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Riemann-Stieltjes Integrals of Functions

of Generalized Bounded Variation

This work appearskin [3].

We define a new notion of generalized bounded variation as
follows: We shall say that a sequence of convex functions ¢ = {¢n}
is a ¢-sequence if (i) ¢n(0) = 0 and ¢n(x) >0 for x >0, n=1,2,...,
(ii) ¢n+1(X)-E ¢n(x) for x >0, n=1,2,..., and (iii) §¢n(x) =
for x > 0. A real-valued function f 1is said to be of $-bounded
variation on the interval [a,p] if §¢n(|f(1ﬁ)l) < o for any
collection {In} of nonoverlapping subintervals of [a,p], where
f([x,y]) = f(y) - £(x). The space QE! is the collection of all
functions f such that cf 1is of ¢-bounded variation for some

c > 0. Finally <I>Bv0 = {fedBV : f(a)=0}. This definition of ©¢-

bounded variation is equivalent to requiring that the sums be uni-
formly bounded or that the sums obtained from finite collections of
subintervals be uniformly bounded. This being the case, we may define

the total &®-variation of f over [a,b] by V

¢(f;a,b) = V¢(f) =

sup §¢n(lf(xn)|)' the supremem being taken over all nonoverlapping

collections {I }. 1In turn we define the Q—variatiqg function of

n
f, for a<x< b, v¢(x;f) = vé(x) = V¢(f;a,x).

By varying this constrﬁction, we obtain many of the spaces of
functions of generalized bounded previously studied. For example,
by choosing ¢n(x) = x for all n, we obtain ordinary bounded varia-

tion. If ¢(x) is a convex function of the type described above,
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and if we let ¢n(x) = ¢(x), n=1,2,..., we have G¢BV = ¢BV, as
studied by Young [6]. If A = {An} is a A-sequence in the sense
of Waterman [4], and we let ¢n(x) = x/An, we have BV = ABV, and
if ¢ and A are as above and ¢n(x) = ¢(x)/kn, we have OBV = ¢ABV
(see [2]).

We have generalized many of the known results regarding the
behavior of functions in these classes and the associated variation

functions. For example, for a < ¢ < b, we have V, (f;a,b) <

¢
V¢(f;a,c) +.V¢(f;c,b) + ¢l(osc(f)). Since V¢ has all of the variations
alluded to above as special cases, it is clear that no more can be

said without specific knowledge of the sequence ¢. However the

variation function Vo shares the continuvity properties of £, as

~was known for ordinary bounded variation and A-bounded variation,
that is, Vo is (right- or left-) continuous at xc[a,b] if and
only if f 1is (right- or left-) continuous there.

It is not difficult to see that @BV. is a linear space, and that
a function of  ¢-bounded variation can have only simple discontinuities.
Further, ¢BVO can be made a Banach space with an appropriate norm,
and the following version of the Helly Selection Theorem holds:

If {fn]:___lg BV such that there exist ¢ > 0 and M < ™

with Icfn(x)l < M for all n and xE[a,b] and V¢(cfn) <M

for all n, then there is a subsequence {fn } g; {fn} and a
k

function fedBV so that fn (x) *» £(x) for all xe[a,b]
k

and V®(cf) < M.
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We alsc obtain the following analogue of a theorem of Waterman:
Recall [5] that if f is of harmonic bounded variation, then the
Fourier series of f converges for all x, and the convergence is
uniform on closed intervals of points of continuity, and that if
ABV is strictly larger than HBV, there is a continuous function
in ABV whose Fourier series diverges at a point. We have shown that
this last statement remains true if "ABV" is replaced with "¢BV".

Our main theorem is the following generalization of a theorem
of Leéniewicz and Orlicz [l]:

Let & = {¢n} and VY ='{wn} be &-sequences such that

%¢;l(l/k)¢;l(l/k) < o,  If fe@BVO(W C and geYBV, then

the Riemann-Stieltjes integral f: £ dg exists.

As a corollary to the proof we obtain the following Holder-like
inequality:

Let A = {Xk} and T = {Yk} be A-sequences such that

E )\kyk/k2 < ©, For fCABVO(\ C and geFBVo, the following

holds:

b 2
|[, £ agl < 2llll gl A v, /%"
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