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On a problem of M. Laczkovich

Let f(x,y) Dbe a function of two real variables.
Suppose that the.second order partial derivative fxy(x,y)
exists at every point. Then the function g(x,y) = fx(x,y)
satisfies the following conditions:

(a) g(-,yo) is a Baire 1 function for every fixed Yo
(g(+,yy) is the derivative of f(-,y,)):

(b) g(xo,-) is continuous for every fixed Xq
(in fact, it is differentiable).

It is easily seen that a function with properties
(a) and (b) belongs to the second class of Baire.
Consequently, fxy is a Baire 3 function.

M. Laczkovich raised the problem whether fxy is
a Baire 1 function. We answer this question in the
negative. Our method of construction gives a Baire
2 function; thus, the problem whether fxy is always
a Baire 2 function remains open. It should be added that
nothing analogous can be said about £, since fxy
may be identically zero even for a nonmeasurable function
f.

To carry out our construction we need a result of

Zahorski (see [1], p. 29, Lemma 12).
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Zahorski's Lemma. If Hy and H, are disjoint
36 sets in [0,1] and if they are closed in the Denjoy
topology, then there exists a function, a, approximately

continuous on [0,1] such that

a(x) =0 (x € H
a(x) =1 (x € H,),
0<a(x) <1 (x#£8H UBH,)

We recall some well known facts about the Denjoy

(or density) topology and approximately continuous

functions.

(1) The Denjoy open (or briefly D-open) sets are

those having (inner) density 1 at each of their points.

(2) These sets are measurable, form the Denjoy
topology, and the D-continuous real functions are

exactly the approximately continuous functions.

(3) Each approximately continuou; function is a
Baire 1 function and, if it is bounded, it is a
derivative (of its integral).

The reader unfamiliar with these concepts and results
is referred to [2] or [3]. wWithout loss of generality

we may confine our construction to the unit square

0<x<1l, 0<y< L.

Theorem. There is a function £f(x,y) such that

fxy(x,y) exists at every point of the square O <x< 1,
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0<y <1l but fxy(x,y) is not a Baire 1 function.

Proof. Let a continuous function o (x) (O <x¢g 1)
satisfying O £ @(x) < 1 be given in advance. Let
sn(x,y) = 2-n-sin[n2n-(y-w(x))] (n=1,2,...).

We need the following properties of S,¢

-n
@) syl 27

ds
n -
(5) Iay | < n;
asn
(6) S;,—(X.cp(X)) = n;

(7) Sh is continuous.
Let rl,rz,... be an enumeration of the rational

numbers of [0,1], let G. be the empty set and let

0]

a be the zero function on [0,1]. We are going to

0]
construct by induction numbers gk, sets Gy and

functions a, with the following properties:

. -k
(1) ¢ € [0,1], }gk-rk[ < 2°7;
(ii) Gk o Gk—l' Gk is a 36 and D-closed set

in [0,1] such that both G, and [O,l]\Gk are dense

k
in [0,1];:

(iii) a, is an approximately continuous function

on [0,1] such that
a, () = L,
ak(x) =0 (x ¢ Gk),
0<a(x <1 and a_ (x) <2 (x £

(k=l'2'--.) .

269



Put ¢, =r; and let G; c [O,l]\[rl] be an

arbitrary 4; set of measure O, dense in [0, 1].

By Zahorski's Lemma we can find a; fulfilling (iii)
with k = 1. It is obvious that conditions (i) and
(ii) are fulfilled for k = 1 as well.

Suppose that n is a natural number and that we
have already constructed gk'Gk and a, (k < n)

such that the conditions (i) - (iii) hold for k =1,...,n.

Define An = [x;an(x) 2 2_n}. According to (2) and (3),

A is a % and D-closed set. Obviously An n G; = dg.

n 8

Set Gn = An U Gn. It follows easily from (ii) with

+1
k = n and from the Baire category theorem that [O’l]\$%+l

is dense. We see that (ii) holds with kX = n + 1.

In particular, we can select a number Chel € [0,1]\Gn+l

1 _ 1 -n-1
1Ch+l ~ Tnept <20

lemma to the pair of sets G_ i, (Cn+l} and we obtain

with Now we apply Zahorski's

a function an+l such that (iii) holds with k = n + 1.

This completes our construction. -
Define

(9) g(x,y) = §=31 a_ (x)s_ (x,¥) .

since 0 ¢a <1 and (snl < 27",  the series on the

right hand side is uniformly convergent. It follows that
g(i,yo\ is approximately continuous and bounded for any
fixed Yor Putting

X
(10) - £xy) = | gty at

o}
we obtain a function with fx = g.
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" Next we prove that Iy exists. Fix an X, € [0,1].

©
s -n
If x, £ Jil G » .then, by (iii), a (x,) < 2 for
each n. Thus, by (5), the series
@ Pisn
E a_(x.) ——=— (x~s°)
n=1 n 0" ay 0
is uniformly convergent. Hence,
) asn
= — )
(11) gy(xo.y) ;El an(xo) 3y (x50 ¥ .

If, however, there is an index . N such that Xq € GN'

then (see (ii) and (iii)) an(xo) =0 for each n > N

and (11) holds again. We have, in any case,

( = y) = By - .
12) fxy(x,y) gy(x y) ;El nan(x)cos[nz (v -o(x))]

Let S be any open disc in the unit square and let
M > 1. since, by (i), the sequence [gn] is dense

in [0,1], we can find integers v,k and 3j such that

(13) 2¥ - vZsmM, kx> 2Y, and
. 21
(Crr @(G) + 3 2V) €s .
(Obviously v >0, -2Y < 3 < 2”.) set y=o(g) + 3 2—7\2
2
As
v-l V-l
| & na_(¢)cos(n] 2 2™ | < Z n< w2
n=1 2V n=1
and
[e-] ) 2_-”- n _ [o%)
Z na (g )cos(nj S 2) = % na_(g)
n=vy 2 n=y

_ v
> kak(gk) =k > 27,

we have, by (12), fxy(gk,y) > M and hence, sgp fXy = + o,

This shows that £ does not belong to the first class of Baire.
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We remark that

(iv) fxy(x,y) = O on the dense set G; x [0,1]
(This follows immediately from (12), (ii) and (iii).):

(v) the function' ¢ plays no particular role in
the proof (we could take ¢ = 0). It only gives a
little flexibility in locating the points where fxy

takes great values.

Problems.

1. May fXy belong to the third but not to the
second class of Baire? If both £ and f

Xy YX

exist, then, by a theorem of M. Laczkovich, fx and
£ are Baire 1 functions; thus, £ and f are
b's Xy YX
Baire 2 functions.

2. Is there a function £ such that fy and

f exist everywhere while £ does not exist at
Xy X

any point?

3. Suppose that both £ and f£ exist every-

PP xy yx b4
where. Do they agree at some points? Are they necessarily
Baire 1 functions? It is easily seen that fxy and
fyx have the same upper and the same lower envelope.

Therefore, if one of them is continuous at a given point

P,' so is the other and f__ (P) = £ __(P). Hence, if
Xy yx

fxy and fyx are Baire 1 functions, they agree on a

dense 36 set.
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