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REMARKS ON A PROBLEM OF A. M. BRUCKNER

l, Let F be a continuous function on (0,1) and
suppose that, for a given sequence hn -0, hn # O the
finite limit

F(x+hn) - F(x)

1) lim = £(x)
: n-o *hn

exlsts for every 0 < x < 1 , In this case F is said to |

be sq -differentiable and £ 4is its sg -derivative

["sg@" stands for "sequential"/, An sq -derivative is
obviously a Baire 1 function and the problem we refer to

in the title is whether every Baire 1 function is the

sq -derivative of a suitable F /see [1], pp. 115-117./.

We answer this question in the negapive, It turns out, that
the property "being sq -differentiable" is a rather re-
strictive one, For instance, 1f the sg -derivative £ of

F 1is bounded then F is absolutely continuous /Lipschitz 1/,

and hence f£(x) = F'(x) a.e.

Notation., For any function F , D+F,D+F,D-F,D_F
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denote the usual derived numbers. The Lebesgue measure
is denoted by A . The set A translated by x 1is de-

noted by A+x .

2, The results below are easy consequences of a
known theorem on Perron integral /[2], Theorem (7,3), PpP.

204-205./.

- Theorem 1, Let £ be a sq -derivative of the

continuous function F .
(1) If £ >0, then F 1is increasing;

(1) 1if £ is summable, then
X
F(x) = Sf + const,

and hence F’ = £ a.,e, In particular, if f is bounded,
then F is Lipschitz 1;

(i11) if £(x) = g(x) a.e,, where g is an ordinary
derivative, then £f(x) = g(x) everywhere and F'(x) = £(x),
i.e, F 1is a primitive of £ ;

(iv) there always exists an everywhere dense open

set U such that F’(x) = £(x) a.e, in U ,

" Theorem 2, Let £ and g be the sg -derivatives

/with respect to the same sequence {hn}/ of the continuous
functions F and G respectively, If £f(x) = g(x) a.,e.,

then F-G 1is constant.
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Theorem 3., Let f ‘be a Baire 1 function such

that either

(1) £ 4is summable but (isf(t)dt)'=x # f(xo)
in a suitable point X, s OF °

(11) there exists a derivative g such that the
non-empty set {x:f(x) # g(x)} is of measure zero,
Then £ can not be a sq -derivative, In particular,
changing the values of a derivative in finite number of

points, the result is a Baire 1 function which is not a.

sq -derivative,

" Example 4. Let f be a bounded function and suppose

it is right continuous in every point x . Then taking

X
F(x) = Sf ;, we have

+

D F(x) = D F(x) = £(x)

in every x . In particular £ is the sgq -derivative
of F for any positive null-sequence {hn}. Taking an
increasing function £ with jumps, the example above is

a non-Darboux sq -derivative,

- Theorem 5, If the sequence hn - O contains infinitely

many positive as well as negative terms then the sq -deriv-

atives with respect to {hn} possess Darboux property.
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3. The next assertions elucidate how sharp are the

results above.

Theorem 6., Let a nowhere dense perfect set Pe [0,1] ,

a sequence hn -0, hn # O be given, Then there exists
a continuous function F such that its sg -derivative
/with respect to {hn}/ exists everywhere, but the ordinary

derivative F’ fails to exist in the points of P .

- Theorem 7, Let £ be the sq ~derivative of F with
h
n
respect to hn - O and suppose hn >0, g— -~ 1l , Then

n+l
F;(x) = £(x) holds on an everywhere dense open set /F;

denotes the right hand side derivative of F/.

- Corollary 8. If the sequence hn - 0 contains two

subsequences hél),héz) such that hél) >0, héz) <0

and
hél) hI§2)
lim-};-(r)-=limh7-2-)-=l,
n+l n+1l

then F’(x) = £(x) holds on an everywhere dense open set,

Our next theorem points out that theorem 7 holds no

longer true without the restriction hn/hn+ -1,

1

Theorem 9. Let h, > h, > ... be a sequence tending

> 1 2
to zero, but ﬁ—ﬂ— -1, Let H = {rl,rz,...} be any
n+l
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countable set in [0,1]. Then there exists a continuous
function F such that its sq -derivative exists every-
where but the ordinary derivative F’ fails to exist in

the points of H .,

4, The definition of the sq -derivative resembles
in many respect to that of the selective derivative intro-
duced by 0’Malley /[3], or [1], p. 170/. There are many
properties possessed by both derivatives. They are however
very much unlike in the following sense, If F has selec-
tive derivative with respect to two selections then the
derivatives agree except on a countable set; in addition
to this a selective derivative of F 1is always the approx-
" imate derivative of F in almost every point. Our next
theorem ‘shows that neither of these properties hold for

sq -derivatives,

- Theorem 10. Let e > O be given. Then there exist

a perfect set PcC[0,1] , a function F continuous on

[0,1] , and two sequences h -0, k -0 such that

(1) A(P) s1l-¢ ;
(11i) the finite limits

.F(x+hn) - F(x)
f(x) = 1lim ’
nN-+oo j11‘1
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_F(x+kn) - F(x)
g(x) = 1lim X
n- o n

exist everywhere;
(111) £(x) # g(x) for x€P ,

(iv) F;pp does not exist in the density points of P .

5. Problems,

(15 Let the continuous functions F and G be sgq -
differentiable on the sequences {hn} and {kn}, respec-
tively., Suppose that their sq -derivatives agree every-
where, Does F-G constant follow? Corollary 2 and 3 imply
that F-G 1is locally constant on an everywhere dense open

set.

(1ii) what assumptions on {hn} could imply that
sq ~differentiable functions have approximate derivatives

almost everywhere?

(11ii) Suppose that F is sq -differentiable on
{hn} as well as on {kn} and hn/kn - 1, Do the sgq -

derivatives agree almost everywhere?

(iv) Is the class of all sqg -derivatives additive?

uniformly closed? a Borel set in the space of Baire 1
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functions /with the topology of uniform convergence/? It
is routine from Corollary 2 (ii) that the set of sq -
derivatives with respect to a fixed sequence is uniformly

closed,
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