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 ON LOCALLY SYMMETRIC AND SYMMETRICALLY CONTINUOUS FONCTIONS

 Introduction

 -The function f: R-»R is said to be locally Symmetrie

 at t-he point x € R if there exists a 6 = ô(x) such that

 for each h, 0<h<3? the equality f(x - h) = f(x + h)

 holds. The function f: R-»R is said to be locally

 symmetric (on R) if it is locally symmetric at each

 point x 6 R (cf. [1], [2], [4]).
 The function f: R-*R is said to be symmetrically

 continuous at the point x € R if lim (f(x + h) - f(x - h))=0.
 h-»0

 The function f : R-»R is said to be symmetrically continuous

 (on R) if it is symmetrically continuous at each point

 x 6 R (cf. [1], [3]).

 Denote by LS and SC the class of all locally symmetric

 functions and all symmetrically continuous functions, res-

 pectively. Clearly we have

 (1) LS c SC .

 In the papers [1], [2], [4] some results about the
 functions of the class LS are proved. In connection with

 these results we shall prove some further results about

 functions of the classes LS and SCj in so doing, we

 shall maKe use of the following theorem of T.Z. Ruzsa[4].
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 THEOREM R. If f € LS, then for a suitable q € R

 the closure of the set {x€R: f(x) ¿ q} _is_ countable .

 In the first part of this paper we shall study the

 classes LS and SC from the viewpoint of pointwise and

 uniform convergence of sequences of functions from

 these classes and from the viewpoint of the convergence

 of transfinite sequences of functions from these classes.

 In the second part of the paper we shall study the

 relationship between the linear normed space of all

 bounded symmetrically continuous functions and its

 subspace of all bounded locally symmetric functions.

 1

 At first we shall establish the relationship of

 locally symmetric functions to Baire functions.

 Theorem 1.1 Each locally symmetric function

 f : R-R belongs to the first Baire class .

 Proof . Set Q={x: f (x)=q) , where q is the number

 guaranteed by Theorem R. If Ma={x: f(x)<a) , then
 3, SI

 for a s q M is a countable set and for a > q, M is

 the union of int(Q) and a countable set. In either

 case, is an F^-set and the proof is complete.
 We shall investigate the uniform closure of the

 classes LS and SC.
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 Theorem 1.2. If f . . . ) and the sequence

 {fn)n=l converges uniformly (on R) ^to the function
 f : R-»R, then f€SC.

 Proof. Let x€R. We shall show that

 (2) lim (f(x + h) - f(x - h)) = 0.
 h-»0

 Let e>0. By hypothesis there exists an m such that for

 each t€R we have

 (3) - f(t)l< I .
 Since f €SC, there is a 6>0 such that for each hÇÍCjô) ' m '

 we have

 CO |fm(x + h) - fjjj(x ~ h)| < I .
 For 0<h<6 we have | f (x+h)-f (x-h) ļ s ļf (x+h) fm(x+h)|+

 I fm(x+h)-fm(x-h) ļ+ļ fm(x-h)-f (x-h) ļ , where the first and
 third summand on the right-hand s ideare less than because

 of (3), and the second is less than because of (4).

 From this (2) follows at once.

 Hence the class SC is closed with respect to the

 uniform convergence. The class LS does not have the

 similar property.

 Theorem 1 3- There exists a sequence

 {fn3^, fn € LS (n=l 2, . . ) which converges uniformly

 on R _to a^ function f that is locally symmetric at no

 irrational point.

 Proof. Let pļ<p£<. . . be the sequence of all prime
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 numbers. Put A = {- ; t is integer, p łK}(n=l,2 ...).
 Pn

 Then evidently AnHAm=0 for nj4n. Define the function

 fn(n=l,2 ...) in the following way:
 /1 n

 f (x)=i for x€A (i=l,2,. . .,n) and f_(x)=0 for x€R- U A..

 Then evidently i*n€LS (n=l,2,...). The sequence

 £fn}" converges uniformly to the limit function f

 given by f(x)=i~'L for x€A. (i=l,2, . ..) and f(x)=0 for.
 00

 x€R- A^.

 Let X be an irrational point, and let 6>0. Then

 there exist two positive integers n and K such that

 p łK and x-6<|<x. Since A = f(£ ) ¿ f(x+(x-§ ))*0, f
 *n ťn ťn

 is not locally symmetric at the point x. This ends

 the proof.

 If {fn3" is a pointwise convergent sequence of
 functions from the class LS , then the limit function f

 belongs, on account of Theorem 1.1, to the second Baire

 class. Moreover we shall prove now that f is an

 "honorary function in the second Baire class", i.e.,

 we get from f a function belonging to the first Baire

 class if we change the values of f at the points of

 a countable set.

 Theorem 1.4. The limit function of a pointwise

 convergent sequence of locally symmetric functions is

 constant on a co-countable set; furthermore if the
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 convergence is uniform on H, then there exists a qCR

 such that for each e>0, the closure of the set

 V.= fx: |f(x)-q|>e} is countable.

 Proof. Let f € LS (n=l,2,...), We already

 Know that for each n there exists a q £R and a countable
 n

 set B cR such that for each x€R-IL we have f (x)=q
 n n n n

 00

 (see v Theorem R. > ) . But then for each x6R-^t n=l B we have v > . n=l n

 f (x)=q -*f(x) hence f(x)=q=lim qn and the set
 n-*®

 00

 , B is countable.
 n=l , n

 Now assume that the convergence is uniform on R.

 Choose an m such that for each x€R we have

 lfm(x) - f(x)l < I

 (especially |qm-q|<|- )•

 Put W = fx6R: If 1 (x)-q |> } . According to € 1 til m j

 Theorem R., the closure of the set W is countable.
 e

 Further it can be easily J verified that V c W . There- J e e

 fore the closure of the set V is countable, too, and

 the theorem is proved.

 Remarle 1.1 Let us observe that the function f from

 the foregoing theorem need not belong to the first Baire

 class. It suffices to put (the notation being the same

 as in the proof of Theorem 1.3 ): f (x)=i~^ for

 x€A. (i=l,2, . . . ,n) and f (x)=2 for xgQ A.. Then
 1 n i=l 1
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 f(x)=i 1 for xÇA^ (1=1,2,...) and f(x)=2 for
 xçR - S A, . Since the set Û A. is dense in R

 i=l 1 i=l 1

 (see the definition of sets A^ in the proof of Theorem
 1.3.)» the function f is discontinuous at each point

 of R and therefore it is not in the first Baire class.

 We shall now prove that the classes LS and SC are

 closed with respect to transfinite convergence (see [5])-

 At first we introduce the following simple auxiliary-

 result, the proof of which can be left to the reader.

 Lemma 1.1. ( i ) The function f : R-R locally

 symmetric at the point x€R If and only if for two

 arbitrary sequences Cyn3i> 2L real numbers with

 X tx, yn łx, |x - xl = |yn - xl (n = 1, 2, . . . ) there exists

 a p such that for each n > p we_ have f(xn) = ^ (yn) •
 (ii) The function f : R-»R _i£ symmetrically continuous

 at the point xçR _if and only if for two arbitrary sequences

 {xn)"> fyn3" of real numbers with x^fx^ix, Un-x| =
 |yn"x| (n = 1,2,...) we have

 lim (f(xn) - f(yn)) = 0

 Theorem 1.5. Let ^ (o jLs_ the first uncountable
 ordinal number) be a transfinite sequence of functions

 from SC (LS), let f ->f. Then f€SC(f€LS).

 Proof . We shall give the proof only for functions

 f^€LS (the second case can be proved in an analogous
 way) .
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 Let x€R and let {xn3*> {^^1 be two sequences of

 real numbers with xníxJ ynļx> lxn~xl=|yn~xl (n=l>2, . . . ) .

 Since to each n=l,2,... there exist ordinal numbers

 aQ, ßn such that

 (5) i>ą(xn) = f(xn) for each 5 >

 f|(yn) = f(yn) for each ç > ßn*

 (See [ 5 ]). Let a be the first ordinal number which

 follows after all a . (n=l,2,...). N 7 Then a<fi and n n N 7

 hence for each n=l,2 ... we .get from (5) that

 (6) fa(xn) = f(xn)) fa(yn) = f(yn).
 Since f € LS, there exists, on account of Lemma 1.1,

 a

 a n such that for each n>p we have f (x )=f (y ) . But
 aN n7 an7

 then for n>p we have according to (6) the equality

 f(xn)=f(yn). Now Lemma 1.1 guarantees that f is locally
 symmetric at the point x, and the proof is finished.

 2

 Denote by (M, II -i i ) the linear normed space of all

 bounded functions f: R-»R with the norm //f (f . =sup{ | f ( t ) | } .
 t€R

 Denote by LS* and SC* the class of all f€M that are locally

 symmetric on R and symmetrically continuous on R, respectively.

 It follows from Theorem 1.2. that SC* is a closed
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 subspace of M. Since evidently SC* ¿ M, the set SC*

 is nowhere dense in M.

 It follows from (1) that LS* is a linear subspace

 of the space SC*, but LS* is not a closed set in SC*

 (see Theorem 1.3) • The question arises whether the

 set LS* is a nowhere dense set in SC*. The answer

 is affirmative.

 Theorem 2.1. The set LS* is nowhere dense in SC*.

 Proof Let K(f,6) be a sphere in SC* (fÇSC*,a>0).

 We shall prove that there exists a sphere K/eK(f,6)

 in SC* such that K' flLS* = 0 .

 If LS* n K(f,6) = 0, we can talee K'=K(fa6). Let

 there exist g € LS* n K(f,ô). We have already seen

 that there exists a number q € R and an interval

 [a',b']cR such that g(x)=q for each x€[a',b']« Choose

 a 6 '>0 such that K(g,ô')c K(f,ô). Define the function

 h: R-.R in the following way. We choose some numbers

 a, a'^b^b'' with a '<a<a ' '<b ' '<b<b ' and put

 e / e /

 h(x)=q - for a £ x <. a'', h(x) = q + - for b"¿x¿b;

 further let h be a linear and continuous function on each

 of the intervals [a'^b1'] ^ [a'^a], [ b # b 1 ] and h(a')=g(a')5
 h(b') = g(b'). Let h(x) = g(x) for x £ [a', b']. Then

 clearly h Ç SC* and

 (7) Uh - g II s l' .
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 Now K(h,^' ) c K(g,6 ' ) since for v € K(h ^ ) we
 have according to (7) II v - g|J. s ||v - h|| + |f.h - gļļ .

 + !'< 6 1 . We shall prove that

 (8) LS* n K(h, l' ) = 0 .
 If v c K(h,^- ), then for each x € [a,a''] we have v.(x) < h(x)+

 and for each x f [b' ' ,b] we have

 v(x)>h(x) -^■'=q + ^'-4=q + ^-. All the values of
 the function v on [a5a' 1 ] are less than the values on

 [b'',b]. Therefore the function v does not belong

 to LS* because of Theorem R. Hence (8) is established

 and this ends the proof.

 The following theorem, which is an immediate

 consequence of Theorems 1.2 and 1.4, gives some pro-

 perties of functions belonging to the closure (in SC*)

 LŠ* of the class LS* .

 Theorem 2.2. If f 6 LŠ*, then f _is_ bounded,

 symmetrically continuous , and there exists a q € R

 such that for each e > 0 the closure of the set

 VÄ= fx€R: |f(x) - q| > el is countable.

 Remarle 2.1. The question about characterising the

 functions from LŠ* remains open.
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