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ON LOCALLY SYMMETRIC AND SYMMETRICALLY CONTINUOUS FUNCTIONS

Introduction

-The function f: R=R 1s said to be locallx symmetric

at the point x € R if there exists a § = 5(x) such that
for each h, O<h<§, the equality f(x - h) = f(x + h)
holdé. The function f: R-»R is said to be locally
symmetric (on R) if it is locally symmetric at each
point x € R (cf. [1], [2], [4]).

The function f: R-R 1s said to be symmetrically

continuous at the point x € R if 1lim (f(x + h) - f(x - h))=0.
h-0

The function f: R-R is said to be symmetrically continuous

(on R) if it is symmetrically continuous at each point
x € R (ef. [1], [3]).

Denote by LS and SC the class of all loCally symmetric
functions and all symmetrically continuous functions, res-
pectively. Clearly we have
(1) LS < sC .

In the papers [l]7 (2], [4] some results about the
functions of the class LS are proved. 1In connecfion with
these results we shall prove some further results about
functions of the classes LS and SC; in so doing, we

shall make use of the following theorem of T.Z. Ruzsa[4].
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THEOREM R. If f € LS, then for a suitable q € R

the closure of the set {x€R: f(x) # q} is countable.

In the t'irst part of this paper we shall study the
classes LS and SC from the viewpoint of pointwisé and
uniform convergence of sequences of functions from
these classes and from the viewpoint of the convergence
of transfinite sequences of funétions from these :lasses.
In the second part of the paper we shall study the
relationship between the linear normed space of all
bounded symmetriCally continuous functions and its

subspace of all bounded locally symmetric functions.

1
At first we shall establish the relationship of
locally symmetric functions to Baire functions.

Theorem 1.1 Each locally symmetric function

f: R-R belongs to the first Baire class.

Proof. Set Q={x: f(x)=q}, where q is the number
guaranteed by Theorem R. If M¥*={x: f(x)<a}, then
for a = ¢q Ma is a countable set and for a > q, M is
the union of int(Q) and a countable set. In either
case, M? is an Fa-set and the proof is complete.

We shall investigate the uniform :closure of the

classes LS and SC.

68



Theorem 1.2. If fn€SC(n=1,2,...) and the sequence

{fn}3=1 converges uniformly (on R) to the function

f: R-R, then f€SC.
Proof. Let x€R. We shall show that

(2) lim (f(x + h) - £(x - h)) = 0.
h-0

Let e0. By hypothesis there exists an m such that for

each t€R we have

€
(3) [£a(t) = £(t)1< 5
Since fmGSC,there is a $>0 such that for each he(C,5)
we have
€
(4) | £a(x + h) = £.(x- h)| <5

For O<h<t we have |f(x+h}-f(x-h)|s|f(x+h) f_(x+h)|+

|fm(x+h)-fm(x-h)|+|fm(x-h)-f(x-h)|, where the first and
third summand on the right-hand sideare less than % because
of (3), and the second is less than %-because of (4).
From this (2) follows at once.

Hence the class SC 1s closed with respect to the
uniform convergence. The class LS does not have the
similar property.

Theorem 1 3. There exists a sequence

{fn};, fn € LS (n=1 2,..) which converges uniformly

on R to a function f that is locally symmetric at no

irrational point.

Proof. Let Py<P<... be the sequence of all prime
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numbers. Put A= {%»: k is integer, pntK}(n=l,2 vl
: n
Then evidently AnnAm=¢ for n#m. Define the function

fn(n=1,2 ...) in the following way:

_ ' n
fn(x)=i 1 for xeA; (i=1,2,...,n) and f (x)=0 for x€R— U A

i=1
Then evidently £ €LsS (n=1,2,...). The sequence

{fn}; converges uniformly to the limit function f
given by f(X)=i-l

(-]

i
i=1 Ay

for x€A; (i=1,2,...)and f(x)=0 for .

XER-

Let x be an irrational point, and let §>0. Then
there exist two positive integers n and k such that

p,fk and x-6<l—§l<x. Since & = f(-g-n) # £(x+(x-5 ))=0, £

n
is not locally symmetric at the point x. This ends

the proof.

If {fn}i is a pointwise convergent sequence of
functions from the class LS, then the limit function f
belongs, on account of Theorem 1.1, to the second Baire
class. Moreover we shall prove now that f is an
"honorary function in the second Baire class", i.e.,
we get from f a function belonging to the first Baire
class if we change the values of f at the points of
a countable set.

Theorem 1.4. The limit function of a pointwise

convergent sequence of locally symmetric functions is

constant on a co-countable set; furthermore if the
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convergence is uniform on R, then there exists a q€R

such that for each €0, the closure of the set

Ve

{x: |f(x)-q|>e} is countable.
Proof. Let f € LS (n=1,2,...), £ of. We already
know that for each n there exists a anR and a countable

set B cR such that for each x€R-B, we have fn(x)=qn

(see Theorem R.). But then for each xeRﬁgl Bn we have

fn(x)=qnef(x) hence f(x)=q=1im q  and the set
N

S5 C8

=1 Bn is countable.

Now assume that the convergence is uniform on R.

Choose an m such that for each x€R we have
|£,(x) - £(x)] <5
(especially |qm-q|<% ) -
Put W_= {x€R: |fm(x)-qm|> %-}. According to

Theorem R., the closure of the set W; is countable.
Further it can be easily verified that Vé c Wé. There-
fore the closure or the set Vé is countable, too, and
the theorem is proved.

Remark 1.1 Let us observe that the function f from
the foregoing theorem need not belong to the first Baire
class. It suffices to put (the notation being the same

1

as in the proof of Theorem 1.3 ): f_ (x)=i = for

x€A1(1=1,2,...,n) and fn(x)=2 ror xg() A;. Then
i=1
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£.-r, £(x)=1"" for xeA, (i=1,2,...) and f(x)=2 for

X€ER - ﬁ A.. Since the set ﬁ A, is dense in R
j=1 L j=1 1

(see the definition of sets ./-\.l in the proof of Theorem
1.3.), the function f is discontinuous at each point
of R and therefore it is not in the first Baire class.
We shall now prove that the classes LS and SC are
closed with respect to transfinite convergence (see [5]).
At rirst we introduce the following simple auxiliary
result, the proof of which can be left to the reader.

Lemma 1,1. (i) The function f: R-R is locally

symmetric at the point x€R if and only if for two

arbitrary sequences {xn}:, {yn}:, of real numbers with

X, 1X, ¥, 4x, |xn - x| =y, - x (n =1,2,...) there exists

& p such that for each n > p we have f(x,) = f(y,).

(ii) The function f: R-R is symmetrically continuous

at the point x€R if and only if for two arbitrary sequences

(-] (-]
{xn}l, {yn}l of real numbers with xntx,ynlx,lxn-xl =

|y, - x| (n=1,2,...) we have

lim (f(xn) - f(yn)) =0

[l =

0 ;5 the first uncountable

Theorem 1.5. Letg§é<n (

ordinal number) be a transfinite sequence of functions

from SC (LS), let fgef. Then f€SC(feLS).

Proof. We shall give the proof only for functions

fEGIS (the second case can be proved in an analogous

way) .
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Let x€R and let {xn};, {yn}; be two sequences of

real numbers with x tx, y !X, lxn-x|=|yn-x|(n=l,2,...).

Since fE~f, to each n=1,2,... there exist ordinal numbers

ap> Bn such that

(5) fE(xn) f(xn) for each £ > a

fg(yn) f(yn) for each € > B .

(See [ 5]). Let o be the first ordinal number which
follows after all a . B, (n=1,2,...). Then a<N and
hence for each n=1,2 ... we .get from (5) that

(6) £ (x) = £(x,)s £4(v,) = £(5,).

Since fa € LS, there exists, on account of Lemma 1.1,

a p such that for each n>p we have fa(xn)=fa(yn)‘ But
then for m>p.we have according to (6) the equality
f(xn)=f(yn). Now Lemma 1.1 guarantees that f is locally

symmetric at the point x, and the proof is finished.

2
Denote by (M, [[*]] ) the linear normed space of all
bounded functions f: R-R with the norm |[|f|f. =sup{|f(t)]|}.
Denoye by LS¥ and SC¥*¥ the class 6f all feM thattgie locally
symmetric on R and symmetrically continuous on R, respectively.

It tfollows from Theorem 1.2. that SC¥ is a closed
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subspace of M. Since evidently SC* # M, the set SC*
is nowhere dense in M.

It follows from (1) that LS* is a linear subspace
of the space SC*, but LS* is not a closed set in SC¥*
(see Theorem 1.3). The question arises whether the
set LS* is a nowhere dense set in SC*¥. The answer
is affirhative.

Theorem 2.1. The set LS¥ is nowhere dense in SC¥*,

Proof Let K(f,5) be a sphere in SC* (f€SC¥,0>0).
We shall prove that there exists a sphere K/eK(f,$)
in SC* such that K/nNLS* = &.

If LS* n K(f,8) = @, we can take K'=K(f,5). Let
there exist g € LS* n K(f,8). We have already seen
that there exists a number q € R and an interval
[a’,b’ ]JeR such that g(x)=q for each x€[a’,b’]. Choose
a §’>0 such that K(g,6’)c K(f,5). Define the function
h: R-R in the following way. We choose some numbers
‘a, a’’,b,b’’ with a’<a<a’’<b’’<b<b’ and put

4 . ’
h(x)=q - % for a s x < a’’, h(x) =q + % for b’’sxs<b;

further let h be a linear and continuous function on each
of the intervals [a'',b''] )[a',a], [b,b‘] and h(a')=g(a'),
h(b') = g(b'). Let h(x) = g(x) for x € [a', b']. Then
clearly h € SC* and

(7) lIh - gl < %'.
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Now K(h,%') c K(g,8') since for v € K(h %' ) we
have according to (7) v - gfl. s{lv - hjl + |[lh - g|f.

%} + %f< &' . We shall prove that
(8) Is* n K(h, §') = 4 .

If vc K(h,%f), then for each x € [a,a''] we have v(X) < h(x)+

5'_ g! _6-1- _6'

F=a-3+3=4d-5% and for each x € [b'',b] we have
5! [ o'

v(x)>h(x) - I=A+3-3=q+g- All the values of

the function v on [a,a''] are less than the values on
[b'',b]. Therefore the function v does not belong

to LS* because of Theorem R. Hence (8) is established
and this ends the proof.

The following theorem, which is an immediate
consequence of Theorems 1.2 and 1.4, gives some pro-
perties of functions belonging to the closure (in SC¥*)
IS* of the class LS* .

Theorem 2.2. If f € LS*, then f is bounded,

symmetrically continuous, and there exists a q € R

such that for each € > O the closure of the set

V.= {x€R: |f(x) - q| > €} is countable.
Remark 2.1. The question about characterising the

functions from IS* remains open.
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