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 The main ouroose of this note is to give 2. croof

 of a theorem of Maximoff [M] (according to which for

 every Darboux function f in tne first class of Baire

 on R there is a ho mec mor phi s m h of R onto itself such

 that foh is a derivative )f we shall prove a bit more

 general result (Theorem 2, cf. also Remarie 1) since

 it does not require any significant change of the

 technique. It is possible to generalize "he result of

 Remarie to ^ccur* table families ^f) ^-va'* ued ■"'urc t*' o^s j

 this will be done by different methods in a separate

 paper .

 A nonnegative locally finite non-atomic Borei

 regular measure en R (the set of all real numbers )

 will be simply called a measure. À 'measure u is

 called positive if •.•(G) >0 whenever C- is an open subset

 of R, Q¡ ¿ jí . If m is a measure and g is a nonnegative

 locally u-integrable function the measure '> = gu Is

 defined by -j (A) = «i ^ g cL. ; two measures •„. v are said
 to be equivalent if there are g.h such that „=g v and

 u = hu.

 * Let us remark that che original proof is not only
 very involved, but also possibly not correct. This
 has been mentioned several times, e.g. by Lioins^i
 and by doff man :C-].
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 Leí X be a separable set rie space, •„ a positive

 measure on R and : be a zapping of R inte X. Then

 (1) f is said to possess the ^-Dsnjcy property if

 u(f~"(C-) n I) >0 provided that C-cX is open, IcR is
 ^ 1

 an interval (open or closed) and .""(C-)ni ^ ¿ t.

 (2) f is said to be .-approximately continuous if

 ^ ' ^ 51 i,*?»S|'Y *r ^ ^ ( P ( 7 ** ?' ' .s. V ^ ) Ì ) g > ■>" - 1 ■

 7-»x ■¿KX,7) "" '

 and x6R.

 (3) f Is said "o be a u-Le'cesgue funccicn if

 lis 1 a(f(z)>f(x)) du (z; = 3 for any
 y-*x u í>Xj7 j v* >J '

 xsH.

 (-) s ' f is said to be of class 0 if it is cf the first s ' 0

 class and f~~(C-)ni is infinite provided that GcX is

 open, IcR is an interval and f~~(G;ni p

 (5) f is said to be cf class M, if it is cf che first

 class and f~~(C-)ri is uncountable provided that C-cX

 is open, IcR is an interval and f ~~ (C-)-

 >ve shall also denote bT/ X/^ the charac teris tic
 function of the se: A, by U(Fj$ ) the e -neighborhood

 cf the set ? and by À the Lebesgue measure cn R.

 Lemaa 1 . Suppose that •

 (a) (a/o)cR is a bounded open interval. IcR

 (b) v is a measure on R such that Z is v-seasurable
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 and v (Sn ( a , x.) )>C whenever xt (a . b )

 (c) a is a monotone nonnegative function on (a/oj

 such that liai a (t) = C.
 . t-*a
 t€(a/o)

 Then there exists a v -integrable ncnnegative function o

 on R. such that

 (i) fx; ®(x) ¿ 0}cSn (a/o )
 r

 (ii) «i cd(x) d v( X ) á 2a(b)
 ^ a , b )

 (iii) J c(x) dv(x) â a(t) for every cš(a,b].
 (a,t)

 33

 Proof. Let i"o„) K ' ^ be a secuence - such "hat b0=b, K n ' n=ü ^ -

 b €(a/o>1_,), i lim b = a and Z ^(b^sSaCo ) . Pat 1 <.* i n-»09 " n=C

 o(x) =E li ( a , b _ ) I Then (i) and (ii)
 n=r- v^sn(a,ba; rL " _ *

 are obvious > let us prove (iii). Let tçíb^/o ,

 Then j 3(x) ¿v(x) a a(b ,) ( V(2P (a,bn); )"1s/(3n(a>bn) )
 '3.,Z)

 s a(b , ) ž a ( t ) .

 Lemma 2 . Suppose that

 (a) 0 ¿ FcR is a compact nowhere dense se:, FcScR

 (b) v is a measure on E such thac Z is v-measurable

 and v(sni)>0 for every interval I with I r? ^ ^

 (c) 2 is a positive number.

 Then there exiscs a y-measurabie ncnnegative function ý
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 or. 3. such tnąc

 (-} (x; n-0 ¿ 0}c (2 - ?}n*J(F,e }

 ( ii ) iļ(x) dv(x) < e

 (iii) If x$F thea lia v((x,y) -?)«( « *(t)dy (t))"x
 y-x (x,y)

 =0.

 Proof. Let J-F be a bounded open interval . Put

 G =F'j(3. - -J). Les (ln) a sequence of ail open
 S3

 intervals contiguous ~c G. Since =>-/(G)=Z m ( ) .
 n=L

 we can find a nondecreas ing function x on (0,-ho)

 such that liai ju ( :c ) = O, lin :c"~ jj(:c) = and
 x-»0-ř* x-*0-

 CO

 r 'j»(w (X) )< + -•
 n=l

 For every interval (a/o) contiguous- to G such

 that a í F we use Lessa 1 wich a(-)«jj(v (a,t ) ) .

 Let r be the 'sum of all fune "ions j constructed

 in "his way. "hen

 (i') fx; r ( X ) * 0"-c E - F

 (ii) ,-,(x) d v ( X ) á - Z a(*IJ) < ^ »
 n=l "

 ' •» f i > ^ A V ^ T *7 £ .7 V s T u'^ A r' ' - - - / - A V C ^ - ^ *7 J £ Z v ) -- V / s 7 T ;

 v " ^ v ) 2. v ^ u ) = ¿, v 'i ^ v. O v( ; 2
 (Xj7) * ( x j 'J )

 (since for ss!„ = ia^bjjv (artJs)sy (x.y) and
 • ¿ .X - - -A

 T! ( c ) dt * U» ( y( a„ , s ) ) = ď j '! i , v(a„ , s ; }
 (ari>3) " Á -r_ ; 3 ;



 a ini í t"1 uj ( t ) ; Cet <: v(x,y)} • E % ^ v(I^(x,y))
 Inn(x,y)^ % ^

 = v((x,y)-F) ini ft"1 u> ( t ) s 0<ts v(x,y)}.

 3 Ines v((x,y)-F) >0 (because ? is nowhere dense)

 it follows lim u((xíy)-F) ( J ri(t)dv(t))~^ = 0.
 y->x (x,y)

 To finish the proof it is sufficient to choose 5 > 0

 such that ô<s a ad J r.(t) dv(t) < e and to put
 ü ( f , 6 )

 * = *

 Lemma 3 • Łet X be a separable metric space, let

 f: R-*X be a mapping of the first class. Then there is

 a secuence F of compact nowhere dense subsets of R
 n

 such that

 (i) ' / If m<n then either F d F or F HF = 0 ' / Vļļ

 (ii) If XçR is not a point cf continuity of f and

 P S il then there exists a £ nsp such that x ~ F„

 and diam f(F„) % ' < c~". % n '

 Proof. First note that, for every F -set Me?,

 of the first category and every g>0 there exists a

 seauence of disjoint J c cornac - t sets 'O cR such that M = J - 'O

 ! ! and diam f(M ) < s. To see "his , find a sequence

 of c ansae t sets H cM such that M = :J w H r' and diam f(K ' )<=■ ^ <• •/"> w r' ' ^ <•
 n

 (see lK] , chapter 2.531; Hj Theorem 3) -nd note that:,
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 n-1
 5 •' ona sr r» - M are

 -.1 .^1 -ve

 sistric locally c o nic a c t 3 cac ss ; we can write

 X a = 3 a j i where M„ . are disjoint ar. d compact a a j. j i .ij.j
 v

 (cf. !S], chapter 2, j2 6, II, Theorem. I).

 Let ? be the set cf ail points of discontinuity

 of f . Using tins oreceding observât leu we can deccniDcse

 ' T %rp ¿a >* a ; v ; - -r a q r ,1151^*07

 ^ - 3 -- - J -- -

 compact sets such thao diasi f(F- ) < 1 for every n€?ï •

 By induction we say define, for every a c N, a > I, a

 sequence ?, „ of disjoint compact sets such that ? =
 a* ) Ü

 U ?- - j äiata f (7_ < a"1 and every set F is a
 o s --

 subset of seine ? , . . The family rj ^
 a-«L,íC * 21, n ^

 car be ar rar a 3 -i "^to a secuerce f ^ "*• w i til tre recuired
 w - -~a.j

 properties .

 •The cren 1. let *C ce a 3 ecarable metric s cace anc

 let f:H-»X bs a sapping of -he firs- class. Let

 be a positive measure on ?.. Then "he following conditions •

 are * ecu. iv aient

 (1) f has the u -Den joy property.

 (2} There is a measure v equivalent to such chao

 f is v-apprcximateiy continuous.

 (3 ) There is a measure - . equivalent to y, such oh ac f is
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 aa r-Lcbesgue f unc.t ion .

 Proof. (i) =»(2): Let ? be compact subsets ul

 of R with the properties (i), (ii) of Lemma 3« Using the

 Luzin theorem we find for every m€N a comoact set E„cR
 31

 such that

 (a) v ; E 3 F v ; m ra

 Co) f I (32l-F-l) ls continuous

 (c) Sm c rl(txí X; o(x,f(?a)) < a*1} )
 (d) '.¿(ī-0!) > 0 for ever:/ interval I intersecting ?_. 31 lH

 Let S be the union of all sets ?„ such that n<a 31 .1

 and ? n?_ = 0. If H = put s =2~m. If H ¿0 n 31 31" 31 31

 first. choose ôp >0 such that H n U Jí and put

 e* = mia^"01, 2"m (lnfru(x,7)j xSE^ 7€ü(?¡a^a)} )2) .

 According to Lemma 2 with ? = F,, Z = î=s, , and

 v = u we construct a u-integracle function wLzh

 the properties (i)-(iii) of Lemma 2 and put u, =. u~

 - '¡.'i u j Yt = 'i;-: lì- By induction we construct sequences

 of measures , fy^} and a sequence U^-of integrable

 functions such chat

 (i) v / f , r€Rj 7 31v/ ( r ) ¿ 01 ' c (E 31 -F 31 ) 0 U(? v 31 .ej 31 ' v / , 31v/ ' 31 31 v 31 31 '

 (ii) i ('m s 0 and ' *a(r) durn_1(r) <
 R

 ^ T -ï - ' - ' i _
 ' J .** pn - 1 ' * -.1 ^31 J - 1
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 (iv) If r€ -ť then lim u ( (r,s )-?m) • (y^r ,3 ) )'"=C .
 s-*r ~

 m

 Tłisn ( i"h¡j . ) j • u ând ( .i. ) ^ ( - /

 + 2'® for every interval IcR. Hence f ^ ( 1-ť-*^ 2- , ) ćL^ w 2-

 I i=l

 01 -i a
 * u(I) + £ 2~ ¡ thus the function ^=tt a (l+-if.j ) is

 1=1 1=1 -

 locally u - integrable . Put ^

 We prove that the function f is v -approximately

 continuous at every point r c R. Since this is obvious

 if f .is continuous at r, suppose that r is a point

 of discontinuity of f. Let p $ N, S = f"~(X-U(f (r ) ,p~") ) .

 Find n ? N, ' a ž 2p ť such that r f F and diam f(F v ) < ' ť m v m'

 <(2p)~~. If n ž m and yn (2n(r,s)) > 0 then

 VFn = 0 and vn(ïn(r,3)) s vn(R) ä í

 2"n(u(r,s))2 s 2~n;j(r ,s ) v(r,s). Henos va(2T(r,3))
 á 2 y(ris)v(r,3) for every 3€Rj consequently

 v(sn(r,s)) = E v ^ ( Sn ( r , s ) ) + u , (En (r,s ) )s
 n=m

 « ? 2 nu ( r j s ) + um_a(īn(r,3).) s
 n=ui

 á Cuiras) + u^.T^ÍSnr^s), (Yai(r,3 ) )"x]. v (r,s) .

 Since lina Cu(r,s) + Uw) 1 (En (r,3 ) ) . Y_ m (r ,s ) -1 j = o, s-»r *u - 1 m
 the preceding inequality implies tne result.
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 (2) =»(3)- Choose x€X and ?ufc g(r) = p(x, f(r))
 » -1 /V

 and n = (l+g) » "v. Let rSR and let ?.r(s) /V =

 p (f(r), f(s)). Then the functions (l+g)"~ and

 fr(i-rg)~^" are bounded v -approximately continuous,

 hence liai (r(rjs))"1. J f (t) dr¡ (t) =
 3->r (r,s) r

 lim ( (v(r,s))-1. j (l-i-g(t))"1dv(t) )"1
 3-r (r,s) .

 ( (v (r,3 ) )"J" ♦ J fr(t)(l+g(t))"idv (t)) = 0.
 (r,s) "

 (3)= (2)»(1) is obvious.

 Theorem 2. Let f be a mapping of R into a

 separable metric space X. Then the following conditions

 are equivalent .

 (1) f is of class Mq.
 (2) f is of class M-, .

 (3) f is of the first class and there exists a positive

 measure u such thac £ has the u-Den.joy property .

 (^) There is a positive measure 'x such that f is

 u -approximately continuous.

 (5) There is a positive measure u such that f is

 a u-Lebesgue function.

 (5) There is a homemorphism h of R onto itself

 such that fon is ' -approximately continuous.

 (7) There is a homeomorphism h of R onto Itself
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 such that foh is % -Lebesgus function.

 Proof. (1)=(2). For every r <= R the real-valued

 function f (s) = p(f(r),f(s)) is of class MQ hence
 it is of class (see [Z]). Thus, for every s > 0

 and s ^ r, the set f ~^(U(f (r ) ,s •) )n (r, s ) = (r,s)n

 Of ~"(-£ >- ) is uncountable.

 (2)=»(3). First note that for every uncountable

 3orel set 3c¿?. there is a finite measure on R such

 that the measure of 3 is positive. To prove this,

 choose two nowhere dense nonempty compact sets ?,QcB.

 without isolated points such that x(?)>0 and Qc3

 (the existence of Q follows from [X], chapter 3>

 §37, I, Theorem 3)' Let k be a homeomorphism of Q

 onto ? (see [X],' chapter Theorem 1). Put

 v (2) = '(h(ZfiQ)) for every Borei set 2cR.

 Let n£N} be a countable .basis of open sets

 of X and let [I ; n€N] be a sequence of all rational

 intervals. For every ra,a€N for which "he set

 2^ n = f~~(C-;a)n Ia is nonempty (hence uncountable)

 find a measure u „ such that n „(2 ' ) >0 and , n „ m ,av m , n '

 u_ „(R) x ' = 2~m~a . It is sufficient to consider mm , n x '

 U = I m,n * V"' m,n *
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 (3 )" (-O® (5 ) i' allows directly from Theorem 1.

 (5)®(7). Suppose that g is a positive real-

 valued continuous function on R and put >j=gu.

 Then lim (v(r,s))~~ ' J* p(f(r), f(t)) dv(t) á
 s-»r (rjS)

 s lim (inf. fg(t ) ; t£(r,s ) }u (r,s ) J"1« (sup (g(t)j.
 s-»r

 t€(r,3)J . ¡ g(f(r),f(t)) dy ( t ) )=0 .
 (-r.s)

 ' Hence, considering g|a with a suitable g instead

 of u if necessary, we may assume that u(0,-r®) = +»

 and u ( -« , 0 ) = -i-« .

 Put H(x) = ij(0,x) for x^O and

 H(x) = -a(x,0) for x<0.

 Then H is ą h ome omo rph i s ra of 3. eneo R, let h be its

 inverse. Then jļ<(t) du(t) = J (h( t ) )d' ( t ) for

 every nonnegative Sorel function on R.

 Let r ç R, u = h(r). Then

 lim ( >. ( r , s ) ) ~ 1 ' j p(f(h(r)), f(h(t))) d '(t) =
 3-»r (r ,s )

 lim (w(u,h(s) ))"1 ' j' p(f(u),f(t)) du(t) = 0.
 s-*r (u,h(s ) )

 (7)= (6) is obvious.

 (o)=(l). For every x£X the function g(r) =

 = o(x,f(h(r))) is approximately continuous, hence it

 is of class M0 (see [Z]). The proof now follows from
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 the equalities f ~~ (U(xj s ) ) = 'n [(foli) ~(rJ(x,s))] =

 = h[g"1(-s ,s)] .
 Corollary. (Maximoff 's Theorem)Let f be a real-

 valued function on R. The following conditions are

 equivalent.

 (1) f is a Darboux function of the first class.

 (2) There is a homeomorphism h of R onto R

 such that foh is a derivative.

 Proof. (1)»(2) follows directly from the implication

 (1)=>(7) in Theorem 2 (with X=R).

 (2)»(1) follows from the well-'scnown fact that any

 derivative is a Darboux function of the first class.

 Remark 1. If ff.,,...,f } is a finite family of

 real-valued functions on R then Theorem 2 (with X=Rn)

 gives necessary and sufficient conditions for the

 existence of a hcmeomorphism h of R onto itself such

 that all functions f,oh are (x-)Lebesgue functions.

 On the other hand, this condition is not necessary for

 the existence of a homeomorphism h such that ail

 functions f, oh are derivatives. An obvious necessary

 condition is that every linear combination of f . is' a

 Darboux function of the first class. Is this condition

 also sufficient?
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