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 Introduction.

 Among the many notions of generalized differentiation

 that mathematicians have studied during the last century,

 perhaps the notion of approximate differentiation has

 received the most attention. This may be so because the

 approximate derivative (or differential in the case of

 several variables) can often serve as a substitute for

 the ordinary derivative (or total differential) when the

 latter does not exist. It is also so partly because some

 of the concepts, theorems and techniques that arise in

 studies involving approximate differentiation have appli-

 cations to questions involving approximations of functions

 of one or more variables, surface area, integration theory

 and, of course, differentiation theory in general. These

 various uses of approximate differentiation can be viewed

 as part of the "almost everywhere" theory of approximate

 differentiation. During the last twenty years or so there

 has also been considerable interest in the "everywhere"

 theory. This recent interest is a consequence of two facts:

 i) the behavior of the ordinary derivative (assumed to

 exist everywhere) is not fully understood and ii) the be-

 havior of the approximate derivative seems to mimic that

 of the ordinary derivative.
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 Our present purpose is two-fold. In Chapters I, II

 and III we discuss some of the desirable .aspects of

 approximate differentiation as well as some of the ways

 in which approximate differentiation and the circle of

 ideas surrounding it interplay with other parts of analysis.

 All of the chapters focus on the "almost everywhere" part

 of the theory. Then in Chapter IV we turn to the "everywhere"

 part of the theory in one variable, compare the approximate

 derivative with the ordinary derivative, and indicate the

 nature of some of the more important open problems.

 We mention that while most of what we discuss in the

 short Chapter I is classical (and much can be found in Safes1

 boote [60]), the bulte of the material of the other chapters is

 more recent and most of it is not readily available in boote

 form.

 I. Stepanov's Theorem.

 Our first aim is to give some indication of the advantages

 of approximate differentiation over ordinary differentiation

 and why such advantages exist. To fix ideas, we begin with

 some definitions which will be used throughout the paper.

 Fundamental to any "approximate" notion is the concept of

 density of a set at a point.

 Definition. Let S be a measurable subset of R . A

 point X g Rn is called a point of density of S if

 lim À (§0^) ss 1. Here ' denotes n dimensional Lebesgue
 6(1) - 0 UJ-)
 measure and 6 (I) denotes the diameter of the n dimensional
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 cube centered at x and having edges parallel to the coordi-

 nate axes (i.e. oriented cubes).

 One finds several variants of the above definition

 in the literature. The definition we have chosen is

 adequate for most of our purposes. We shall, however,

 have to consider variants in Chapter III and 17 and will

 indicate the necessary modifications at that time.

 Definition . Let F be a real valued function defined

 on Rn and let x ç Rn. The function P is said to be

 approximately continuous at x provided there is a set S,

 having x as a point of density, such that the restriction

 of F to S is continuous at x. Similarly, F is said

 to be approximately dif f e- "intiabl< at x if there exists

 a set S, having x as a point of density, such that the

 differential of F at x exists wi .1 respect to S. Notions

 such as approximate partíais and approximate partial derivates

 can now be defined in the obvious manner.

 A basic fact is that if S is measurable, then almost

 every point of S is a point of density of S. Furthermore,

 almost every point of S is a point of linear density of S

 in all n coordinate directions .

 A first advantage of the "approximate" notion is that the

 approximate partial derivates of F reflect the measurability

 properties of F while the ordinary partial derivates do not.
 J-

 Thus, if F is Berel or Lebesgue measurable, so are D^d^í '

 i = l,...,n and the other approximate derivates. but their

 ordinary counterparts need not be (unless n = 1) . This may
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 seem surprising at first because approximate differentiation

 is intrinsically more complex than is ordinary differentia-

 tion. But this intrinsic complexity allows one to ignore

 the behavior of F on certain sets which can adversely

 affect the bahavior of the partial derivates. Consider the

 example of Neubauer [49]. Let A be a nonmeasurable sub-

 set of R^ and let Z denote the set of rational numbers.

 The set B = Z * A has planar measure zero, so the character-

 istic function F of B is measurable. Let T = R * %

 (where A denotes the complement of A), U = Z * A. Then

 D+Fļ = 0 on T while D+F^ = ® on U. It follows that

 D+Fļ is nonmeasurable. Note that E^p^l = o almost
 everywhere and is therefore measurable. It is precisely

 the fact that one can ignore the bahavior of F on certain

 small linear sets in computing the approximate partials that

 renders D* F, measurable .
 ap 1

 We mention in passing that not all measurability pro-

 perties of F can be lost by the partial derivates: if

 F is continuous, these derivates are Borei measurable, and

 if F is Borei measurable, the derivates are Lebesgue

 measurable, indeed, analytic in the sense of Lus in.

 The good behavior of approximate derivatives as. com-

 pared with ordinary derivatives becomes even more pronounced

 in the case of total differentials. For a function of 2

 variables, it is possible for the partial derivatives to

 exist almost everywhere but for the total differential to
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 exist nowhere. Examples of this fact may be very simple.

 Let Q be the closed unit square and le.t S = {x^ x2,...}

 be a countable dense set in the interior of Q. Let {€n}
 and ft 3 be tw0 semences of positive numbers such that

 <• n

 Te <œ, ' lim k « and the disk centered at x„ „ n <œ, ' „ n n n n „ n „

 having radius en is contained in Q. For each positive

 integer n, let Fn be the continuous function which vanishes
 off D and whose graph on D is a right circular cone
 n n

 of altitude k . Let F = r F . We observe first that F
 n t; n

 n

 is defined on almost all lines parallel to the coordinate

 axes (and intersecting Q) and is absolutely continuous in

 each variable for almost all values of the other variable.

 To see this, let In be the projection of on the x

 axis. Since ô(Dn) = 2€n, £ < 09 * follows that
 n

 almost every x £ [0,1] is in only finitely many of the

 sets In. Thus, almost every vertical line intersects

 only finitely many of the disks Dn and F(x,*) is
 absolutely continuous on each such line. It follows that

 the partial with respect to y exists almost everywhere.

 The same is true of the other partial.

 On the other hand, F is nowhere totally dif f erentiable .

 To see this let D be any disk contained in Q. Since in-

 finitely many points of S will lie in D and lin k = »,
 n

 it follows that F is unbounded in D. Thus F is nowhere

 continuous, and a fortiori nowhere dif f erentiable.
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 More delicate examples exist for which F is continuous

 and possesses the other properties of the example above

 ( Rademache r [59]).

 As one can anticipate from the preceding discussion,

 this type of situation cannot arise in the "approximate"

 setting. In fact we have Stepanov ' s theorem:

 Theorem (Stepanov [60]). Let P be measurable on

 Rn. Then F is approximately differentiable almost every-

 where on Rn if and only if each of the approximate partial

 derivatives exists almost everywhere on Rn.

 II. . Lus in type theorems.

 Lus in' s basic theorem in measure theory asserts that a

 measurable function can be approximated in the Lus in sense

 by a continuous function. It seems natural to expect that

 by a suitable narrowing of the class of measurable functions,

 one can obtain more delicate approximations of the Lus in

 type. We discuss such approximations first in the setting
 T n

 of R~ and then discuss the analogues in R", n > 1. We

 shall see that appropriate Lus in type approximations can

 be used to actually characterize important function classes.

 1. Approximation for functions of one variable.

 We begin with the observation [11, p. 19] that a

 function is measurable if and only if it is approximately

 continuous almost everywhere. Thus, Lus in' s theorem can

 take the following form.

 Lus in ; s Theorem. A function F defined on an interval

 I is approximately continuous almost everywhere if and only if
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 to each e > 0 corresponds a closed set K and a continuous

 function G such that x(I~K) < e a^d F = G on K.

 What happens if we require more of F, namely that F

 be approximately differentiable almost everywhere? Can we

 take G to be differentiable in the conclusion of Lusin's

 theorem? The following theorem of Whitney asserts that we

 can do even better.

 Whitney's Theorem [71]. A function F defined on an

 interval I is approximately differentiable almost every-

 where if and only if to each e > 0 corresponds a closed

 set K and a continuously differentiable function G such

 that x(I~K) < e and F = G on K.

 The two theorems we have stated give characterizations

 of two classes of functions in tenus of Lusin-type approxi-

 mations. But each of these classes is defined in terms of

 some sort of "approximate" notion. It is, perhaps, surpris-

 ing that Lusin-type approximations can be used to characterize

 certain important classes of functions whose definitions do

 not involve any "approximate" notions. The next three

 theorems are of this type, and illustrate how the approxi-

 mation improves as the class narrows.

 Theorem (Michael [44]). A function F defined on an

 interval I is equivalent to a function of bounded variation

 if and only if to each e > 0 corresponds a closed set K

 and a continuously differentiable function G such that

 X(X-K) < e, F = C- on K, |up(I) - uG(I)| < €•
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 Here and denote the infimums of the varia-

 tion measures of functions equivalent to F and G re-

 spectively.

 With absolute continuity replacing bounded variation

 the approximation improves.

 Theorem (Michael [44]). A function F defined on an

 interval I is equivalent to an absolutely continuous

 function if and only if to each e > 0 corresponds a

 closed set K and a continuously differentiable G such

 that ' ( I K) < g , F - G on K , ( I ** K) < g and

 Uq(I~K) < e.

 Here pF(I^K)3 for example, denotes the sum of UF
 on the sequence of intervals contiguous to K.

 In the two preceding theorems , the class of approxi-

 mating functions was the same. It was the method of approx-

 imation that improved. More recently, Liu [39] considered

 the intermediate class of continuous functions of bounded

 variation. Here, the method of approximation is the better

 one (which applies to the absolutely continuous case), but

 the class of approximating functions must naturally be a

 bit larger.

 Theorem. (Liu [39]). A function F defined on an

 interval I is equivalent to a continuous function of

 bounded variation if and only if to each e > 0 corresponds

 a closed set K and a function G with continuously turning

 tangent such that x(I~k)<€í F = G on K,

 UF(I"K) < Sí and UqTi~k) < e .
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 Thus, we can no longer require that G be continuously

 dif f erentiable . This requirement has been weakened to the

 condition that G' be continuous in the extended sense, i.e.

 lim G'(t) = G' (x) for all x, (infinite values allowed).
 t X

 The proofs of the preceding three theorems all follow

 the same lines. One first uses Whitney's theorem to obtain

 an appropriate closed set K and continuously differentiable

 G. One then extends the restriction of G to K in such

 a way as to reduce the variation measure of G as needed

 while preserving the necessary differentiability properties

 of ô. In the case of Liu's theorem, one must, of course,

 lose a bit of the differentiability structure of G.

 We observe that in all three of the preceding theorems

 we can replace Lebesgue measure and the variation measure

 by a single "length" measure, (c.f. Chapter II, Section 2).

 We mention in closing this section that some similar

 interesting results have recently been obtained by Garg [17].

 2. Analogues for functions of several variables.

 The one dimensional results above have analogues for

 functions of n variables . Since measurable functions

 are approximately continuous almost everywhere, Lus in' s

 theorem may again be stated in the form that if F is

 approximately continuous almost everywhere then to each

 e > 0 corresponds a continuous G such that F = G

 except on a set of measure less than e.

 The analogue of Whitney's approximation theorem re-

 quires the Whitney Extension Theorem [70]. If S c Rn
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 is closed, a function P:S -^R3, is said to be of class

 on S if for each x = (x^ ...,xn) ą S, there is
 a vector a = (a^, . . . ¿a^) , such that for every e > 0
 there is a 6 > 0 such that if y and z are both

 at distance less that 6 from x, i.e. |y - x| < 6 and

 I z - x|< 6, then |F(y) - F(z) -J} ai(yi - zi)ļ<eļy-zļ.
 i=l

 This condition is clearly necessary in order that F
 ļ n

 may be extended to a function of class C on R .

 The Whitney Extension Theorem asserts that it is also

 sufficient. Thus, a function F defined on a closed

 set in Rn may be extended to a function of class
 Kl 1

 on all of R if and only if it is of class C on the

 closed set.

 Now, suppose F is defined on the unit cube Q

 and is approximately differentiable almost everywhere.

 For each e > 0 it is possible to find a closed S c Q,

 of measure greater than 1 - e, so that F:S -» R^ is
 of class C1 on S. By the Whitney Extension Theorem
 we obtain the result.

 Theorem (Whitney [71]). A function F: Q-»R^ is
 approximately differentiable almost everywhere if and

 only if to each e > 0 corresponds a closed set K and

 a function GíQ-ťR1 of class C1 such that x (Q.'K) < e
 and F=G on K.

 The analogues of the other theorems require some

 auxiliary discussion. To get analogues of BV and
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 AC we may proceed in several directions all of which

 are equivalent and have their historical places.

 The first approach was given "by Tonelli [66] and

 Cesari [13]. Let F:Q R1 be a summable function of n

 variables x = (x^, . . . ,xß) . F is said to be of bounded
 variation, designated BVC, if for each i = 1, . . . ,n,

 there is an equivalent F^ which is of bounded variation

 in x^ for almost all values of the remaining n - 1
 variables and this variation function is summable. We

 tafce as the F^ those functions in the equivalence classes

 for which the integrals of the variations are minimized ;

 let the values of these integrals be n"Sn' rLfn'
 ) 3 • • • > •

 By applying the definition to intervals in Q, and extending

 the consequent set functions, we obtain the variation
 ļ n

 measures ^(E),..., uF(E) defined on the Borei sets in
 Q. Two numerical valued measures obtained from this vector

 valued measure are of interest. If X 3-s Lebesgue measure,

 then c.p is the variation measure corresponding to the

 vector valued measure (', LJp, . . . , u?) and.ßp is the

 variation measure corresponding- to the vector valued measure
 1 n

 (up* • • • 3 Up)» We shall only use the first one here.

 If F £ BVC and the F*" may be chosen to be absolutely

 continuous in for almost all values of the remaining

 - 1 variables, then F is in the class analogous to

 absolute continuity; we designate this class ACT. Tonelli

 [66] considered thè continuous case, and later Goff man [18]
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 discussed the general case.

 These classes may also be defined in terms of distri-

 butions. The functions in BVC are those whose partial
 ļ n

 derivatives are measures and the measures are . . . ,Up.
 The functions in ACT are those for which the measures are

 absolutely continuous with respect to Lebesgue measure.

 Remark 1. It is Known [62] that for BVC and ACT a

 single equivalent function will work for all directions,

 not just for the coordinate directions. Thus, these notions,

 are coordinate free.

 Remark 2. Since for each F g BVC the partial de-

 rivatives exist almost everywhere, it follows by Stepanov's

 theorem that the approximate differentials exist almost

 everywhere. The differentials themselves need not exist

 anywhere. Indeed, there are functions in ACT which are

 nowhere continuous (i.e. for every equivalent function).

 A construction following the lines of the example in

 Chapter I suffices. Zygmund, his students, followers,
 P

 and disciples have done much work with the L differential

 which they introduced. Indeed, Calderori and Zygmund [12]
 P

 have shown that if F ç BVC then its L differential

 exists almost everywhere for some p > 1. However, for

 the application to parametric surface area made in the

 next chapter it seems that this kind of differential

 does not suffice but a special sort of approximate

 differential does .

 The third approach involves the notion of area of a
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 nonparametric surface [13] 3 [18]. Start with the set P

 of piecewise linear functions on Q and let A(p) be

 the area of the surface given by p g P. If P is

 metrized by the uniform metric then A(p) is lower semi-

 continuous on P so that A(p) extends by the Freche t

 process [18] to a lower semicontinuous extension A(f)

 on the completion of P, which is the set of continuous

 functions on Q. This is the Lebesgue area. If instead of

 the uniform metric we use the I?" metric, A(p) still

 turns out to be lower semicontinuous on P and again using

 the Fréche t process A(p) extends to a lower semicontinuous

 "area" functional on the space of equivalence classes of

 summable functions . Remarkably, it agrees for continuous

 functions with the Lebesgue area. This is Goffman's

 form [18] of the area first introduced by Cesari [13].

 By applying the definition to intervals in Q and extending

 the resulting set function to the Borei sets, an area

 measure is obtained. The functions of finite area are

 those of type BYC. Those for which the area is given

 by the formula A(F) = J...f[l + F^ + ... + F^^^l ••• d*n

 are of type ACT, and the area measure is ap.

 The equivalence of the three approaches for obtaining

 37C and ACT was observed by Krickeberg [30].

 It remains for us to discuss the analogue of the

 intermediate class CBV (continuous functions of bounded

 variation). The analogous class is taken to be those func-

 tions in BVC for which the F1 may be chosen to be
 r% -1

 L J.



 continuous in x^ for almost all values of the other
 variables. This space, which we designated, was intro-

 duced by Goffman [20] as the set of functions of type

 BVC whose surface area is given by the Hausdorff n - 1

 dimensional measure of its graph. It is also true that

 the functions in X are precisely those functions in BVC

 which are approximately continuous except on a set of

 Hausdorff n - 1 dimensional measure zero. Since, in

 R^" » an approximately continuous function of bounded variation

 is continuous, and sets of Hausdorff 0 dimensional measure

 zero are empty, this indicates that this class is the

 natural analogue of CBV [21]. (Thus, approximate con-

 tinuity is a natural notion here. It is simply an accident

 that in R^ continuity appears). There are various other
 justifications for this notion but they will not be

 discussed here.

 Even though functions in each of the three classes

 can be everywhere discontinuous, full analogues of the

 Lus in type approximations for R1 are valid in Rn for

 BVC and ACT and weaker analogues hold for JÍ.

 For BVC, we have the theorem of Michael [44] in the

 form given by Goffman [22].

 Theorem. A function F:Q -> R^ is in BVC if and

 only if for each e > 0 there is a Gę C'^ such that
 F = G except on a set of n dimensional Lebesgue measure

 less than e and |up(Q) - uq(Q) | < z> i ® 1*..., n.
 An equivalent way of stating, the conclusion is
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 F = G except on a set of measure less than e a*id

 I ctp(Q) - aG(Q) I < e •
 As an easy consequence we have the analogue of the

 AC theorem.

 Theorem. A function F ç ACT if and only if for each

 e > 0 there is G 6 C^ such that F = G except on a set

 E with aF(E) < e and aG(E) < e .
 The full analogue of the Lus in type approximation

 theorem for CBV has not been obtained. However, the

 following partial analogues are Known. These analogues

 are different for both n = 2 and for n ;> 3« A con-

 sequence of these results is the coordinate invariance

 of Ji . Thus, functions of type BVC, ACT, and Â are

 all coordinate invariant.

 Theorem [19]. For n = 2, if F ç BVC it is

 in J? if and only if for every e > 0 there is a
 continuous G such that F = G except on a set E

 such that aF(E) < e and o.Pt(E) < £.
 Theorem [ 21 ] . . For n ž 3j if f € BVC it is

 in £ if and only if for every g > 0 there is an
 approximately continuous G such that F = G except

 on a set E such that a^E) < e and aG(E) < c.

 III. The Area Formula: Regular Approximate Differentiation.

 The classical work on the area formula for parametric

 surfaces involves Jacobians and assumes continuous differen-

 tiability of the mapping. Because the Jacobians appear in
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 the statement of the formula, it is natural that the general

 framework consider mappings whose coordinate functions are

 in Sobolev spaces. Thus, a natural condition for setting

 up a more general framework for the area formula is that

 the coordinate functions are in Sobolev spaces. This

 condition assures the almost everywhere existence of the

 partial derivatives which are needed for the Jacobians.

 Observe that this implies, by Stepanov's theorem, that

 the approximate differential exists almost everywhere.

 However, even this does not seem to suffice for obtaining

 the area formula. Por the purpose of obtaining the area

 formula, we introduce a notion of regular approximate

 differential which does suffice for the area formula,

 whose existence almost everywhere is then guaranteed when

 the coordinate functions are in appropriate Sobolev spaces.

 In this setting the argument for continuously differentiable

 mappings works when suitably modified.

 We use as our model the fact that for a mapping

 T:x^ = x^(Uļ,Ug), i = 1,2,3, of class C ^ from the unit
 2 ?

 square Q in R into R the area is given by the

 formula A(T) = n J du, x du0 ¿ where J is the square 0 0 x ¿

 root of the sum of squares of the three Jacobians involved.

 Since for partitions of Q of snail norm the area of the

 portion of the surface which spans the image of the boundary

 of each partition interval is not much less than the area

 of the linear mapping of the interval given by the differen-

 tial at its center, it follows that A(T) ^ Jj.
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 The opposite inequality will give us little trouble in

 our general development. This may seem surprising since

 in questions involving length and area, the inequality

 usually goes the other way. However, the Sobolev mappings

 have absolute continuity properties which allow" the nec-

 essary limit arguments.

 We turn now to an examination of the generality in

 which the formula holds. Our framework will be that

 of Sobolev mappings and a Lebesgue type area for such

 mappings which we define presently.

 The Lebesgue area is defined for mappings, just as

 it is defined for nonparametric surfaces, as the lower

 semicontinuous extension of the area from the space of

 piecewise linear mappings with the uniform metric, giving

 a definition of area for all continuous mappings. Lower

 semicontinuity no longer holds for the L^" metric. How-
 2 1

 ever, for mappings from H into R" , n s 2, area is

 lower semicontinuous with respect to a metric which

 yields an extension of Lebesgue area, to all mappings

 which are continuous, as functions of each variable, for

 almost all values of the other variable. Such mappings

 are called linearly continuous. Por mappings of Rm, m>2,

 into Rn, n s m, even this fails. However, an area is

 defined in a similar way for all mappings which are

 continuous as functions of n - 1 variables for almost

 all values of the other variable. Such mappings are

 called m - 1 continuous [23].
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 We now define Sobolev mappings. Let Q be the unit

 cube in Rm. A mapping Tîx.^ = x^u^ . . . ,10^) , i = l,...,n
 of Q into Hn is a Sobolev mapping if each x¿ is in
 some and the sum of the reciprocals of any m of the

 Pļ is * 1. It follows that every Sobolev mapping is
 linearly continuous and that for any Sobolev mapping

 J J du^...dum < cd, where J is the square root of the
 sum of the squares of the Jacobians of the mappings in-

 duced by T into the m dimensional coordinate subspaces.

 Por m = 2, the above Lebesgue type area is defined for

 every Sobolev mapping and we indicate why in this case we

 always have A(T) = J J du^du2 . In the first place, for any
 m, if A(T) is defined, it may be shown using regularizers

 that A(T) £ Jj du^.^du^ .

 For the opposite inequality (m = 2) we need a companion

 to the Stepanov theorem, which holds for functions of two

 variables . This theorem was obtained by Rado and by
 2 1

 Sforza-Dragoni [14]. The theorem s&ys that if F:R - R

 has partial derivatives almost everywhere then the approxi-

 mate partial derivative exists in a stronger sense. In fact,

 the set of density one with respect to which it exists at x

 is composed of the boundaries of oriented squares centered

 at x. That this should be so is quite natural. Such an

 approximate differential is called a regular approximate

 differential.

 2 1
 Theorem. If F:R -* R has partial derivatives almost

 everywhere then it has a regular approximate differential
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 almost everywhere.

 We indicate how this fact yields the area formula for
 2 n

 Sobolev mappings of Q c R into R , n s 2. Let T be

 such a mapping. We may follow the idea of the argument for

 C^" mappings noted above. For each c > 0, we can find,

 using the regular approximate differentiability almost

 everywhere, applying Lusin's theorem to this differential,

 and applying the Vitali covering theorem, a finite set of

 pairwise disjoint squares of area sum greater than 1 - e

 so that the sum of the areas of T over these squares

 exceeds the sum of the formula integrals over these squares

 minus e. It follows that A(T) ;> Jj du^dug. Thus, we have:

 Theorem [23]. If T is any Sobolev mapping from the

 unit square Q into Rn, n s 2, then

 A(T) = Jj dUļdUp.

 The case m > 2 is more complicated in some respects.

 We first note that if F 6 W^, p > m, is a real function
 on Q c īfj then F is differentiable almost everywhere.

 This was proved for m = 2 by Cesari and for all m by

 Calderon and by Serrin [62]. Moreover, by the Sobolev

 imbedding theorem, such an F is continuous and actually

 satisfies a Holder condition.

 Sobolev mappings are linearly continuous, but for

 m > 2 they need not be m - 1 continuous so that the

 area is not even defined. However, if fer a Sobolev
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 mapping T :x^ = x^(u^, . . . ^u^) , i = 1,..., n we have

 p^ > m - 1, i = 1, . . . ,n then it follows that T is both
 m - 1 continuous and has a regular approximate differential.

 (A mapping from Q c īP into Rn, n s m, is said to have

 a regular approximate differential at u .if a set of

 density one at u with respect to which the differential

 exists consists of the boundaries of oriented m cubes

 with u as center) . The existence almost everywhere of

 the regular approximate differential then follows by an

 application of the Calderon-Serrin Theorem to m - 1

 dimensional hyperplanes.

 The two dimensional argument may then be applied to

 the higher dimensional case to give the following result:

 Theorem [25]. If T:x^ = x^(u^, . . . ,um), i = 1, . . . , n,
 is a mapping of Q c Rm into Rn, n ^ m, such that each
 pi m -1

 Xļ 1 ç W, 3 with TD. > m - 1 and £ ¿1 whenever 1 3 J - 1

 1 s in 12 < i0 < ... < i <; m, * then 12 ... m *

 A(T) ~ «f J du-, ... du^ •

 IV. Approximate differentiation in R^.

 In the previous sections we discussed some of the ways

 in which approximate differentiation arises naturally. We

 focused primarily on functions or mappings involving Euclidean

 spaces of two or more dimensions s and we were concerned with

 the theory of "almos t-everywhere" approximate differentiation.

 For functions of one real variable, the almos t-everywhere
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 theory has been well developed for quite some time. In

 fact, much of it can be found in Safe's boot [60]. One

 finds there an exposition of the role of approximate

 differentiation in the theory of Denjoy-Khintchine

 integration and of the ways in which approximate differen-

 tiation relates to questions of growth of a function

 (e.g., questions concerning monotonie i ty) .

 More recently, particularly during the last 15 years

 or so, a number of authors have focused on questions

 concerning the "everywhere " theory of approximate differen-

 tiation of functions of one real variable. Here much of

 the emphasis is on the structure or behavior of approximate

 derivatives (as related to the structure or behavior of

 ordinary derivatives) rather than on applications to other

 parts of mathematics. What triggered this emphasis is

 clear. In 1950, Zahorski [73] provided a penetrating

 study of the delicate structure of ordinary derivatives.

 He was concerned primarily with the longstanding problem

 of characterizing derivatives. While he was not able to

 obtain a complete characterization, he was able to find

 certain necessary conditions and certain sufficient condi-

 tions for a function to be a derivative and he signaled

 certain important classes of functions related to the

 class of derivatives. This work of Zahorstci's was the

 starting point of a number of worlcs dealing with the

 behavior of derivatives. Then, in i960. Goffman and

 Neugebauer [2h] provided a unified treatment of much of
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 what was known at the time about the behavior of approximate

 derivatives. These Known results suggested that approximate

 derivatives behave very much liKe ordinary derivatives. It

 was thus natural to asfc whether those properties of deriva-

 tives which came out of ZahorsKi's worfc were also shared by

 approximate derivatives . And this led a number of authors

 to study the behavior of approximate derivatives in detail.

 We shall see that virtually all properties lcnown to be

 shared by all derivatives are also shared by all approxi-

 mate derivatives. Yet, in some sense, an approximate

 derivative which is not itself a derivative, must be

 much more wildly behaved than any derivative. It would

 certainly be of interest to find a property of derivatives

 which is not also a property of approximate derivatives.

 Because we believe this to be an important problem, we

 believe it is desirable to clarify the problem a bit. In

 a sense there are, of course, properties that distinguish

 derivatives from approximate derivatives. The definitions

 themselves offer such a distinction, as do the classes of

 primitives - for example, a differentiable function must

 be continuous whereas an approximately differentiable

 function need only be approximately continuous. Furthermore,

 a derivative is always integrable in the Denjoy-Perron

 sense; an approximate derivative need not be. Thus, our

 probelm is not entirely well defined. We hope our develop-

 ment of approximate derivatives will serve to clarify the

 problem.
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 In this chapter we shall discuss the recent work

 related to the one-variable theory of approximate differen-

 tiation. For the earlier work, we refer the reader to

 Saks [60]. We shall discuss the structure and behavior

 of approximate derivatives, compare approximate differen-

 tiation with ordinary differentiation, discuss (briefly)

 certain generalizations, and state a few open problems.

 To fix ideas and notation, we begin with some fundamental

 concepts .

 Let > denote Lebesgue measure on the line . A point

 xQ is called a point of density of a set E if

 lim+ _ 1 .
 h -> 0

 k 0+
 h + k ¿ 0

 According to Lebesgue's Density Theorem, almost every

 point of a measurable set is a point of density cf that

 set.

 A function F is sali to be approximately differen-

 tiable at a point x with approximate derivative Fi^í*)

 at x if there exists a set E having x as a point

 of density such that F' (x) = lim •> and
 p y -* x y

 y 6 E

 this limit is finite. A function f defined on an interval

 I is called a derivative (an approximate derivative) if

 there exists a different iable (approximately differentiable)

 function F such that F' (x) = f(x), (F¿c(x) = i'(x)) ^01"

 31



 all X ç I. We denote the class of all derivatives

 on I by a 1 and the class of all approximate derivatives

 on I by Aļp •
 1. Basic behavior of approximate derivatives.

 Among the properties of ordinary derivatives, two are

 well fcnown and easy to prove : each derivative is in the

 first class of Baire (i.e., is the pointwise limit of a

 sequence of continuous functions), and has the Darboux

 property (sometimes called the Intermediate Value Property).

 The first result follows immediately from the observation

 that if F1 = f, then

 F(x + Ł- F(x)
 f(x) = lim

 n -* «d -
 n

 (a slight modification being necessary if f is defined

 on some bounded interval). To verify the second assertion

 we can easily reduce the problem to the case F' (a)<0<F' (b)
 from which it follows that F achieves a minimum value

 at some point Xq ç (a,b). At this point F'(xQ) = 0.

 In 1927 Khint chine [29] proved that each approximate

 derivative has the Darboux property and in 1938 Tols toff

 [64] proved that each approximate derivative is in the

 first class of Baire. Neither of these proofs was simple.

 Using ideas involving convergent interval functions,

 Goff man and Neugebauer [24] were able to obtain relatively

 simple proofs of these theorems. Their techniques also

 were useful in proving another result of Tolstoff!s [64]
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 according to which a function F which is approximately

 differentiable on an interval is actually differentiable

 except on some nowhere dense set. A direct development of

 this last result, along with others, can follow these lines.

 One first shows that for a monotonie function, the extreme

 derivates (Dini derivatives) coincide with the extreme

 approximate derivates (Misifc [^6]). Thus, a monotonie

 function is differentiable at each point at which it is

 approximately differentiable. One can then infer without

 difficulty that an approximate derivative which is bounded

 above or below on an interval I is an ordinary derivative

 on I. Since each approximate derivative f is in the

 first class of Baire, it. is continuous on some dense set

 D. If X ç D, then f is bounded in some neighborhood

 N of X and is therefore an ordinary derivative on N.

 Tols toff 's result follows. (Our discussion also shows

 that an approximate derivative f cannot be dominated by

 a derivative g without itself being a derivative, be-

 cause the difference h = f - g is an approximate deriva-

 tive which is bounded above or below.)

 Since a monotonie function F which is approximately

 differentiable at a point Xq must be differentiable
 at xQ, one might conjecture that the same is true for
 a function of bounded variation. This is not the case,

 however. It is easy to construct a function F meeting

 the following conditions on [0,1].
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 (i) F is continuous.

 (ii) F(x) = X if X = i- , n = 1,2,3, . . .
 2

 (iii) 0 ¿ P(x) s X for all x e [0,1]

 (iv) F(x) » 0 for x u Iķ, where {I^) is a sequence
 of pairwise disjoint intervals converging to the
 origin and having the origin as a point of density.

 (v) The graph of P has the shape of a spite on

 each interval lying between two successive

 intervals 1^.

 Then the total variation of F equals 2, FJ (0) = 0
 r

 but F is not differentiable at the origin. (By rounding

 off corners in (v) we can even mafce F differentiable in

 all of (0,1]].

 We mentioned in Chapter I that the approximate partial

 derivates reflected the measurability properties of their

 primitives. Some results of a precise nature have recently

 been obtained for the one variable case by MisiK [^7].

 2. The set of points of differentiability of an

 approximately differentiable function.

 According to Tols toff 's result, an approximately

 differentiable function F must be differentiable at each

 point of some dense, open set. Let S be the set

 {x: F is not differentiable in any neighborhood of x} .

 It is clear that S is closed and nowhere dense. We shall

 call this set the singular set for F. Let D = [x: F

 is differentiable at x} . It is clear that D z> ~S. We
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 shall be concerned with the behavior of Fļp « f on D
 and on ''S and we shall see that while the behavior is in

 some sense "good" on D and on "S, any "wildness" of

 f is already apparent on D and on -S.

 We begin with the following question, which at this

 point we word vaguely: how wild can the behavior of f

 be on the singular set S in comparison with its behavior

 on -'S? To put the question into perspective we recall

 that f has the Darboux property and is in the first class

 of Baire. This, by itself, puts little restriction on f.

 It is possible for such a function to vanish on the comple-

 ment of a nowhere dense set without vanishing identically

 [11], thus exhibiting wild behavior on the nowhere dense

 set and calm behavior on the complement . It is also easy

 to construct examples where the reverse is true.

 Our vaguer-stated question was answered in a series

 of papers [68], [52], [5^]« In 1969 Weil [68] showed that

 an approximate derivative f maps D onte a dense subset

 of the range of f. O'Malley [52] extended .this result

 to show that the set f(D) is actually the full range

 of f. (In particular, therefore, f possesses the

 Darboux property on D.) Finally, O'Malley and Weil [5k]

 showed that more is true. If f tafces on the values M

 and -M on some interval I, then there is a single com-

 ponent interval of "S on which f takes on those values.

 It follows from this result that an approximately

 diff erentiable function is determined by its values on a
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 dense set. To see this, let F and G be approximately

 differentiable on an interval I and suppose F = G on

 some dense set E. Let H = F - G. Then H is approxi-

 mately differentiable on I and H = 0 on E. Let S

 be the singular set for H. If S = 03 H is differentiable

 and therefore vanishes on I. If S ¿ 0, then Hļp is
 unbounded above and below on I.

 It follows from the theorem of O'Malley and Weil

 that there exists a point xQ in ^ S such that H'ap(x0) =

 H'(Xq) 0, from which we infer that H cannot vanish on
 the dense set E.

 Another immediate corollary (to which we shall refer

 in Section 4) is that if F is approximately differentiable

 on I and G is differentiable on. I with F1 = G' off

 the singular set for F, then F is differentiable and

 F» = G' on I.

 We have seen that an approximate derivative f which

 is not an ordinary derivative must oscillate wildly (it must

 be unbounded above and below in each neighborhood of each

 point of its singular set). This wild oscillatory behavior

 cannot be achieved on S alone; it must be achieved on ~ S

 whether or not it is achieved on S. This may lead one to

 suspect that questions concerning the sucmability of f will

 be determined by the behavior of f off S. This is not

 entirely true. Fleissner and O'Malley [16] have recently

 s hov, 'n that there exist approximate derivatives on [0,1]

 which are summable on ~ S but not summable on all of [0,1].
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 On the other hand, they also proved that f will be

 summable on [0,1] if and only if f is summable on

 D. Thus, while S dominates the oscillatory behavior

 of f, it takes a larger set to determine whether or

 not f is summable.

 3. Associated sets.

 Let f be a real valued function of a real variable.

 Por real numbers a and ß let

 Ea = {x: f (x) > a), = {x: f(x) < p}
 and let

 Ep = E n Ee .
 a a

 Sets of the type E and E® are called associated sets
 a

 for the function f.

 Many classes of functions can be characterized

 in terms of associated sets. This means that there exists

 a family S of subsets of the line such that F ç ^ if

 and only if all the associated sets of f are members

 of S. The chart below exhibits some of the better known

 characterizations of classes of functions in terms of

 associated sets.

 *í S
 continuous open

 3a ir e Borei

 measurable measurable

 Baire 1 F
 c
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 A major purpose of ZahorsKi's wortc [73] was to obtain

 a characterization of a' in terms of associated sets.

 Towards this end he defined a hierarchy of classes of func-

 tions 7T[q 3 ... 37»?^ each defined in terms of
 associated sets. As the class became smaller, the associat-

 ed sets become "fatter" near each of their members. For

 example, a function is in provided each associated

 set E is of type Fa and for xQ € E and I any open
 interval having Xq as an endpoint, the set I n E is

 nonempty. For membership in 7^, the set I n E has to

 be nondenumerable , and for membership in 7»72 this set must

 have positive measure. The definitions of and

 are rather complicated to state and we shall omit the

 statements. For "»"1^, we require xQ to be a point of

 density of E. It turns out that the

 class of Darboux functions in the first class of Baire

 and that 7v<_ consists of the class of approximately
 O

 continuous functions. "Full fatness" of course, is

 achieved only by continuous functions.

 Since a' c -yiQ and since each bounded approxi-
 mately continuous function is a derivative, it was natural

 to attempt to find exactl3r hov; the class of derivatives

 (or bounded derivatives) fits into the scheme. ZahorsKi

 showed that c and that each bounded derivative

 is in ir, But he was unable to characterize a' or
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 the class of bounded derivatives in terms of associated

 sets. (We now Know [7] that such a characterization is

 impossible. )

 Prior to Zahorsici's wort, it was Known that if

 f £ a' then each set E^ is either empty or has positive

 measure. This is not quite the same thing as saying

 A* c7rç2* close, and the earlier proofs could
 be modified to give that result.

 Where do approximate derivatives fit into the scheme?

 Marcus [41] showed that if f ç then E®. is empty or

 of positive measure for each a < ?• Once again, the

 inclusion c >12 readily obtained. Then, in 1965.»

 Weil [67] showed that c ^3 • Weil also showed in
 [69] that each approximate derivative possessed a property

 of derivatives slightly stronger than These results

 suggest the problem of finding a class 711 of functions

 defined in terms of associated sets such that a' c but

 ¿n-
 Such a family does not exist! In fact, Pre is s [57]

 defined a class which he called >7^ . This class is con-
 tained in . (We shall not give the very complicated

 definition.) Preiss showed that c and that given

 any associated set E for functions in there exists

 an f € £ł such that E = [x: f(x) > 0] . Thus E is an

 associated set for some derivative. It follows that the
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 family of associated sets for is simultaneously the

 family of associated sets for a' and for ¿ļp .

 Thus, we cannot use associated sets (at least not by

 themselves) to pick out the class of ordinary derivatives

 from the class of approximate derivatives. This adds

 further strength to the statement that approximate de-

 rivatives behave very much like derivatives.

 4. Representations, decompositions and extensions.

 We have seen that approximate derivatives possess all

 the Known properties of derivatives. On the other hand,

 an approximate derivative cannot be dominated by a deriva-

 tive without it being a derivative itself. In fact, if

 P' = f ç a' ~a', then f cannot be dominated by a
 ap "ap

 derivative on any interval containing points of the

 singular set S. Taken together, these results suggest

 that it might be possible to represent approximate deriva-

 tives by coun tably many derivatives in some manner or other.

 Perhaps Tols toff' s result can be useful here. Since

 Fļp = F' on each interval contiguous to S, it might be
 possible to "paste together" countably many derivatives

 in such a way as to make up f. Or perhaps some, other

 techniques can be used.

 The first result in this direction was obtained by

 O'Malley [53]. - " ^ Let F1 = f on [0,1] . (To avoid trivial
 - " ^ ap

 cases, assume f Ç Then there exists a
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 sequence of perfect sets {ly and a sequence of differen-

 tiable functions {Gn} such that Gn = F on Hn * G^ = f

 on Hn> and [0,1] = u Hn. The sets Hn cannot be

 disjoint, of course, because an interval cannot be

 expressed as a union of coun tably many pairwise disjoint

 closed sets. Suppose, however, that we write

 A, 1 = H, l and A = H„ ^ U H,, if n > 1 . Then the 1 l n fc c n

 sets An are pairwise disjoint and [0,1] = (j An •

 Also, ' G = F and G' = f on A. We have thus decom- ' ri n n

 posed F into countably many restrictions of differentiable

 functions and f into coun tably many restrictions of

 derivatives. The restrictions are, of course, to the

 sets A , each of which is the difference of two closed
 n

 sets. Is it possible for one of the sets A^ to contain n

 an interval I contiguous to the singular set S ? The

 answer, is, unfortunately, "no". This follows directly

 from our remarle in Section 2 applied to the closure of

 I: from F! = G' on I, we would have to infer F

 differentiable on cļ I, which is impossible because

 ci I n s ¿ 0 .

 This last observation also can be interpreted in

 terms cf f rather than F. Even though an approximate

 derivative is an ordinary derivative on each interval I

 contiguous to its singular set, it cannot be extended
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 from I to a derivative on c¿ I. It is, therefore,

 perhaps curious that it is always possible to extend an

 approximate derivative from its s ingular set. In pre-

 cise terms, if f ç with singular set S, there
 £r

 exists a function g 6 a' such that g = f on S.

 Actually, f can be extended to a derivative from any

 nowhere dense set [1].

 Another method of representing approximate derivatives

 by derivatives was obtained in [1], Here it was shown

 that to each f ç corresponds three differentiable

 functions g, h, and fc such that f(x) = g'(x) + h(x)te'(x)

 for all X ç - I. Thus, in particular, each approximate

 derivative is in the algebra generated by the class of

 derivatives.

 One other representation for approximate derivatives

 is worth mentioning. In [50], O'Malley developed a very

 general notion of derivative which he called the selective

 derivative. One first selects cne peint Xj from each
 subinterval I of [0,1]. The resulting set of points is

 F(x[x0,xQ+h] )~F(xo)
 called a selection s. If lim

 xU0,x0-h]-xo

 we denote that limit by sF'(Xq) and call it the selective

 derivative (relative to the selection s) at the point Xq.
 If F has a selective derivative for all x in [0,1],

 we say F is selectively differentiable and call sF' the

 selective derivative of F (relative to s).
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 Thus, each selection s determines a class of

 selectively different iable functions and a class of

 selective derivatives a' d a'«

 O'Malley showed, among other things, that each

 approximate derivative is a selective derivative relative

 to some selection, thus approximate derivatives can be

 realized as selective derivatives. In the other direction,

 no matter which selection s is chosen, each

 s-differentiable function F is approximately differen-

 t iable a.e. and sF' = Fļp a. e. (O'Malley also showed
 that selective derivatives possess properties shared by

 various other generalized derivatives. Properly exploit-

 ed, his ideas may shed a good deal of light on why most

 generalized derivatives behave as they do. Since a

 development would take us too far afield from our main

 purposes, we shall not attempt an exposition here.)

 5. Algebraic structure of the classes a' and

 We have emphasized the fact that the individual

 functions in possess all Known properties shared

 by individual functions in a' . What about the entire

 classes a1 and a' • Do they possess similar alge-
 a.p

 braic and topological structures?

 It is easy to verify that both a 1 and. a' are S* tj

 closed under sums. In 1Ç21 WilKcsz [?2] preved that

 the square of a derivative needs not be a derivative.

 Thus a' n°t closed under multiplication, nor under
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 outside composition with continuous functions. The

 same is true of functions in a' . In fact, 0 if f uap . 0
 2

 and f are both in tilen they are both in
 ¡T

 A1 [8], Both and are closed under uniform
 ap

 limits. For a', this is a standard result of

 elementary real analysis. To verify the statement

 for let {fn} be a sequence of functions

 in AÍ« converging uniformly to a function f. For
 ap

 N sufficiently large, the functions gn = fjj - fß

 (n s N) are bounded and in a' . Therefore
 ap

 gn 6 A* for n ;> N. It follows that

 g s - lim g„ = f - f is a uniform limit of derivatives
 . - „ n N

 n „ -* cd

 and is therefore itself a derivative. Thus f = f jj - g

 is an approximate derivative.

 Regarding pointwise limits, the situation is this:

 Since ¿¿p e: ^i (the functions in the first class of
 Baire), it is clear that the pointwise limit of a

 sequence of functions in is in the second

 class of Baire. Preiss [55] has shown that each

 f €^2 P°intwise limit of a sequence of
 functions in Since c ú¿D> the same is true

 a fortiori' for a' .
 - - - - "ap

 What can one say about the effects of homeomorphic

 44



 changes of scale on the classes ¿ ' and ¿ļp ? More

 precisely, how can one characterize the classes of the

 form f *h where f € A' (or Air») an<* h • is a
 ap

 homeomorphism of the domain of f with itself? We

 can asK the same questions for the classes h ®f, where

 h is now a homeomorphism of R with itself. The first

 question was answered by Maximoff [43], He proved that

 every function in (the Darboux functions in the

 first class of Baire) can be represented in the form

 f * h, f e a'. follows, a fortiori, that the same

 is true for . Maximoff actually proved this result

 in several different papers, but all of his proofs

 are quite complicated and not entirely clear. A new

 and more transparent proof has recently been advanced by

 Preiss [58]« (Choquet [I5] proved the related result

 that each semicontinuous function with the Darboux

 property is of the form f « h, f ç à1 •) one

 suitably restricts the allowable homeomorphisms , then

 A* is closed under inner compositions with homeomorphisms.

 Some recent results related to this question can be found

 in [8], [26], and [3*0 •

 Regarding compositions with outer homeomorphisms,

 much less is Known. Some worK has been done in recent

 years concerning compositions of the form h 0 f , f £ ¿* :

 to each non-linear h corresponds an f € a ' such that

 h c f ¿ a 1 ; if f ç a', f bounded, then h ' f ç for h
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 strictly convex if and only if f is approximately

 continuous [9]j there exists f g such that

 h 4 f ¿ a 1 for every h which is nonlinear on every

 interval [9]. Furthermore, it is clear that

 h • f ą 7»7| for each f € A 1 because Trç ^ is defined

 in terms of associated sets, and the family of

 associated sets is invariant under outside composition

 with a homeomorphism. To the best of our Knowledge, this

 last result is the only Known result of this type for

 a!«* WorK concerning compositions of the form
 cip

 h» f, f ç ¿I seems to have not yet been done.

 It would be of interest to study those functions

 which can be expressed in the form h * f , f ç ¿2

 (or f € A1)» At the moment we Know, because of

 Preiss' worK, that each of the resulting classes is

 in 7 r¡*. How does one characterize these classes? One

 can also asK for restrictions on the home omo rph isms

 (e.g., Lipschitz conditions, differentiability, etc.)

 such that h'f ç ¿ ' for all f ç a 1 or

 for all f € ¿ļp.
 We Know of no work in these directions. Iosifescu

 [ 26 ] has shown that if f ç a' then f € A ' and only

 if each point xQ in the domain of f is a Lebesgue

 point of the second Kind for f: i.e.,
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 lim ì f 0 ļf(x) - f(xQ)|2dx = 0 for all xQ.
 h -» 0

 x0

 Although the squaring function is not a homeomorphism,

 this result may give a clue as to how to proceed.

 We can asK the analogous question for differentiable

 or approximately differentiable functions (instead of

 derivatives or approximate derivatives). A development

 of recent worfc on such questions (as well as more detail

 on the questions we just discussed) can be found in [10]

 and [11].

 We close this section by mentioning, for purposes

 of comparison, that the class ¿P* is closed under uni-

 form limits, composition with continuous functions, (both

 inside and outside compositions), but not under sums or

 products .

 6. Infinite approximate derivatives.

 To this point we have restricted our attention to

 finite approximate derivatives. The situation for

 approximate derivatives which may talee on infinite values

 is somewhat more complicated, although some of the

 structure remains. Because of the complexity of the

 subject, we shall merely give an indication of the present

 state of Knowledge.

 Let F be a function for which F' (x) v ' exists ap v '

 (finite cr infinite) for each point x in some interval

 I. We asK: what does this imply about the functions F

 U7



 and f = P' ? Recent work shows that F possesses at
 ap

 least some desirable structure, and that the extent to

 which f possesses the properties we discussed for finite

 approximate derivatives depends to some degree on what

 one assumes about P.

 A natural assumption to place on P when dealing

 with approximate derivatives might' be that of approximate

 continuity. (If P' is finite, then F is approximately
 cip

 continuous.) But it is easy to construct F so that

 F'(Xq) = «» , P' (x) = 0 for X Xq and F has a

 "jump" at Xq. Then F does not even nave the

 Darboux property (neither does F'). This function F

 is in the first class of Baire, 3 as is P' = P'. Does 3 ap

 this always happen? Preiss [56] provides an example of

 a function F such that F' exists on [0,1] but F
 cip

 is not in the first class of Baire. On the other hand,

 he proves that F' must be in the first class of Baire,
 ap

 even if F is not. (This is true even if F does not

 have the Darboux property. ) The Preiss example F is

 in the second class of Baire. Must this always happen?

 Zahorski showed it must.

 What about the Darboux proper ty? Mis ile [45] used

 Preiss' result (that ) to show that if F

 has the Darboux property, so does F' . (Preiss actually
 ap

 proved a slightly stronger result: he assumed a bit less
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 than the Darboux property for F and concluded that

 P' possesses the Denjoy property {x:a < Fļn< ß} ìs either
 â»]p

 empty or has positive measure. It follows readily that

 To summarize, F must be in^j not necessarily

 in $ ļ, and might fail to have the Darboux property.

 On the other hand, F' is always in and, whenever
 ap x

 F has the Darboux property, so does F' . In that
 aP

 case, ?ļp €
 Actually more is imown. In his deep study of

 associated sets for derivatives [57] Preiss did not

 restrict himself to finite derivatives. Among other

 things, he defined a family M of subsets of the line

 and then let M2 = M n Mp and = M n M^. (Here

 and are the families of sets studies by Zahorski

 [73].)
 *

 Preiss proved that M is the family of associated

 sets for the class of (possibly infinite) approximate

 derivatives, as well as the family of associated sets

 for the class of (possibly infinite) derivatives; that
 *

 L$2 is the family of associated sets for the class of

 (possibly infinite) approximate derivatives cf Darboux

 functions, as well as the family of associated sets for

 the class of (possibly infinite) derivatives of increas-

 ing absolutely continuous functions; and that is

 49



 the family of associated sets for the class of finite

 approximate derivatives as well as for the class of

 finite derivatives of increasing absolutely continuous

 functions .

 Thus, Preiss' worK together with Zahorsici's,

 completely characterizes the families of associated

 sets for certain .subclasses of a' and . Observe
 ap

 that some of the results we mentioned earlier in this

 section are consequences of these characterizations.
 *

 Because the definition of the family M is extremely

 complicated, we shall not state it here.

 Certain other recent worts related to the material

 of this section may be of interest to the reader. We

 mention, in particular, the papers of Krzyzewsfci [31]»

 KulbacKa [32], Lip ins Ki [38] and Matys iafc [42].

 7. Approximate differentiability structure of

 typical continuous functions.

 Let G denote the space of continuous functions on

 [0,1] furnished with the sup norm, ||f || = max {[F(x)|:

 0 s X s 1} . It has been Known for some time that the

 typical function in (j exhibits pathological behavior

 with respect to (ordinary) differentiation properties.

 For example, tne typical continuous function is nowhere

 diff erentiable . We use the term "typical" here tc mean

 that the set of functions which do not have the desired

 property (e.g.. of being nowhere diff erentiable ) forms
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 a first category subset of the complete metric space .

 What can we say about the behavior of the typical

 continuous function with respect to approximate differ-

 entiation properties?

 In 1S3^, JarniK [28] proved that the typical con-

 tinuous function F is nowhere approximately differen-

 tiable. Around the same time [27], he clarified the

 behavior of such an F a bit by showing that every ex-

 tended real number is an essential derived number a.e.

 Stated precisely, this means that there exists a set

 Z of Lebesgue measure 0 such that if x ç ~Z and

 -œ s y £ then there exists a set E(x) having

 upper density 1 at 0 such that

 lim F ( x+h ) -F ( x )
 h 0 h " Y-
 h ç E(x)

 Suppose, now, that f is an arbitrary function defined

 on [0,1]. It follows immediately from JarniK's result

 that for a typical continuous function F, there

 corresponds to almost every x € [0,1] a set E(x)

 having unit upper density at the origin such that

 f(x) = Ilm F(x+h)-F(x) 4
 h -> 0 n
 h ç E(x)

 Thus, one might say that a. typical F is a "universal

 anti-apprcximate derivative a.e.,!. Recently, Scholz

 [6l] proved that if we consider only measurable functions
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 f, then the sets E(x) can all be chosen to be the

 same: that is, given f, there exists a set E hav-

 ing unit upper density at the origin, such that

 (*) f(x) = lim F(x+h)-F(x) for almost all x € E .
 h -♦ 0 n
 h € E

 In addition to improving Jarnik's theorem, this

 remarkable result also extends a theorem of Marcinkiewicz

 [40] according to which (*) holds when E is replaced

 by some appropriately chosen sequence {hn} converging

 to 0.

 8. Monotonie ity.

 Suppose we wished to show that some function F is

 nondecreasing on an interval I. A first approach might

 be to invoke the theorem of elementary calculus to the

 effect that if F' s 0 on I, then F is nondecreasing.

 But what if we cannot invoke this theorem? Perhaps F

 is not different iable, (or it is, but we cannot establish

 this). Or, perhaps we cannot establish that F' ^ 0 on

 I. We would like a theorem which guarantees monotonie ity

 under weaker hypotheses than those of the theorem of

 elementary calculus. In 1928 and 1930, Goldowski and

 Tonelli (see Saks [60]) provided such a theorem:

 Theorem. Let F satisfy the following conditions

 on an interval I:
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 (i) F is continuous

 (ii) F' exists (finite or infinite) except perhaps

 on a denumerable set.

 (iii) F ' s 0 a. e.

 The F is nondecreasing on I.

 (The negative of the Cantor function shows that we

 cannot drop condition (ii) in the statement of the theorem.)

 In recent years there have been literally dozens of

 theorems similar in spirit to the GoldowsKi-Tonelli

 theorem. In each case, one assumes that F meets some

 regularity condition (e.g., continuity, approximate

 continuity, or membership in ), that some generalized

 derivative exists except perhaps in a set A which

 is small in some sense, and that this generalized de-

 rivative is nonnegative except perhaps in a set B

 which is also small in some sense. (The senses in

 which A and B are assumed small may differ.) One

 then concludes that F is nondecreasing. A reasonably

 complete development of this subject would talee us too

 far afield (but see [11] for such a development). We
 shall restrict our attention to the case in which the

 generalized derivative is the approximate derivative.

 The first direct improvement of the GoldowsKi-Tonnelli

 theorem in the setting of approximate differentiation

 was advanced bļ;- Tolstoff in 1939 [o5]. He assumed

 only that F is approximately continuous and that

 conditions (ii) and (iii) are met by F' , and concluded
 <a.p
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 that F is continuous and nondec reas ing. (Because of

 MisiK's theorem (Section 1) it follows that conditions

 (ii) and (iii) are also met by F'.) More recently

 ([5]^ [6] j [63]) it was established that condition (i)

 can be replaced by the still weaker condition that F

 be a Darboux function in the first class of Baire, with

 monotonie ity still following.

 These theorems can be viewed as ones in which the

 approximate derivative substitutes for the derivative,

 but they do not give an indication of the full extent

 to which such substitutions are possible. Recently,

 O'Malley and Weil [5^] provided a theorem which is a

 step in that direction. Basically they proved that if

 a condition is sufficiently strong to guarantee mono-

 tonicity for each differentiable function meeting the

 condition, then it is also sufficiently strong to

 guarantee monotonie ity for each app r o:-: ima t e ly differen-

 tiable function meeting the condition. This theorem is

 very general because it does net specify the nature cf

 the condition. The condition need not be one which is

 stated in terms of the behavior of the derivative. If

 it is, however, it allows us to replace it with the

 corresponding statement for the approximate derivative

 and still conclude that the function is monotonie. For

 example, from the fact that a differentiable function

 whose derivative is nonnegative a. e. must be nondecreasing,

 follows the fact that an approximate^ differentiable

 function whose approximate derivative is nonnegative
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 a. e. must be nondecr easing. To see this one need only

 observe that for a differentiable function, the approxi-

 mate derivative is_ the derivative, and then apply the

 O'Malley-Weil theorem.

 The O'Malley-Weil theorem requires differentiability

 or approximate differentiability everywhere. It would

 be worthwhile to formulate a more general- theorem of

 their type in which this requirement is relaxed.

 Related to questions of monotonie ity are questions

 of constancy. These can often be formulated in terms of

 the notion of a stationary set for a class of functions.

 Let ^ be a class of functions. A set E is called

 a stationary set for if each function in which

 vanishes on ,E must vanish identically. (Thus, the

 stationary sets for the class of continuous functions are

 the dense sets, while each singleton set is a stationary

 set for the class of constant functions.) The family of

 stationary sets for a class ^ provides some sort of

 measure of the size of : If 'U ^ tłien each

 stationary set for ^ is also a stationary set for

 Since a' c A* ar,i and there are many functions in

 Aļp , one might expect a' to possess some station-
 ary sets which does not Dossess. This does not turn

 <ap

 out to be the case. Boboc and Marcus [^] proved that the

 stationary sets for ¿ are the sets whose complement

 have inner measure zero. These sets also comprise the
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 stationary sets for the class of approximate derivatives

 (possibly infinite) of Darboux functions. (This result

 is due to Preiss [56].) This last class contains a'
 cip

 and it follows in particular that and a' have
 ap

 the same family of stationary sets.

 Once again, we have been unable to find a way of

 distinguishing a' from a' •
 ap

 9. Additional remartes.

 We discuss briefly a few additional topics related

 to approximate differentiation.

 The approximate derivative is, of course, a gen-

 eralization of the ordinary derivative. There are

 many other such generalized derivatives, some of which

 can also be viewed as generalizations of the approxi-

 mate derivative. One such generalized derivative is

 the selective derivative which we discussed in Section 4.

 Another is Den joy' s preponderant derivative. Here, in-

 stead of requiring the difference quotient to approach

 a limit through a set of density one at x, we require

 this to happen through a set exhibiting only a "preponde-

 rance of density" at x. The term "preponderance of

 density" can be interpreted in several ways which are

 not quite equivalent. Whichever interpretation one

 taKes, the resulting derivative is more general than

 the approximate ' derivative . This notion of preponderant

 derivative has found only limited use.
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 Other generalizations can be obtained by combining

 the "approximate" notion with some other notion of gen-

 eralized derivative. Thus, various authors have discussed

 the approximate Peano derivative as well as the approxi-

 mate symmetric derivative. We shall not develop any de-

 tails of these derivatives. Instead, we refer the in-

 terested reader to the recent worts [2], [33] > [35] i

 [36], [37] j and [48].

 In the preceding sections we focused on approximate

 derivatives. We now wish to say something about approxi-

 mately differentiable functions, that is, functions F

 for which P' exists and is finite on some interval I.
 ap

 Such a function possesses a good deal of structure. It

 must, of course, be approximately continuous. While it

 need not be continuous, it must possess some properties

 of continuous functions. For example, it must achieve

 relative (though not absolute) extrema on closed inter-

 vals and it is determined by its values on a dense set

 [5^]. Furthermore, it must be continuous on a dense,

 open set (because F' = F' on such a set) and, more

 generally, there must be a sequence of closed sets {E^)

 such that I = u and FļE^ is continuous for all

 K [53].

 Suppose, now, that F is a measurable function which

 is approximately differentiable at each peint of some

 perfect set P. Suppose, further, that F vanishes
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 on P. Must there be points of P at which P'
 ap

 vanishes? If x is a point of density of P, then

 it is clear that Fļp(x) = 0. But what if P is of
 measure zero and therefore has no points of density?

 Surprisingly, there still must be points at which

 *ap van*-sties. In fact, the set S = fx ç P: ?¿p(x) = 0}
 must contain a dense open subset of P. This is a special

 case of the following result of O'Malley [53]: If

 F and G are measurable functions and P is a non-

 empty perfect set such that F = G on P, F is approxi-

 mately differentiable on P and G is differentiable

 on P, then P' = G on a set containing a dense, open
 hr

 subset of P. (There are no additional restrictions on

 P - it need not have measure zero and it need not be no-

 where dense.)

 We end with a brief discussion cf two topologies

 on the lines. The density topology (d-topology) consists

 of those sets A with the property that if x is in A,

 then x is a point of density of A. It is the coarsest

 topology relative to which all approximately continuous

 functions are continuous. A function is differentiable

 relative to the d-tcpology if and only if it is approxi-

 mately differentiable. Which topology is the coarsest

 for which each approximately differentiable function is

 continuous? One might conjecture' that this, too, is the

 d-topology. It is not! In [51] i O'Malley showed that a
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 still coarser topology, which he called the r-topology,

 is the right one. We shall not develop details of this

 topology here. For such details, and for several re-

 ferences to worlc on the d-topology, we refer the reader

 to [51].
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