanishes hB-almost everywhere on R. In

general if B is not claimed to have 0-local character but is filtering

down and ignores no point then one has at least that hB(Ifl) = 0 entails
f(x) =0 hB*-almost everywhere.

PROOF. The first part of the corollary follows directly from the theorem
and is only a translation into the present language. The latter part uses

only the fact that under these assumptions hB*(lfl) = hB(Ifl) and B*

must have local character.

EXAMPLE 6.8 (Classical measure theory) The standard interval function
m(I) = |I| that expresses the length of the interval I gives rise to
"outer measures" My and " relative to the two derivation bases U

(the uniform basis) and D (the ordinary basis) that play historically
important roles. We define
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my - Peario~-Jordan "outer measure"
my - Lebesgue outer measure.
Note the following properties. In particular the properties

of my will justify our calling it Lebesgue measure (we have throughout
been using the notation |X| for the Lebesgue outer measure of X).

() my 18 finitely subadditive, but in general not
countably subadditive;

(11) N 1s_a metrie outer measure that has the increasing

sets property;
(zit) for any set X c R,
my(X) = inf {Z IIil : I} a finite sequence of

intervals covering X},

and

my(X) = inf {Z IIiI : {I,} a sequence of intervals

covering X} ;

(iv) for bounded sets X , mU(X) = mD(X) 1f and only if
the set "X \X has measure zerc (i.e., |X \X| = 0);

in particular then my and My

agree orn. compact sets;

(v)

<

mU,

The two measures are obviously closzly related. This relation-

D

ship can be exhibited in an unusual light as well: the study of the Riemann
integral has a somewhat diétressing feature to the beginning analysis student
in that although the Peano-Jordan measure seems the most natural one in that
setting a number of results can only ke satisfactorily eapressed by using
Lebesgue measure which at first sight seems like an intruder. However, an
investigation of U must lead to a consideration of the duals U and U*?,
and since U** =1°

Indeed one has Mgt = Mgtk = Mg and Lebesgue measure is unavoidakble.

the Lebesgue measure Mo enters the scene naturally.
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EXAMPLE 6.9 (Peano-Jordan measurability) The "outer measure" my is
defined on all subsets of R but is better behaved on a special subclass
of sets that were isolated and studied by Jordan. We shall say that a

bounded set E 1is PJ-measurable if it satisfies any of the following

equivalent assertions:

(1) mU(I) = mU(I nNEeE)+ mU(I'\~E) for all intervals I ;

(2) Xg 18 Riemann integrable on every interval I ;

(3) the set of boundary points of E has (Lebesgue or

equivalently Peano-Jordan) measure zero;

(4) for every € > 0 there is a B € U so that

Yr,z) € B CE(I',2') € TIRNE] 701 <

for all partitions m and w' of the same interval
with both w and w' contained in B .

It is now easy to show that my 18 additive (finitely that is)
on the class of PJ-measurable sets; this follows from any one of the four

characterizations above but perhaps from (2) this is most transparent.

EXAMPLE 6.10 (Lebesgue measurable sets) Parallel to the characterizations
of the class of PJ-measurable sets is a similar characterization of the

class of Lebesgue measurable sets. Each of the following is equivalent:

(1) mD(I) =my(INE)+ my(I™NE) for all intervais I ;

(2) mD(T) = mD(T nNE) + mD(T'\\E) for all sets T C R ;

(3) Xgm is D-integrable on every interval I ;

(4) there are open sets Gl and 62 with mD(Gl n 02)
arbitrarily small and G, > E and Gz > REN\NE ;

(5) for every € > 0 there is a B €D so that

: 12
z(I',x) € m[E] X(I',xr) € T[R E] II nr l < €
for all partitions = and w' of the same interval
with m, w' cB.




QUERY 6.11 For O<p <=1 let ot denote the interval function
I~ |1|]F = Pe1) .

Then the measure mt D evidently is related to the classical Hausdorff
p-dimensional measure. More generally if h is a monotonically in-
ereasing function on [0,~),h(0) = 0 , then hom denotes the function
I~ h(m(I)) =h(|I|]) and (h °om)y again represents a measure on R
that should be related to smtlar ideas in the theory of Hausdorff
measures. What 18 the exact relatton here?

EXAMPLE 6.12 (The Stieltjes measures) For any additive interval function
F the measures FD and Fy provide an expression of the total variation
of the function F . This will be discussed in greater detail in §9 below.
Here we point out some simple computations for these measures.

() FD and FD* are metric outer measures,

(i1) FD* < FD N

(111) for any point x ,

Fy ({z}) = lim sup |F(xz+h) - F(x)| + lim sup |F(xz) - F(z-h)|

h+0+ h >0+
and
Fos({a}) = min {iim inf |F{x+h) - F(x)|, lim inf |F(x) - F(z-h)|]
h+0+ h 0+

(iv) for G =V (a;,b,) open,

FD(G) = L Var(F, (ai’bi)) .

§7. The measure theory (continued). Measure theory plays a number of

important roles in analysis. For our purposes we can outline these roles
as resting within three categories: (i) it provides relative to a given
outer measure, } say, & class of p-measure zero sets that may serve as
the exceptional sets for a certain class of theorems; (ii) it provides a

class of finite and O-finite measure sets and so a way of categorizing
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certain objects as being not too large; and (iii) it provides a theory
of integration. Our largest ccncern is with the first two of these ap-
plications of measure theory; sets of measure zero relative to an outer
measure hB provide the numerous exceptional sets needed in both the
differentiation and the integration theory below. Outer measures hB
that are finite or O-finite on a set X provide an expression of some

familiar variational concepts (e.g., VB, VBG,) that are frequent tools
in analysis.

But associated with any outer measure hB that arises in
our setting would be a corresponding measure-theoretic integration theory
that we will have no particular use for. We have an upper integral and
also a Riemann-type integral to hand in most of our applications and no
need for a measure-theoretic integral. Since the connections will not be
immediately apparent we shall in this section show the relationship that

exists between our upper integral hB(f) and the measure-theoretic integral

J{ f(x)th(x)

that a measure theorist would generate from hB as an outer measure.

Throughout this section let us suppose that B is a derivation
basis that has O-local character and is filtering down; some of the results
can do with less but this setting simplifies matters. For any interval-
point function h then the set function hB is a true outer measure and

we can construct a measure-theoretic integral as follows:

(i) a nonnegative point function g is said to be

hB—elementarv if it is hB-measurable and countably

valued, i.e., if
(*) g(t) = L ai x(Ei,t)

for a sequence {ai} of positive numbers and a

sequence {Ei} of hB-measurable sets (which can

be taken as disjoint);
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(ii) for g that is hB—elementary we write

Jeahy =% _ e hi(g ({eh)

or, using the expression (*) above,
fgth = I aihB(Ei) .

(iii) for any nonnegative point function f we write
ffth = inf { fgth :g>£f, g is hB-elementary} .

We do not pause to give the traditional justifications of the
above definitions but proceed imqédiately to show how this measure theoretic
upper integral based on the outer measure hB relates to our hB-upper

integral.

LEMMA 7.1 Let the derivation basis B be filtering down and suppose

that h is an interval-point function and El ' E2 a pair of disjoint

c, are positive real

sets. Then if El is hB~measurab1e, and ¢

l ’

numbers,

hB(clel + cszZ) = ¢yhp(E)) + c hp(E)) .

PROOF. By elementary arguments of measure theory we have that
= £.) . Gi e > : € B
hB(El u Ez) hB(El) + hB(EZ) Given 0 choose an element 8

so that

V(h,B[El]) p hB(El) + e/2 ,
V(h,B[EZI) = hB(EZ) + €/2 , and

V((ClX(El) + sz(Ez)h,B) = hB(ch(El) + czx(E2)) +E .

Since B is filtering down we may choonse B in such a way that all three

inequalities hold.
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We may select a partition 7 C B[El U E2] so that

Lix en D@ 2 hg® UE) - €/2 = hy(E) + hy(E) - €/2 .

This reguires

]

I Ih(z,x)]| h(I,x)
1]

(I,x) € T[E Ly Inz,0f -

L
Tr[Ezl

v

hB(El) + hB(Ez) - g/2 - {h.B(Ez) + €/2}

hB(El) - €.

iv

An identical computation would yield

Litx) € T(E,] In@x | z ngE) - e

Now using this partition T and the above estimates we cbtain

Ve X(EY + X EDNE) 2 Ty Ly g (XBX) + e pX(By,x)) [n(T,x)]

v

c, z “[Ell lh(I,x)l t <, z U[EZI lh(I,x)l

> cl hB(El) + cth(E2) - (cl+c2) € .

This inequality evidently holds for all B € B and so, since € > 0 is

arbitrary we have established the inequality
hg(e)X(E)) + c,X(Ey)) = ¢ hg(E)) + c hp(E)) .

The opposite inequality is available for derivation bases that are filtering

down from our elementary theory and so the lemma is proved.
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LEMMA 7.2 Let the derivation basis B be filtering down, let h be

an interval-point function, let {Ei} be a sequence of disjoint hy-

measurable sets and {ci} a sequence of positive numbers. Then

n
hB(Z - C'XE.) = I . c, bglE) .
i=n i i=n

If further B has O0-local character and g 1is defined, where

i
™

g(t) cix(Ei,t)

n=1

then

(e

z 1 ¢y h.B(Ei) .

hB(g)

n
PROOF. For fixed n write gn(t) = Xi= ciX(Ei't)' Then for the first

1
part of the lemma we wish to prove that

n
hB‘gn) =1 i=1 cihB(Ei) -

We already know this for n=1 and n=2. For n > 3 and a given € > 0
we can use the fact that B is filtering down to select a P € B so that

each of the following inequalities holds:

V(gnh.B) = hB(g) + €,
and '

V(h,B[igm Ei]) = hB(igm Ei) + ¢/2 for m=1,2,...,n .

n
There must be in B[ U Ei] a partition 7 so that
i=1
n
L i > 1 _
Ba,x) em in(,x| = hg \iL=|1 E.) €/2 .
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Putting these together, and remembering that the {Ei} are disjoint and

hB-measurable, we obtain for any m=l,2,...,n the following estimate:

ml,
i=m

z TE,) Ih(z,x)| = L lh(x,x)|] - £ __U 5] Inh(z,x)|

n

Lo bpg®y - e/2 - {L . ha(E) + e/2}

v

v

hB(Em) - € .

Now using this partition 7T and the above estimates we obtain

hglg) +€ = V(g h,B) 2 I o9 () [nIx)]

v

n n
DI nie,) cilh(I,x)| > Zi=l {cihB(Ei)- CH e} .

Since the € here is an arbitrary positive number we have
proved the ineqguality

' n
>
hB(gn) > 2i=1 cihB(Ei) .
As B is filtering down the opposite inequality holds as well and thus we

have proved the first part of our lemma.

Turning now to the second part and noting that g = gn we
have immediately that

n
hp(9) = hB(gn) = 2i=l c;hg(E,)

for all n . Also using the fundamental lemma of the variation theory,

since now B 1is taken to have O-local character, we obtain

©

- - u ‘ =2 ® e h(E
hp(g) = V(gh,B) = Vigh,B{ ) E.1) I _, Vigh,BIE,]) = Lio1SihgE)) -
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This proves that for all n ,

n < < ®
Lioy SPpEy) = hple) = 1., cihg(E))
and now the lemma follows.

We may now prove our main theorem.

THEOREM 7.3 Let the derivation basis B be filtering down and have

0-local character, and let h be an interval-point function. Then

7.3.1 for dgy nonnegative point function £ ,

hg(£) = dehB ,

7.3.2 for any nonnegative, bounded hB-measurable point function f ,

hg (£) = 'ffth ,

7.3.3 assuming in addition that B is additive, for any nonnegative

hB-measurable point function £ ,

hy(£) = 'ffth .

PROOF. For the first part observe that if there is no hBéelementary
function g exceeding f then ffth = 4+ so there is nothing to

prove; if there is such a function g =2 £ then

hy(f) = hg(g) = [gdny

and, since this holds for all such functions g , again the inequality
must hold.
For (.2), with f both bounded and hB—measurable let r>1

and suppose f(x) < M for all x . Write

E = {x €R: M os £(x) < uc )

and define
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® -n+l
g({t) = 2n=l Mr (En't) .
By our assumptions on £ g is hB-elementary and f = g = rf everywhere.

Thus hB(f) < hB(g) = fgth < th(f) for all r > 1 . From this assertion
(.2) easily follows.

Finally, assertion (.3) just uses the monotone convergence
property of the variation (§3 above), which is available for additive deri-
vation bases, in the traditional way to extend from bounded hB—measurable
functions to unbounded ones. (Note here that the additivity assumption is
used only to .assure that all the functions gh that appear have the prop-

erty H and thus permit the fundamental lemma of the variation to be applied.

This also would hold under weaker assumptions.)

EXAMPLE 7.4 (The Lebesgue upper integral) Using the basis D that
expresses ordinary derivation we have defined

I[X]f(x)dx = V(fm,D{X])

for any nonnegative function f and have referred to this as the Lebesgue
upper integral (see §5 above). By Theorem 7.3 we see now that this ie
indeed the same integral as would be generated by using the Lebesgue outer

measure my . This same observation applies to Stieltjes versions of these
integrals in the obvious way.

Note in particular that the Riemann-type integral generated by
D can be expressed also as a measure-theoretic integral at least for non-
negative functions: thus for any interval-point function h z 0 and any

point function fz 0 if fh <s D-integrable on an interval then

I () $dh = V(fA,D(1)) = 'fvfdvh’  vhere vy,

"18 the outer measure

¥y, I(X) = V(h,D(I)[X]) .



§8. Generalized continuity: B-continuous functions. There are numerous

problems in real analysis that can be expressed in terms of the variation
relative to some derivation basis. Thus many generalizations of continuity
(uniform continuity, right or left continuity, approximate continuity, pre-
ponderant continuity, selective continuity, symmetric continuity, etc.) can
be expressed by a single definition and studied systematically. In this
section we introduce the notion of a B-continuous function relative to a
derivation basis B as well as the more restrictive notions of B-null and

B-locally constant.

DEFINITION 8.1 Let B be a derivation basis and h an interval-point

function. Then

8.1.1 h is said to be B-continuous at a point x if for

€ >0 there isa P € B with v(h,B8[{x}]) <¢e ;

8.1.2 h is said to be B-continuous if for every € > 0 there

isa P €B with V(h,B[{x}]) <€ for all x ;
8.1.3 h is said to be B-null if Vv(h,B}) = 0 ;

8.1.4 h is said to be B-locally constant if there is a
B € B such that h(I,x) =0 for all (I,x) € B .

We shall be interested in applying these concepts mainly for
functions h of the form Af, i.e., for additive interval functions,
although the definitions are useful in general. Note that the concepts
increase in generality: a B-locally constant function is necessarily
B-null, a B-null function is necessarily B-continuous, and a B-continuous
function must be B-continuous at each point. It is also easy to find

examples to show that each of the four definitions is distinct.

Note that for additive interval functions F some connections
are clear: if B has the partitioning property then only the zero function
F can be B-null or B-locally constant; the notion of B-continuous or point-
wise B-continuous is clearly related to familiar generalizations of continuity.
In particular our next theorem and the examples that follow it should clarify

these latter two concepts.
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THEOREM 8.2 Let h be an interval-pcint function and B a derivation

basis. Then the following are true:

8.2.1 if h is B-continuous then h is B-continuous at every point,

8.2.2 if h is B-continuous at every point and B has local

character then h is B-continuous,

8.2.3 if h 1is a continuous additive interval function anéd B is

finer than the topology and straddled themn h is B-continuous
at each point.

PROOF. The first two of these are obvious. For the third, if h is a
continuous additive interval function then at any point x and for any
€ >0 there is a 6 > 0 so that Ih([y,z])l < egf2 if
x-0<y=Sx=z<x+ 0§ . Using the open set G = (x-8,x+8) and the
fact that B is finer than the topology there must be a P € B with
Bii{x}] € B(G) . sSince for any (I,x) € B we have |h(I)| < €/2 and

‘'since B is straddled this gives

v(h,B[{x}]) < € .

This proves that h is B-continuous at x as required.

EXAMPLE 8.3 (Uniform continuity) If U denotes the uniform derivation
basis then a function F <s U-continuous if and only if F 1is uniformly
continuous. Since U does not have local character it is not true that

U-continuity at each point is sufficient to ensure U-continuity.

EXAMPLE 8.4 (Ordinary continuity) If D denotes the ord%nary derivation

basis then it is clear that D-continuity is merely equivalent to pointwise
continuity in the usual sense.



EXAMPLE 8.5 (Sharp continuity) For the sharp derivation basis D! the
notion of DF-continuity has an wiusual aspect which is a reflection of
the fact that D¥ 4is not straddled. A function F +is DF-continuous at
a point z 1if and only if F 1is continuous and of bounded variation in
some interval containing x .

We prove here two theorems which relate some integrability
and derivability results to the notion of B-continuity. These are just

general versions of familiar results for integrals and derivatives.

THEOREM 8.6 [CONTINUITY OF THE INTEGRAL)] Let the derivation basis B

be filtering down and have the partitioning property and 'suppose that

F(I) = J(I) fdh (I ¢ J)

where f is a point function and h an interval-point function for

which fh is integrable on an_interval J relative to B . Then F-fh

is B(J)-continuous. 1In particular if h is B(J)-continuous at a point

then so too is F .
PROOF. In fact, by the fundamental lemma of the integration theory
(§4 above), we have V(F - fh, B(J)) = 0 which is stronger than our

assertion here.

THEOREM 8.7 Let B be a derivation basis that is filtering down and

let h and k be interval-point functions such that k 1is B-continuous

at a point x . Then if both Dy hk(x) and Dy hk(x) are finite, h

must also be B-continuous at x .

PROOF. Using a fixed point x there must be a positive number M so

that for some Bl' 82 in B we have
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h(I,x)/k(I,x) < M for (I,x) € ﬁl
and

h(I,x)/k(I,x) >-M for (I,x} € Bz '

remembering of course to interpret 0/0 as O . Since B is filtering

down there is a BB in B with B3 c El n ﬁ2 . This gives
In(z,x)| = M|k(1,x)]
for all (I,x) € B3 and hence for all P € B,
V(h,Bl{x}]) = V(h,B, N Bl{x}]) =M V(k,B[{x}])
so that in fact V(h,B[{x}]) = M V(k,B[{x}]) and the result follows.

In the spirit of the last two results we can also show that
B-continuity is closed under a natural limit operation involving the

variation.

LEMMA 8.8 Let the derivation basis B be filtering down and let

h’hl'hz'h3"" be interval-point functions such that each hn is

B-continuous and so that 1lim V(hn - h,B) =0. Then h too is

B-continuous.

PROOF. Given € > 0 choose N so large that V(hN - h,B) < g/3
and choose a Bl € B so that

- [s] -
V{hg-h,)) < V(h -h,B) + €/6 < e/2 .

Take f, € B so that V(hN,Bz[{x}]) < €/2 at each x . Now if By €B

is chosen so that B3 c Bl (i B, then it is easy to see that

Vb, B t{x}]) = Vi -h,B.) + V(hN,le{x}]) < €

as required.
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The first of our main theorems in this section gives a condition
under which a function that is B-continuous will be in the first class of
Baire. This theorem generalizes a number of classical results for approxi-
mately continuous functions, preponderantly continuous functions, selectively
continuous functions, and others. The condition we need is just a more de-
tailed version of the closed Y-decomposition property but one which is enjoyed
by all of the examples we have so far shown have the weaker version of that

property.

DEFINITION 8.9 A derivation basis B is said to have Ym-decquosition

property or the closed Ym—decogposition property where m = 2,3,..., provided
it has the corresponding Y-decomposition property as expressed in Definition
7.4 of Chapter Two but with the additional hypothesis that the partition that

is required to exist there contain no more than m elements.

THEOREM 8.10 Let B be a derivation basis that has the closed Y -decomposi-
et m Secompost

tion property for some integer m . Then if F is a real function on R

that is B-continuous, F is in the first class of Raire.

PROOF. To show that F 1is Baire 1 we obtain a contradiction by a standard
device: if F 1is not Baire 1 then there must exist a perfect set @ such
that the oscillation of F restricted to Q exceeds some positive number

€ at each of its points. Choose an element f € B so that
|F(1)] < &/3m  for all (I,x) €p

{(this just uses the definition of B-continuity) and choose a decomposition
{Qn} of Q corresponding to this choice of B € B as in Definition 8.9.
By Baire's theorem one of these sets, cay Qk , is dense in a portion of

Q, say 90N [c,4].



We obtain a contradiction by showing that the oscillation of
F on this portion does not exceed €& and the proof is complete. To this
end observe that for any points x and y in Qk (x < y) there is in B

a partition 7 of the interval I[x,y] and card(w) <m. Thus
|F(y) - F(x) | < DI lF(m) | < e/3.

If x and y are now arbitrary points in 6% >0 N [c,d] then there
must be points x' and y' in Qk that are sufficiently close to

x and y respectively so that again there are partitions from B with
no more than m elements of each of the intervals [x,x'] (or [x',x],

and [y,y'] (or [y',y])). This gives again, as befcre
|F(x) - F(x')]| < e/3 and |F(y) - Fly") | < e/3.
But we already have |F(x') - Fly')| < €/3 and thus putting these three

together in the obvious way yields lF(x) - F(y)l < €/3 , which inequality

holds everywhere in this portion of Q . Since this is the desired contra-
diction the proof is complete.

THEOREM 8.11 Let B be a derivation basis that is endpoint tagged and

has the partitioning property. Then any B-continuous function has the

Darboux property.

PROOF. Suppose that F never assumes the value c¢ , and define P to
be the collection of intervals J[a,b] for which (F(a) - c)(F(b) —¢c > 0.

I1f [a,b]l, [b,b'] are abutting intervals in P then [a,b'] is in P

since

{(F@) - c)(F(b) - )} {(F(®) - ) (F') - c} = (F(a) - ¢) (F(b') =c) (F(b) - c)2.
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Since F does not assume the value ¢ at any point x we
can write € = |F(x) - c| > 0 and then there is an element B € B

so that if ([x,yl,x) or (ly,x],x) is in B then
|F(y) - F(x)| < e/2

which means that |[F(y) - c|l = |F(x) - c| - %- > 0 ; in particular

F(x) - ¢)(Fly) =¢c) >0 for every (I[x,yl,x) or (ly,x],x) in B .
From the partitioning property it now follows that P includes every
interval so that (F(a) ~ c)(F(b) - ¢) > 0 always. Since this is just
an interpretation of the Darboux property (i.e., if F(a) < ¢ < F(b)

or F(b) < ¢ < F(a) then F assumes the value ¢ in that interval)

the theorem is proved.

THEOREM 8.12 ILet N be a natural derivation basis that satisfies the

intersection condition. Then any N-continuous function is in the first

‘class of Baire. If in addition N is not onesided (i.e., for no x

does [x%,+%®) or (-~,x} belong to N(x)) then such a function is

also Darboux.

PROOF. This is just an application of the previous two theorems for if
N satisfies the intersection condition then we have seen (Chapter Two,
section 8) that a Y-decomposition and a closed Y-decomposition are avail-
able; in fact, checking the size of the partitions that are used there we
see that a closed Y7—decoﬁposition has been obtained. For the Darboux
property we need only recall that the non-onesided assumption together

with the intersection condition proves the partitioning property.

We shall not give the details but any one of our intersections
conditions from Chapter Two, §9 can be used to supply that B-continuous
functions are Baire 1, and then again a non-onesided assumption carries

this to Darboux Baire 1.
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EXAMPLE 8.13 (Approximately continucus functions are Darboux Baire 1)
If A denotes the approximate derivation basis then a function F 1is
approximately continuous if and only if it is A-continuous. We have
already seen earlier (Chapter One, §9) that the basis A has the parti-
tioning property and that it has the decomposition property of Theorem
8.10 (in fact with N=6) so that it follows from our resulte that ap-
proximately continuous functions are necessarily Darboux Baire 1. (This

same observation applies to functions that are preponderantly comtinuous.)

EXAMPLE 8.14 (Unilaterally continuous functions are Baire 1) The decompo-
sition property of Theorem 8.10 holds for the bases RD and 1D that ex-

press onesided dertvation. The corresponding continuity for these bases is

Just a unilateral assertion of ordinary continuity; consequently unilater-

ally continuous functions are {of course) Baire 1. It is easy to see that

such functions need not have the Darboux property and this is reflected in

the fact that neither basis RD nor 1D has the partitioning property

(in the ‘language of Theorem 8.12 each is in fact a onesided natural basis).

EXAMPLE 8.15 (Selectively continuous functions are Darboux Baire 1)
O'Malley 195] has proved that a function continuous in the selective sense
must be Darboux Baire 1 and, indeed, it is a Theorem of Neugebauer [94]
that this notion can-characterize the class of Darboux Baire 1 functioms.

In our setting these properties follow from Theorems 8.10 and 8.11.

EXAMPLE 8.16 (B-locally cbnstant/B—nuZZ/B—continuous) For any derivation
basis the classes of functions that are B-locally constant, B-null or B-
continuous are of some considerable interest and it is worth investing some
time to discover characterizations of the classes. In the table below we
shall exhibit some of these classes: an asterisk (*) entry indicates that
there is further discussion below, while an entry (?) indicates that we do

not know of an appropriate characterization of the class of functions
indicated.



(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

TABLE 8.17.1

DERIVATION B-LOCALLY
BASIS B CONSTANT (1) B-NULL B-CONTINUOUS (3)
T
the trivial all functions all functions all functions
basis
U
the uniform constant constant uniformly
basis Functions functions econtinuous
D . .
the ordinary constant econstant eontinuous
basis functions functions functions
A
the approximate constant constant approximately
basis furections functions continuous
DLX]
sections of (7) (7) continuous
the ordinary ) ) at each z€X
bagis
RD
the right Dint (%) (7) right
derivation ) continuous
basis
p* (*) each
the dual of locally (2) f-1((e,d)) is
the basis D recurrent ’ dense in ttself
S (*)
the symmetric locally (7) symmetrically
derivation basis symmetrie ) continuous
AS
the approximate Y (7] approximately
symmetric deri- (7) o symmetrically
vation basis continuous (?)
A Q
the qualitative constant constant continuous
derivation basis

180



The entries (2,1), (2,2), (2,1), (3,2), (4,1), (4,2}, (10,1),
and (10,2) arise from the fact that the derivaticr bases given have the
partitioning property. We should elaborate on the tuype of problem in-
tended for row (5) that usee the secticns DI[X) of D . Let  denote
a family of (preswmably large) sets, such as for example sets whose comple-
ments are countable (or of measure zerc, or first category, or o-porous)
and then the problem is to characterize the class of functions f for
which there is some 0 € @ for which f 4is D[0] - locally constant (or
D(0)-null).

. The entry (6,1) defines functions f with the property that
for any x € R there is a &(x) » 0 so that f(y) = f(x) for all
y € lx,z + 8(x)) (right locally constant functions). One can show that
for any right locally constent funection f there must be a countable
closed set C such that for every interval (a,b) complementary to C ,
f is constant on |la,b) .

The entry (7,1) defines functions §f that are locally recurrent,
namely for each x € B and every € > 0 there is at least one point
y € (z-€, z+e) distinet from x for which f(y) = f(x). This terminology
has been used by a number of authors (e.g., Marcus (82}, éalc’zt (106},
Engquist (27}, Bush [17] and Benson [ 41). Using the basis RD* which is

the dual of RD one would have the corresponding idea of right locally re-
current. More interesting is to study the problem of characterizing the
class of funetions that are D*[X] or RD*[X] locally constant for X

in various classes of sets (as above say). For this perhaps a better view-
point is to look at the level structure of the functions and to express the
problems in this language.

The entries in row (§) are of some interest. A funetion §f 1s
locally symmeiric if for every = € R there is a 6(x) > 0 so that

flz+h) = f(x-k) for all 0 < h < 6(x). One can prove that for a locally
syrmetric function f there is a countable cliosed set ¢ such that f
18 _constant on the complement of C . (Thig and related concerns can be

found in Davies [23], Foran (311, Ruzza (104}, and Thomson [L15).)
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A function f 1is said to be symmetrically continuous if
flxth) - fl(z-h) + 0 as h + 0. The problem of determining the structure
of such functions was poced by Hausdorff [38] and has been studied by a
nunber of authors, (See, e.g., Fried (331, Marcus (811, Ponomarev [101],
and Preiss [103).

Finally, let us mention another direction that these concepts
might lead to. Following Heindl and Kokler [40) we say the function f
18 locally increasing if for every x € R there is a &6(x) > 0 so that
fly) s f(x) £ f(z) for all xz-6(x) <y s xs z< z+8(x). It is clear
that in our language such a funetion has the property that the interval
funetion Af , the negative part of Af, is D-lcecally constant. Since
D has the partitioning property it is immediate that Af" must vanish

and so f 1is in fact increasing (in the loose sense;). Of course this

is elementary and nct very interesting, but it does suggest a number of

variants on this theme that could be pursued.

One such variant has been given by Ornstein [98). His theorem

can be rewritten in cur language as follows: if F 1is approximately con-

tinuous and OF is RA0~ZocaZZy constarnt then F is nondecreasing. Here

the derivation basis RAp for 0 =p< 1 <s a right hand basis using sets

of density exceeding p on the right.

§9. The total variation of a function. Given a real function F on R

and a set X € R there are a number of ways of constructing a measure
uF so that pF(X) in some way reflects the variation of the function
F on the set X. The most familiar of these would seem to be to take

s (n)
uF(x) = lim uF (X) where

{n)

1
= - J' ol F ~I“ . - r A D - — .
By (X) = inf (X |Fb)) a)| : U fa,,b;] >X,b ~a, <}

This construction is due to Carathéodory and is popularly known as "Munroe's
Method II" after Munroe [91). This method has the advantage of producing

a metric outer measure for any functicn I (and indeed one could replace



l?(bi)-F(ai)l by ‘h([ai’bi})' where h iz any interval function and

the resulting measure still has these desirable properties). For functions
F of bounded variation the measure UF does indeed carry the variational
information of F ; but for general F the methced has sericus disadvantzges.
Ellis and Burry [16] have given an example of a continuous function F on
the interval [0,1}] £for which uF([O,l}) = 0 and Bruckner [9 ] has shown
that such behaviour is "typical" of continuous functions ("typical® in the
familiar sense of Bruckmer [1C, Ch. XIII]). For the purposes of discussing
total variation then these measures are of limited use beyond the case where

F has bounded variation.

In the present theory the most natural candidate for a total
variation measure is the "outer measure” FB associated with a derivation
basis B. The choice of B would be dictated by the intended application
and so a variety of total variation measures are available. In particular
the measures FU and FD associated with the uniform and the ordinary
derivation bases respectively are very useful. It is immediately clear
that the finiteness of these measures should have some relation to the
boundedness of the variation of ¥ . Henstock pointed out some time ago
that the concepts of VBGs: and BACGx that play such an important role in
certain investigations in integraticn and differentiation can be expressed
directly in terms of the measures FD . (see Henstock ([50, pp. 56-69] and

the more recent paper Henstock [60].)

In this section we begin an investigation of the measures FB
for F an additive interval function using the point of view that these
measures provide variational information about F . In any study there will
be in fact two measures FB and FB* where B* is the dual basis for B

and the pair of measures together describes the total variation of F in a

useful manner.

Our first results conrect the finiteness of the measures with

more classical variational concepts.
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THEOREM 9.1 Let B be a derivation basis and ¥ an additive interval

function,

9.1.1 if F bhas bounded variation then FB is finite,

9.1.2 conversely, assuming B has the partitioning property,

if FB is finite F has bounded variation on R,

9.1.3 if B is finer than the topology and B has the

partitioning property then FB(G) < += for an open

set G if and only if F has bounded variation on G.

PROOF. If Fb has bounded variation, say v(F,R) < +® then for any
B € B we certainly have V(F,B) < v(F,R} < +» so that Fy is finite.
In the other direction if P € B contains a partition of each of a finite

sequence {Ji} of nonoverlapping intervals then
z| F(Ji)l < v(F,B) .

Thus, for 9.1.2, if Fy is finite there is a P € B for which V(F,B) < +=

and from the above observation we see that if B has the partitioning property
v(F,R) = V(F,B) < 4+

and F has bounded variation on R . Similarly the final assertion is

obtained by using the fact that B[G] = B(G) for a B that is finer than

the topology and that B[G] permits partitions of every subinterval of G,

if B itself has the partitioning property.

THEOREM 9.2 Let B be a derivation basis, F an additive interval function,

and suppose that FB(X) < +o for a set X CR :

9.2.1 then if B has the Y-decompusition property, F is VBG

on X , and

P

9.,2.2 if B has the closed Y-decomposition property and X is

closed, F 1is [VBG] on X .
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The square bracketr notaticn {VBG] indicates that the sequence
of sets on which the function may be taken as VB can be chosen in such a
way &as to be closed. sSimilarly [ACG] may be defined. Recall that because
of Ssaks [ , p. 229] the notion [VBGs] would be merely equivalent with
VBGx . Note that in this theorem we have not asserted the fact that F
must be VB on X if FB(X) < +® ; also we see that under the assumption

of 9.2.1 if FB is O-finite on a set X then F must be VBG on X .

PROOF. If FB(X).< +© then there is an element B € B[X] with

V(F,B) < +° and hence, using the Y-decomposition property, we may choose
a decomposition of X into a sequence {xn} such that B[Xn) partitions
every interval ([x,y] with x,y € Xn : let {Ji} be any sequence of non-
overlapping intervals with endpoints in Xn . Then IF(Ji)I < V(F,ﬁ(Ji))

because B(Ji) contains a partition of Ji and so
I iF(Ji)I S LVIE,BI,)) S VF,B) < +»

which asserts that F is VB on each set Xn . This exhibits F as VBG

P
on X= U X as required.
n=1 "

For the second part of the theorem suppose that X is closed
and that {Xn] has been chosen so as to supply a closed Y-decomposition of
X. Let Ji = [ai'bi] (i=1,2,...,n) be a sequence of intervals with end-
points in Xo o such that no two of these intervals are abutting. Then
there are disjoint open intervals {Ki} so that l<.i > Ji and we can treat
each J, in the following manner: choose X 0¥y € Xm n Ki sufficientiy
close to ai’bi respectively so that B[Xm] partitions each of the intervals
[ai,xi] (or [xi,ai]) and [bl'yi] {or [Yi’bi]) and [xi,yi]; this is pos-

sible because of the nature of the decomposition. This gives



[F(Ji)l = ]F(bi)- F(ai)l 3 IF(xi}- F(ai)l + ‘F(yi)—F(xi)I

+ |F(bi) -Fly,) |

A

3 V(P.B(Ki))

and so

z F(J,) | =3 V(F,E[Sc'm]) £ 3 V(F,BIX]) < +® .

From this inequality we can conclude that F is VB on each Sc'm and so

[VBG] on X as required.

EXAMPLE 9.3 (Characterization of the class VBGi). Using the ordinary
derivation basis D the outer measures Fy carry a great deal of varia-
tional information about the function F . Certainly because of Theorem

9.1 we know that the finiteness of FD on any interval la,b)  would re-
quire F to be of bounded variation there. More generally we can even
characterize the class VBGy . We will restrict attention just to continuous
“ functions on ar interval la,b] , although more general formulations are
possible: the following asseriions are equivalent for a continuous function
F on an interval la,b] arid for X < (a,b) :

(1) F is VBG, on X,
(2) [HENSTOCK] FD is a-finite on X ,

(3)  [WARD] there is a continuous increasing function G on
{a,bl so that D F.(x) and D F.(x) are finite at each

point of X,

(4) there is an increasing sequence of sets {Xn} with X =U Xn

and a sequence of continuous functions {Gn} of bounded
variation on {a,bl sc that

V(F—Gn,D[Xn] = 0 for all n .
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QUERY 9.3.1 The class of continuove functicns that are VBG, can be
topologized in a way similar to the usual topologization of the class

of continuous functiorns of bounded variation; for the latter class one
simply takes the norm ||[F| = V(F,D). If CVBG, denctes the linear
space of all continuous additive interval functions that are VBG, then
write CVBG,({E }), where £} is an expandihg sequence of closed sets
covering the real line, for those F for which FD(En) < +« for each
n and topologize CVBG,({E }) with the collection of seminorms {p,}
where pn(F) = FD(En) . Finally then the space CVBG, is just the union
of the spaces CVBG({E }) over all such sequences {En} and it can be
topologized in the familiar manner.

Can this construction be used to give any insight into the
nature of VBG, functions? In particular can the type of questions

addressed by Garg [34] for the Banach space of functions of bounded vari-
ation be carried over to this setting?

Our next lemma is due to Henstock [55] and is a kéy tool in
the study of these total variation measures. It represents one of the main
consequences of the additivity assumption on a derivation basis and is,
perhaps, the reason that in Henstock's abstract versions of this theory he

has incorporated the additivity assumption into his definition of a

"division space".

LEMMA 9.4 [HENSTOCK] Let B be a derivation basis that is additive,

filtering down, and has the partitioning property and suppose that h is

a nonnegative subadditive interval function. If the function H defined

by H(I) = v(h,B(I)) (I € I+) is finite then H is an additive interval
function and

V(E-h,B(1)) = 0

for all I ¢ I+ - If moreover B 1is assumed to have O-local character

and to be finer than the topology then

V(H-h,B) = 0
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and consequently F

hB . On the further and final assumption that
h

B
B ignores no point, F

B* = B* .

PROOF. For a fixed interval I and an € > 0 there must be a partition

“0 of I for which

n
v(h,B(1)) = I h(I,) + ¢
i=1

H(I)

where we have written

=
"

{(:ci,xi) : i=1,2,...,n} .

Using the fact that B is additive and filtering down we may choose a
B € B(I) that splits at each Ii , i.e., so that

n
pc U B(1,) .
i=1 .

let ™ C B be any partition of I ; from the subadditivity of h we have

n
"H(I) - €< L h(Ii) = I h(J) = h(J) .

z : T,
i=1 i=1 (J,X) € W(Ii) (J'X) €Em

By our elementary computations for the variation we know, since B is
additive, that H is an additive interval function and that H exceeds
h : hence for any partition m € B , which we may always take to be a
partition of I , we will have

|H(3) -n(@® | = H(I) - h(3) = H(D) - I h@) <c¢.

Z(J,x) €m z(J,x) €m

Thus V(H~-h,B) < £ and sc V(H-h,B(I)) < e . Since € >0 and I are

arbitrary we have proved the first part of the lemma.
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For the second part recall from §2 above that if B is of
0-local character and finer than the topology then V(H-h,B) = 0 when-
ever V(H-h,B(I)) = 0 for every interval I . Thus from elementary

properties of the variation we obtain

|ag(x) - npx)| = |v@s,BIx)) - v(h,BxD) |

1A

v(H-h,B[X])

s V(H-h,B) = 0

and so thé outer measures hB and HB agree on each set as stated.

Finally using some properties of the dual basis established
in Chapter Two, §8, let B € B[X] and B* ¢ B*[X] so that we know
B N B* also belongs to- B*[X] and then we have

"

V(H,B*[X]) < v(H,pNBY

HB* (x)

1A

V(H-h, BNB*) + Vv(n,pnip*)

A

V(H-h,B) + V(h,B*) .
Now letting P and B* vary we obtain
H.B*(X) = 0 + V(h,B*[X]) = hB*(X) -

As the other inequality, hB*(X) < HB*(X) . would follow in the same way

the proof of the lemma is complete.

Henstock's lemma is really an abstract version of the classical

Jordan decomposition theorem as our next theorem illustrates.
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THEOREM 9.5 [JORDAN DECOMPOSITION THEOREM] Let B be a derivation basis

that is additive, filtering down, and has the partitioning property and sup-

pose that F is an additive interval function that has bounded variation

on every interval. Define each of the interval functions F*, F~, P, N,

and T by writing for every interval I ,

F (1) = max {F(D),0}, F (I) = max {-F(1),0} ,
P(1) = V(F,B(1) , NI = V(F ,B()) , and
T(I) = V(F,B(1)) .

Then

(i) P, N, and T are additive nonnegative interval functions,

(ii) F =P~ N and T = P + N, and

(iii) v(p - F,B(I)) = V(N - F,B(I)) = V(T - F,B(I)) = O

for every interval I .

"If moreover B has 0-local character and is finer than the topology then

(ivy vip-F,B) = VIN-F ,B) = v(r-F,B) = 0 , and

(v) Pg =P L, Ng S F ., and T, T F.

Finally, if B also ignores no point then,

(vi) P = F

PROOF, For the most part this follows directly from the preceding lemma.
For example, suppose that we wish to prove that F = P-N. We have, using

that lemma for the subadditive interval functions Ft and F~ :

F = Ft - p~
v(Ft -P,B(1)) =0
V(F™ -N,B{(X})) =0

so that
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V(F - (p-n),B(I)) = V(F - (Ft-F7),B(1)) + V(Ft -p,B(1)) + V(F -N,B(I)) =0

for all intervals I . Since B has the partitioning property and
F - (P-N) is additive, F - (P-N) vanishes identically proving that

F = P-N . The remaining details are similar.

EXAMPLE 9.5.1 (Decomposition theorems for funections of bounded variation)
By using in Theorem 9.5 the basis R or D ome has the standard Jordan
decomposition of a function F that is locally of bounded variation. This

is rather more interestingly expressed as an integration (using either R
or D):

a function F that is locally of bounded variation may be written as the
difference of two nonnegative additive interval functions F = P-N where

P(I) = [y dF and N(I) = gy dF .

Continuing this same theme we can establish in the same
simple way some other familiar decomposition theorems for such functions.

Here we require the integral based on D , the ordinary derivation basis.

[DISCRETE/CONTINUOUS DECOMPOSITION): a function F that is locally of

bounded variation may be written as the sum of a continuous and a discrete
function F = F,+F d where

F (1) = S (1) X(Cp, *)dF and F(I) = Jep) X(Cp's + )dF

CF = {x € R : F is continuous at z} , C'F' = R\CF .

(The integral expressing F d(I) can be easily seen to have the value
z 'ceInCF,{F(cH - F(e)} + {F(e) - F(e-)}

with an appropriate term deleted from the sum if ¢ is an endpoint of

~
.
N
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[LEBESGUE DECOMPOSITION): a function F that is locallv of bounded

variation may be written as the sum of an absolutely continuous and a

singular function F = F,*F, where

Fha(I) = f(I) x(AF, *)dF  and Fd(I) = f(I) x(AF',' )dF

by = {x € R : F'(z) exists finitely} and A.' = R\\Ag.

(The integral expressing Fac( I) can also be written in the form
Fac(I) = I(I) f(x)dx where F(x) = F'(z) for =z € Ap and f(z) =0
othervise.)

Given the apparatus we have developed the proofs of the

decomposition properties are remarkably simple, and the form of the

decomposition may be suggestive of generalizations.

The next theorem plays a key role in a number of investigations
in the differentiation theory. Because it is so intimately connected with

the classical Vitali theorem we have so labelled it.

THEOREM 9.6 [VITALI THEOREM FOR LEBESGUE-STIELTJES MEASURES] Let B be

a derivation basis that is straddled, filtering down, additive, finer than

the topology, and has O-local character and the partitioning property.

Suppose that F is a continuous function having bounded variation on every

interval and let T be its corresponding total variation function. Then

if uT denotes the usual Lebesgue-Stieltjes outer measure generated by T

we must have

F, = F

B = 7T = T

B* B - Tp* = Vp -

PROOF. We already know from the previcus theorem, the Jordan decomposition
theorem, that in this situation FB = TB and FB* = TB* , SO we can

focus attention just on T which is essentially a continuous monotonic
nondecreasing function on R , and Y, which is the usual Lebesgue-Stieltjes
measure generated by T (by the Carathéodory process outlined at the opening

of this section). We will prove that



and since we know already that TB* = Tb the theorem will be proved.

To see that uT = TB' suppose that X C R and that
3* € B*[X] : then applying the Vitali covering theorem relative tc the
measure M (for a proof of the Vitali covering theorem for Lebesgue-~
Stieltjes measures see, for example, de Guzman [37, p. 27]) there must
be a sequence {(Ii,xi} c B* with Ii and Ij nonoverlapping for dis-

tinct i and j and such that

(<]
]JT(X U ln) = 0.
=1
This gives
oo @
- 5 *
uT(X) = uT(In) = L 'I‘(In) = v(r,B")
n=1 =1

and hence letting B* vary we have uT(X) =< TB*(X) for any X as re-
quired to establish the inequality

UT = B* *

To see that TB = uT let XCR and € >0 be given and
then, using a well known property of lLebesgue-Stieltjes measures, there

must be an open set G D X such that
MT(G) < MT(X) + € .

Because B is finer than the topology there is a B € B for which

BIG}] ¢ B(G) . Writing {Ii} for the sequence of closed intervals whose
interiors are the components of the open set G we must have
[o <]

TyX) = v(T,BIx1)} = v(T,BIG]) = V(T,B(®)) = L T(I

=P (G) = p (X) +€ .
el T T

)
n

As € > 0 is arbitrary and this holds for any X € R we have proved that

TB = NT as required. The theorem riow follows.
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The scope of this theorem is severely limited by restricting
it to functions of bounded variation on each interval. One method whereby
these results can be lifted to a larger class of functions is presented in
the next definition. The class of functions so presented form a generali-~

zed version of the class of functions that are continucus and VBG, .

DEFINITION 9.7 Iet B be a derivation basis and h an interval-point
function. We shall say that h is CVBG(B) on a set X C R if there

is an expanding sequence of sets {Xn} with

and a sequence of functions {Gn} that are continuous and of bounded vari-

ation on each interval so that
vih - Gn,B[Xn]) =0

for each n .

Note that a function h that is CVBG(B) on a set X is
necessarily B-continuous at each point of X under the natural assumption
that any function that is continuous is also B-continuous. This is the
case with most derivation bases (although it would not be true for the
sharp derivation basis D¥). oOur next theorem takes the Vitali theorem
and extends it from Lebesgue-Stieltjes measures to more general measures

hy  for functions that are CVBG(B) , under certain hypotheses.

THEOREM 9.8 [VITALI THEOREM FOR CVBG(B) FUNCTIONS] et B be a

derivation basis that is straddled, additive, filtering down, finer than

the topology, and has o-local character and the partitioning property.

Then if h is an interval-point functijon that is CVBG(B) on a set X ,

194



= i C
9.8.1 hB(Y) hB*(Y) for all ¥ X ,

9.8.2 hB and hB* are O-finite on X ,

9.8.3 hB({x}) = hB*({x}) =0 for all x € X so that in
particular h is B-continuous at each point of X .

PROOF. Let {Xn} be an expanding sequence of sets covering X and
{Gn} a sequence of functions continuous and of bounded variation on

each interval such that v(h - Gn’B[xh]) = 0 for all n . Then for

any Y C X we must have by the Vitali theorem and by the increasing

sets property,
hB(Y ] xn) = (Gn)B(Y n xn) = (Gn)B*(Y n xn) = hB* (y N xn)
and so
hB(Y) = lim hB(Y n xn) = lim hB* (y N xn) = hB*(Y) .

But since hB* = hB always in this situation it follows that for any
YCXx, hB(Y) =-hB*(Y) as required.

EXAMPLE 9.9 (Characterization of the class ACG, ). Parallel to the
characterization in example 9.3 above of the class VBG, we can provide

a similar characterization of the class ACG, , again using the deriva-
tion basis D .

The following assertions are equivalent for a continuous function F on
an_interval [a,bl and a closed set X c (a,b)

(1) F is ACG, on X,

(2) Fy is o-finite on X and FD(N) =0 for every
set N <C X for which [N] =0,

(3)  there is an increasing sequence of sets {Xﬁ} with

X=UZx and q sequence {Gr} of absolutely con-
[4

tinuous junctions on la,b) 50 that
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V(F - Gﬁ,D[Xﬁ]) = 0 for all n.

QUERY 9.10 t seems likely that there is a Ward type characterization
of the class ACG, to add to example 9.9. Thus,

(4) there 18 an absoluteluy continuous increasing function
G on l[a,b] so that D F.(x) and D F,(z) are
finite at each point of X .

Is this equivalent with (1), (2), and (3)? Saks [105, p. 237] asserts
this only in the case that X be an open interval.

EXAMPLE 9.11 (Zero variation) For an arbitrary function F and a set

X ¢ R the expressions F_(X) , Fos(X) , and |FIX1| are quite independent.
But there are some interesting interrelations, particularly in the event
that one or more vanishes. Here we use the notation FI[X] = {y : F(zx) =y
for some x € X} so that F must be interpreted as a point function
(although |F1X1| can be determired solely from AF ).

These results are known: let F be continuous on R and
let XCR. : '

9.11.1 if |FIX1| = 0 then Fy4(X) = 0, (Thomson m13)

9.11.2 Fy(X) = 0 if and only ﬁf F is VBG, on X

and |FIX1| = 0 (Henmstock [60, Theorem 41) .

EXAMPLE 9.12 (Total variation of a typical continuous function) Using the
word "typical” in the sense of Bruckner [10, Chapter XIII} we can show that
the measures Afb, Afb* , and uf (that we know are closely related for
continuous VBG, funetions) have a certain predictable behaviour. Here
Cla,b] 1is the usual Banach spoce of continuous functions on the interval
[a,b] .
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A typical continuous function f im Cia,b) (i.e., for a residual set
of f 1in that space) has

uf([a,b]) = AfD*([a,b]) =0

while L\.fD 18 non o-finite on any set of positive measure. (Bruckner [9 )
for pf and Thomson Q13 for AfD and AfD" .)

EXAMPLE 9.13 (Lebesgue differentiatior theorem) We indicate here an
interesting if wnorthodox proof of the Lebesgue differentiation theorem
(i.e., the assertion that continuous functions of bounded variation must
have finite derivatives almost everywhere). Lebesgue's proof relied
heavily on the integration theory hz had developed and since them numerous
proofs have been given. The proof we give here exploits the properties of
the vartation and should not be considered elementary since it uses the

Vitali theorem. Nonetheless the ccmputations are quite simple:

Let F be a continuous function that is VBG, on a set X . Then

F'(z) exists finitely almost everywhere in X , and F'(z) exists
finitely or infinitely FD—almost everywhere in X .

The proof (cf. Thomson [114) follows from three simple steps.
The first step requires showing that the fimiteness of FD on aset YcCX

requires that both D F(x) and T F(x) be finite a.e. in Y .

For the second step note that for a continuous function
F+'(:c) either exists finitely or infinitely or else there are rational
numbers r and s with |r| # |s| such that both r and s are de-

rived numbers of F at =z . Let st ={x €X:r and s are derived
numbers of F at =z} . Then V(F - m,D*[erl) = V(F - sm,D"[xm]) = 0.
But the identities Fy = Fps and My = Mox on X then lead easily to

the assertion

! — [
,rImD(XPS) = Fy(X ) = lslmD{xrs).
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From this we conclude that the set of points x in X at which the
right derivative F+’(:c) [and hence similarly the left derivative
F '(x)) does not exist finitely or infinitely has both my and FD
measure zero.

The final step then needs only aproof that the set of points
x at which F;'(z) = to and yet F '(x) = ¥ 1is countable. With
these three steps then the theorem now follows easily.
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INDEX OF NOTATIONS

AsB

special derivation bases:

A approximate derivation basis
C composite derivation basis
CE composite derivation basis

relative to E= {En}

D ordinary derivation basis
(endpoint tagged version)

D° ordinary derivation basis (full version)

D# sharp derivation basis

modified ordinary derivation

2

199

natural derivation basis relative *to
a family of filters {N(x) : x € R}

11,51 (11)
11,81(10)
11,§1(10)
I1,§8(8.1)
I1,52(n)
I1,52(A)
I1,82(R)
I1,82(A)
11,§2(B);II1I,85,86
I11,59(9.5)
I1,6§2(B);III,81
11,§2(B);III,81
I1,81(8)
I1,52(C)

11,§2(B)

11,83(3.8)

I1,83(3.9)

11,83(3.9)

I1,583(3.4)
I1,§3(3.4)
11,83(3.5)

I1,54(4.11)

11,53(3.8) and II,89



RD, LD right and left Dini derivation basis

PS modified symmetric basis

RAP (0 £ P <1l) right density p basis
S symmetric derivation basis

T  trivial basis

U uniform basis

u# sharp version of uniform basis

properties of a derivation basis:

additive

C-complete

endpoint tagged
filtering down

finer than the topology
decomposition properties
H;complete

ignores no point
intersection conditions
local character

O~local character
partitioning property
separates

splits

straddled

200

11,83(3.7)
I1,85(5.10)
11I,58(8.16)
11,83(3.10)
I1,83(3.1)
I11,83(3.2)

11,83(3.5)

11,84(4.7)
I1,85(5.9)
I1,§4(4.3)
I1,34(4.1)
11,84(4.9)
11,87
11,85(5.9)
11,84(4.10)
I1,89(9.6)
I1,56(6.1)
I1,56(6.2)
I1,85(5.1)
I1,54(4.5)
11,84(4.5)

11,584(4.3)
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