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 A Generalization of Absolute Continuity

 The paper which follows is concerned with continuous

 functions which satisfy the following property:

 A function f is said to satisfy condition

 (M) providing f is absolutely continuous on any

 set E on which it is of bounded variation.

 The condition (M) appears to be relevant to the theory

 of the integral (cf. [2]). A function f is said to

 satisfy Lusin's condition (N) provided the image under

 f of each set of measure 0 is of measure 0 . Since

 bounded variation on a set along with Lusin's condition

 (N) implies absolute continuity, condition (N)

 implies condition (M) . The example given belc-v shows

 that functions which satisfy (M) need not satisfy (N)

 and in fact need not satisfy Banach' s condition T^

 (for almost every y , f"^(y) is at most countable) .

 Of course, condition (N) implies T2 and it is this
 fact that leads to the proof that functions satisfying

 (¿0 must be dif ferentia'ole on a set of positive measure

 in every interval [3, p. 236]. Actually, functions



 satisfying (M) also have this proper"*/ , as is shown by

 Theorem 3 .

 Before proceeding, is is worthwhile co prove che follow-

 ing cheorem:

 Theorem 1. A continuous function f satisfies (M)

 if and only if : is absolutely continuous on any

 set E oņ which f is. monotone .

 Proof. Clearly, (M) implies che second property.

 Suppose a function f satisfies the second property

 and E is a set on which f is of bounded varia-

 tion. Then f|„ .can be extended to a function F

 defined on Che entire line so that F is a linear

 on intervals contiguous to E . 3y De la Vales

 Poussin 's Theorem [3, ?. 125-127] if M is the sat

 of points where F'(x) does not exist (finite or

 infinite) then the length of the graph of F on N

 is 0 and thus ;N| = ; F (N) | = 0 . But if D is

 che sec or poincs where F'(x) exists, it is known

 chat F satisfies condition (N) on D l5, p. 22 7.3. If

 E+- » t'x ļ F ' (x) = -r- > and = { x | F ' (x) 3 --},
 then every ' x belongs to either D, M, E , or E. . ' - ao , "T"»

 If !F(E, )!>0 then a subset A of E, can be
 T» 1 -r aa

 found on which F is monotone increasing and

 •F(A)'>0 . To see this, let
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 En = {xļif 0<|h|«Vn, F(x+h)h- F(x) > 1}
 and Iet

 Ein * t| '
 Then F is monotone increasing on each set E^n
 and E, +• c.U E. . However, if f is absolutely J +• i , n in . J
 continuous on each set for which f is monotone,

 |F(E. flE+-)| - 0 and thus |f(E+-)| - 0 . Similarly
 |F(E_ob) ļ = 0 and thus F satisfies (ïf) . It
 follows that f satisfies (M) .

 Example : There exists a continuous function F such

 that F satisfies (M) but F does not satisfy (N)

 and in fact F does not satisfy 3anach ' s condition

 t2 .
 Construction. If x€[0,l] , x can be expressed uniquely

 as Sx^/321 where * 0<x^<31 , each x.. is a whole
 number and there exists N so chac x,. *31 for

 all i>N . Let P = {X|X = Ex.. /32a" with all x{
 even}. Then P is a perfect set. Define F(x) on

 ? as follows:

 F (x) = /*b . / 3 i< where b. = 1 if x. = 0 or 16,
 L > L L

 b^ =0 if x^ = 2 or 13, b. = 3 if
 x. = 4 or 20 ,

 a.

 b^ = 2 if x^ = 6 or 22, b^ = 5 if
 x,. = 8 or 24,
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 b.. = 4 if x„. = IO or 26, b,. = 7 if

 = 12 or 8,

 and b.. a 6 if x^ 3 14 or 30 .
 Then F is continuous on ? . Define F on [0,1] by

 extending it Linearly co che intervals contiguous co P

 in such a fashion as co make F continuous . Then F

 satisfies (N) on [0,1] '? . In order co show chat F

 satisfies (M) , by Theorem 1, it suffices to show that

 if Ac? and F is monotone on A , F satisfies (N)

 on A . Suppose F is monotone non-decreasing on Ac? .

 By observing the behavior of F (:<) it is apparent that

 no 3 points x1, i= 1,2,..., 3 of A can have distinct
 i _ „.-12 8 . , 1 „ 1 „
 x^ i s. _ For example ir x-,<x^< . . .<x., ana . , = 0, „ x1

 2 2 1
 or 18. If b, = 1 since x, =0, x7 = 16 and x. sust

 i l'i i
 3 3 4

 equal 2. If o-, = 2, x-, = 22 and then b-, cannot equal

 3. Thus 1F(A)!<7/3 . Similari*/ no 8 points with the

 same x^ can have dis tine c X2 ' s and chus
 2

 ÌF(A)|s(7/8) . Continuing this argument leads to che

 fact that ! F (A) j = 0 and that F is absolutely con-

 tinuous on A . A similar analysis shows that F is

 absolutely continuous on any sec B on which F is

 monotone non- increasing . To see thac F does not sat-

 isfy Banach 's condition T?, it is sufficient to note

 that for each yí[0,lj if y = Sb^/81 then the set of
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 X = Zx./32l$P (where Che x. follow che rules defining
 11

 F on P) which map onCo y is a perfecc subset of

 [0,1] •

 In [1] ic is shown Chat chere are two functions

 f^, f 2 which satisfy (N) such that f^ * ^2 a
 monotone singular function. The following theorem shows

 that for each function f satisfying (--'O but not (N)

 there is a g-(M) such that f - g is monotone singu-

 lar.

 Theorem 2. If f is_ continuous and satisfies (M)

 but does not satisfy (N) , there exists a monotone

 non- deer easing singular function h such that

 f + h satisfies (M) .

 Proof. Suūūose f is defined on [0,11 and

 satisfies (M) but not (N) . Then chere is a

 perfecc sec P wich ļPļ =0 such chat ;f(P)|>0 .

 Let h(x) = ļf (?n(0,x)) I . Then h is non-decreas-

 ing and is constant on each interval contiguous Co

 P . Lec A = {x?P|3c<x wich CSP and f(c) = f(x)>.

 Then j f (PH (0 ,x) ) ¡ = j f (Af! (0 , x) ) j and f is one Co

 one on A . Thus for any inCerval (a,b),

 h(b) - h(a) = i f (An ( 0 , b ) ) i- ļf (Af!(0,a)) 1-

 ļf (Afl (a,b) ) ¡ .
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 Consequently , for G open, ih(G) ¡ » ļ f (Gf!A) I < ! f (G) ¡

 and therefore for closed sees ?, ļh(F) ļ < ļ f (F) ļ .

 Now suppose there is a P'c? such that f + h is

 bounded variation but not absolutely continuous on

 P ' . Then f is bounded variation on ? ' which

 implies f is absolutely continuous on P' and

 I f (?'))=» 0 . 3ut for closed sets Ft?',

 'h(F) ļ < i f (F) I and thus h is absolutely continuous

 on ?' Consequently, f -ř h is also absolutely

 continuous on ?' Thus f -r h satisfies (H) on

 ? . Since h is constant on intervals contiguous

 to ? , it follows readily that f + h satisfies

 00 .

 Theorem 3_. If f is a continuous function on an

 interval I and if {xSljf'(x) exists } has meas-

 ure 0 , then "here is a perfect set ? wi th

 1 P ļ =0 such that f Ls Increasing on ? and

 'f (?) !>0 .

 Note . Theorems 1 and 3 imply that each continuous

 f satisfying (M) is differentiable on a set of

 positive measure in e vary interval.

 Proof. Suppose there is a function f defined on

 an interval I with íx¡f'(x) exists) of measure

 0 and there does not exist a ?- I with |? ¡ = 0)
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 ¡f(P)|>0 and f increasing on P . Choose
 2

 with l>s.>0 such Chat n(l-s^) >% .
 Let a be a relative minimum of f on I and let

 b€l with b>a and f (b)>f (x)>f (a) for xS(a,b) .

 Let F = u fa. , b ] . Let E' - {xšF |3t$F 1 ' with t<x o u , . o o 1 ' o

 and f(t) ■ f(x)j^ then f is non-decreasing on
 and f(2¿) s [f(a), f(b)] . Let GQ - li(x-rx, x+~x)
 where the union is over all (x-r , x+r ) with

 A A

 xSE' and . if ((x-r ' N x' , x+r ) ) n E ' { 1 = 0 . Let o . ' N x' , X o 1

 E = E' 'g N then, for each open r interval J , O O N O r

 EQfìJ is either empty or of positive measure.
 (Otherwise, E HJ contains a set which can serve

 as ? .) Let P, be a perfect subset of E„ so L o

 that at each point of P^ ,£""" = , and so that
 ļf (PL) |>¡f (E ) ļ (l-sj^) . This can be done since at

 -L

 almost every point of Eq , f_' = -•» and the image
 of the set E :"l (f+ = -») is almost all of the image

 Eq [3, p. 271], Let i^n/ *De cke seC °f intervals
 contiguous 3 to P., in F and choose N so large 3 1 o

 that E ! I ¡<5, . For each x€?, which is not a
 n»H n Ł Ł

 left hand end point of any I with n<N , choose
 n

 'J m I so that f (c x )<f (x) . Let d be the x n>N m n x x . x

 right ° hand end ooint of interval I which contains ° - n

 c, . Then the incervals [f(c, ), f(d )] cover all
 X X X
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 buc a finite collection of points f <? -, ) . Select

 from a set of intervals Í [c , ¿-H a finite sub-
 X •*

 collection {(c^, d. ] } so that
 ¡U[f(ci) , f (dŁ) ] 1>|f(P, ) i (l-sŁ) and so that no

 interval [f(c7.), f(d^)] is contained in another

 interval [f(Cj), f(dj)] .
 Arrange the c^, à. so that c^<d.,<c2<d2< . . -<c^ <4^ .

 Since f (d^)<f (d2)< • . .<f (d.^) , points

 u-, , ... u^, v^, ... v1jC can be chosen induct-
 ively as follows with [u.. v„. ]c [c.. d^j :

 let » inf { f (x) ļ xś [c.. d. ] > ,

 let u^ - sup (x€ [Cļd^j !'f (x) - y-, } ,

 let = inf { xi [c^d^ ] | x>u^ and f(x)=f(d1)> ,
 LaC ui+i=su? íX'tei+i' di+1]¡fCx) -

 aiax(7i+ļ> fCdJ)},

 let vi+1 = inf. (xS[cŁ+Ł, dŁ+Ł]'x>ui+. and

 f(x) = f(d,^T)>. JL • I. JL • I.

 Nota that if x^í [u„. v.. ] and x^í[uí+^, v,.^. ] ,

 it follows that f (x-| ) sf (X2) .

 Let Fl = U[ui,vi] .

 Let E = {xSFļj3t??^ with t<x and
 f(t) - f(x)>

 then f is non- deer aas inj on E-! .

 Let G, = U(x-r , x+r ) where the union is 1 x , x'
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 over all (x-r N , x+r ) wich xSE,1 and N X , X 1

 I f ( <x~rx' x+rx)nE1)¡ " 0 •

 Let El = EļV^ .
 Then ļf(E^)| - ļf(Eļ)| and, for each open

 interval J, Ē^flJ is either empty or of positive

 measure . (Otherwise, Ē^flJ would contain a P .)
 Note that F ^E :>P, , P,f!?, = i , OOi , li

 WEi * |Fii<si *
 and |f(E1)!>!f(Eo)i(l-s1)2 .

 In general ° sunuose - - ? , F ' , and E„ have been ° - - n , n , ' n

 chosen so that P cE , cF , , P c (f = -») F is n n-i ii-i , n - n

 the union of a finite collection of closed inter-

 vals each of whose interior is contained in an

 interval contiguous to Pn , i^ni<5n ' * non*
 decreasing on. , ļ f (En) j > | f (Sn_ļ) ļ (l-sn) 2 , and
 for each open interval J , E ,1J is either empty "

 n "

 or has positive measure. Suppose further that if

 x, is an interval of F and x0 is in a dif- 1 n x0 2

 ferent interval and x.,<x2 , then f(x-,)<f(x9) .
 Then, by following the steps of the construction

 of P, , F, , and Et , the sets P . , , F , , , and 1 , 1 , 1 , n-t-1 . , , n+1 , ,

 E ,, can be obtained so that the above orooercies
 n+1 ,,

 hold for them with n replaced by n-rl .

 Finally, J let P = fi F . Since ' 'F !<e 1 , ; • ? ¡ 1 = O . J n . ' n 1 n , • ¡ 1
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 Lec E = nf(E ) .
 n

 Then ļEļ>!f(E0)ļ (i-5l)2.. .(l-en)2. . .
 and ¡Zļ>| f(E ) ļ -%>0 .

 If y€E . 3x € F }f(x ) « y and hence cher e is a
 n n ti

 limit ūoint of the x , say x , with x SflF .
 n o on

 3y the continuity of f , f(xQ) = y . äence,
 f(?)oE and if(P)!>0 . It remains to show chat f

 is non- deer easing on ? . But if x^, x^í? wich
 x,<x0 and if x0-x,>s then x, and x0 are in 12 x0-x,>s 2 1 n i x0 2
 discinct intervals of ? and hence

 n

 f(x1)<f(x?) . The existence of such a ?

 contradicts, our hypothesis and thus the theorem is proved.
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