Real Analysis Exchange Vol. 8 (1982-83) Paul D. Humke, Department of Mathemaics, St. Olaf College, Northfield,... Minnesota.

Some Remarks on σ -Porous Sets and Unilateral Derivates

The work outlined here represents joint work with Mike Evans, Krishna Garg, Ted Vessey, and I even did a bit myself. I'll motivate this area of effort with a problem presented by Krishna Garg at the 1976 Real Analysis Conference held at Syracuse, New York. The problem is simply to characterize the following set.

 $U(f) = \{x: D^+f(x)\neq D^-f(x) \text{ or } D_+f(x)\neq D_-f(x) \}$

This is, of course, the set of points where unilateral derivates differ, and the situation which was known at the time was:

 $fsBV \Rightarrow U(f)$ is $G_{\delta\sigma}$, first category, measure zero. $fsC \Rightarrow U(f)=U_1 \cup U_2$ where U_1 is as above, and U_2 is an arbitrary G_{σ} .

Since 1976 a bit more has been determined and the situation now is:

(1) fsL (Lipschitz) => U(f) is $G_{\delta\sigma}$, σ -porous

(2) $f \epsilon BV \Rightarrow U(f)$ is $G_{\delta\sigma}$, first category, measure zero, but not necessarily σ -porous.

I'd like to discuss the converse of each of (1) and (2), and I'll begin with (2), and in particular, the following useful lemma of Zahorski.

LEMMA Z. To every linear G_5 set E which does not contain an interval there corresponds a decreasing sequence of open sets G_n with $E = \bigcup_{n=1}^{\infty} G_n \text{ and which have the following property: If the func$ $tions <math>f_n$ are such that $f_n(x) < \rho(G_n, x)$ and are everywhere differentiable, then $f(x) = \sum_{n=1}^{\infty} f_n(x)$ exists and is continuous for all x, and f is differentiable for $x \notin E$. Indeed, f'(x) = 0 if $x \notin G_1$ and $f'(x) = \sum_{n=1}^{m} f'_n(x)$ if $x \in G_m - G_{m-1}$.

Additionally, the following lemma is useful.

LEMMA If K is a nowhere dense perfect subset of (a,b) and $\delta>0$, then there is a differentiable function $f: \mathbf{R} \to [0,\infty)$ such that:

- 1. $f(x) < \rho(x, (a,b))$ for all x.
- 2. Vf $\langle 4(b-a)$ [V=total variation]
- 3. For each xeK there is a $yc(x, x+\delta)$ such that [f(y)-f(x)]/[y-x] > 1.

Using the Vitalli Covering Theorem we can then prove:

THEOREM Let E be a nowhere dense, measure zero, G_{δ} set, and let $\epsilon>0$. Then there is a bounded variation function f such that f is <u>differentiable on</u> **R**-E, U(f)=E, and $Vf<\epsilon$.

One would think that this would be enough to handle the BV case, but the obvious things to do next don't work smoothly and as a consequence, the above theorem is the best we have. These results depend quite heavilly on the Vitalli Covering Theorem, and as such, it was our thought that such a theorem for σ -porous sets would be very handy in (1). A preliminary investigation into this is carried on within the paper entitled "Another note on σ -porous sets" which is in the Inroads section of this <u>Exchange</u>.

34