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 CLASSICAL PARABOLIC CAPACITY AND

 QUASILINEAR PARABOLIC EQUATIONS

 1. Introduction

 The purpose of this note is to describe recent re-

 sults concerning the behavior of weak solutions of quasi-

 linear parabolic equations of the second order at the

 boundary of an arbitrary domain. Specifically, we esta-

 blish a condition for boundary regularity for weak solu-

 tions of equations of the form

 (1) div A(x,t,u,ux) + B(x,t,u,u ) = ufc

 where A and B are, respectively, vector and scalar

 valued Baire functions defined on Q x R^ x Rn , where
 I

 Q is an arbitrary open subset of R* (x,t) . Closely

 associated with the problem of determining under what

 condition a boundary point is regular for weak solutions

 is the question of finding an optimal condition in order

 that a compact set K c Q be removable for solutions

 of (1) . Answers to both of these questions are described

 below in terms of classical parabolic capacity.

 *Research supported in part by a grant from the National
 Science Foundation.
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 The functions A and B introduced in equation

 (1) are required to satisfy the following structure con-

 ditions :

 |A(x,t,u,w)| < aQļw| + a1ļu| + a2

 (2) |B(x,t,u,w) I < bQ I w I 2 + bjwl +• b2|u| + b3
 2 2

 w • A(x,t,u,w) >_ c0|w| - cjul - c2

 where a^' , , and c^ are nonnegative constants

 with Cg > 0 . The remaining coefficients are nonnega-
 tive measurable functions in Q that lie in the follow-

 ing Lebesgue classes :

 al.'Vbl « L2,loo (i!)

 and

 b2'b3'Cl'C2 « Ll,loc (îî) '

 Under various assumptions on the structure (2) , interior

 regularity, i.e., Holder continuity, of weak solutions

 of (1) has been established by several authors, cf., (KO],

 [L5Ü] , [AS], [T] . Landis, [LA], announced a Wiener-type

 criterion for boundary of regularity of solutions to the

 heat equation, although a complete development of his re-

 sults has apparently never appeared. Other results con-

 cerning boundary regularity of linear parabolic equations

 include [E] , [Li] , [L2] , [PI], [EK] , [PE] .

 10S



 For a general development of removability results

 in terms of capacities for a wide class of linear (in-

 cluding parabolic) equations the reader is referred to

 [HP] . Edmunds and Peletier [EP] have also considered

 the problem of removability for weak solutions of (1) ;

 however, the capacity they employ is more restrictive

 than classical parabolic capacity which we employ below.

 Indeed, our result is optimal for the class of equations

 under consideration, because sets of positive classical

 parabolic capacity are obviously not removable for the

 heat equation.

 2 . Main Results

 If U c Q is an open set, a bounded function u
 A

 whose partial derivatives , j = l,2,...,n,
 dXJ

 belong to ^Qc (U) is said to be a weak solution of
 (1) in U if

 < r

 ļ I (~é u + A ( X , t , u , u ) . ì> - B(x,t,u,u ) j> }dxdt = 0
 ; XX X

 ^ ■»

 ror ^ all i- * • The fundamental solution of the
 a

 heat operator H = - ù, is defined by

 (4îrt) n//2 exp (- ¡ X I 2/4t) , t > 0

 G(x,t) = <

 s. 0 , t < 0 .
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 For any set E c Rn+^ , the classical parabolic capacity

 is defined by

 C(E) = supíu (Rn+1) }

 where the supremum is taken over all nonnegative measures

 u supported in E whose potential, G * u , is everywhere

 bounded above by 1. If K c Rn+^ is a compact set
 with C (K) =0 , it can be shown, [GZl] , that there is

 a sequence of smooth functions { n j } with the follow-
 ing properties:

 0 £ Hj < 1

 n j - 0 on a nghd of K

 ! ' 7n j ! I 2 0 as j "* 59 '

 ¡I H 1 0 as j - » ,
 n+1

 Hj 1 a.e. in R as j ■ » ,

 v 3 where Hv v = -tt- 3 - du is the adjoint to the heat oper- at

 ator. This information is critical in establishing the

 following result, (GZl] .
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 Theorem. Let K be a relatively closed subset of an

 open set 3 c Rn+^" . Let u « Lao,ioc ^ with e
 L2 loc ^ ~ for j = 1, 2, . . . ,n , and suppose
 that u is_ a weak solution of (1) in Q - K . If_

 C (K) = 0 , then

 (i) « L2,1oc (íí) ' j*l/2,.../n,

 and

 (ii) u Is a weak solution of (1) in fi .

 For the purpose of describing boundary regularity

 results, let Q <= Rn+1- be an arbitrary open set and let

 2q - '(Xq/Lq) £ 9Í) • F or ot ^ 0 , let

 Ra(r> = B(x0,r) X (t0 - I «2, t„ + à cr-2)

 whexe 3 (Xq , r ) is the b3.ll in with centejc Xg and.
 radius r . We associate with R^(r) a subcylinder
 RJ(r) - B(x0,i) X (t0 - i or2, tg - ì or2) . Let: u
 be a function all of whose partial derivatives are in

 L2 ( Q) , i.e., u is in the Sobolev space ( 2) . If

 Zq e 3Q and i « , we say that

 u(Zq) _< i weakly

 if for every k > I there is an r > 0 such that
 + 1 00

 n(u - k) € W2/o(n) whenever n e CQ[B(z0/r)] 00 . The
 following: theorem comes from [GZ2] and [ 2 ] .
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 Theorem. Let u e be. a weak subsolution of (1)

 such that u ( z Q ) £ I weakly . If for some a > 0 ,

 rl C [R* (r) - a] -

 (3> jQ cÎr* (r) ] T'"-
 then

 lim sup u(z) _< i
 Z-Z0
 z «áa

 In the case Í2 = ü x [0,T] where ü is an arbi-

 trary open set in Rn and xQ s 3Í2 , then it is shown

 in (Z] that (3) holds if and only if Xq is a regular
 point for the Laplacian. We conclude with the following.

 Corollary. If u e is a weak subsolution of (1) ,

 then u i£ upper semicontinuous on Q .

 no
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