5 . . 2 e r1494. 2
22al drnailysis Zxchange Vol. 5 (1373-4C)

James Foran, Department of Mathematics
University of Missouri-Kansas City, Missouri 64110

A Generalization of Absolute Continuity

The paper which follows is concerned with continuous

functions which satisfy the following property:
A function £ ‘is said to satisfy condition

(1) providing f 1is absolutely continuous on any

set E on which it is of bounded variation.
The condition (M) appears to be ralevant to the theory
of the integral (cf. [2]). A function £ 1is said to
satisfy Lusin's condition (M) provided the image under
£ of each set of measure 0 1is of measure 0 . Since
bounded variation on a set along with Lusin's condition
(N) 1implies absolute continuity, condition (XN)
implies condition (M) . The example given belcw sicws
that functions which satisfy (M) need not satisiv (M
and in fact need not satisfy Banach's condition TZ

;'l

(for almost every vy , (y) 1s at most countable).

Of course, condition (N) implies T2 and it is this
fact that leads to the proof that functions satisiying
(¥) must be differentiable on a set of positive measure

in every interval [3, o. 286]. Actually, functions
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satisfying (M) also have this oroperty, as is shown by

Theorem 3.

. o

Before proceeding, it is worthwhile to prove the Zollow-

ing

theorenm
Theorem 1. A continuous function £ satisfies (M)
if and only if £ is absolutely continuous on anv

set E on which £ is aonotone.

Proof. Clearly, (M) implias the second orover:zy.

Suopose a function I satisiiss the second Ddroperzy

and E is a set on wnich £ is of bdounded varia-

tion. Then £/, .can de sxtenced o a functicn ¥
s

defined on the entire iine so that F is a linear

on incervals contiguous zo £ . By De la Valee

Poussin's Theorem [3, . 123-127] if N <is the set

of points where 7'(x) does not exist (Zinits or

infinice) then the length of the graph of © on
is 0 and chus [N! = T(N){ =90 . But if D is
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the set of points where (x) exists, it is known

that T sacisfies condition (N) on D (3,p.2271. 1If
E., = {2iF'(x) = +=; and E__ = {x{F'(x) = -=},
then every < Ddelongs to 2ither D, N, Z__, or EI__

If IF(E.)/>0 then a subset A of E__ can be

found cn which F is monotone increasing and

'F(A)'>0 . To se
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En = {x]|if 0<|hf51/n, F(X+h)5- E(x) > 1}
and let
_ (1L i+l ,
Bin = 5 1%,

-

Then F is monotone increasing on each set Ein

rn

and E, ., E However, if is absolutely

:ien in
continuous on each set for which £ is monotone,
F(E, NE, )= 0 and thus |F(E,))| = 0 . Similarly
[F(E__)| = 0 and thus F satisfies (¥). It
follows that £ satisfies (M)

Example: There exists a continuous function ¥ such

rthat T satisfies (M) but F does not satisiy (N)

and in fact F does not satisfy Banach's conditiom

Ty

Construction. If x¢[0,l] , x can be expressed uniquely

as :xi/Szl where 'OSxis3l , each x. 1s a whole

number and there exists N so thac x,;#31 for

. ; - i .
all i>N . Let P = {x;x = Ix,/32 with all x,
aven!} Then P is a perfect set. Define F(x) on

P as follows:

F(x) =/b,/8" where b, =1 if x. =0 or 16,

i

b, =0 if x, =2 r 13, b, = if
o < or 13, i 3 i
X, =4 or 20,

P
b, = 2 1if x =6 or 22, b. =5 if

i i RS 1 -
X, = 8 or 24,
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5, =4 if x, = 10 or 26, b, =7 if

x; = 12 or 8,

and b, = 6 if x; = 14 or 30
Then F 1is continuous on ? . Define F on [J,1] by

extending it linearly to the intervals contiguous to P

™ -

in such a fashion as to make T continuous. Then 7=

U5

satisfies (N) om {3,1]\2 . 1In order zo show that

satisfies (M) , by Theorem L1, it suifices to show that

®
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i AcP and ¥ is monoctone on A satisfiss (M)

b

on A . Suppose F 1s monotone non-cdecreasing om  AcC? .
3y observing the behavior of F(x) it is apparent that
y g 1)

no 8 points x*, i=1,2,...,8 of A can have distinct

8
L2 1.2 8 . o1
xl's. For example if Xy<¥y< <X, and °Y Q, x} =2
2 . 2 2 I
or 18. 1If by = 1 since xy20, x{ = 16 and =z, must
- &

equal 2. 1If bi = 2, xi = 22 and then b? cannot aqual
3. Thus |F(A)!=7/8 . Similarly no 8 points with the
same ¥, can have disztinct xz’s and thus

T A)i5(7/8)2 . Continuing this argument leads to rhe
fact that [F(a)! = 0 and thact 7 is absclutely con-
tinuous on A . A similar analysis shows that F 1is

absolutely continuocus on any set 3 on which 7 1is
aonotone non-increasing. To see that I does not sat-
isfy Banach's condition T, it is sufficient O note

- ; - - - i . -
that for each y<[{0,l} if v = 1b./8 then che sat of
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X = in/3Zi€P (where the X; follow the rules defining
F on P) which map onto y 1is a perfect subset of
(0,1]

In (1] it is shown that there are two functioms
fl’ f2 which satisfy (N) such that fl - fz is a
monotone singular function. The following theorem shows
that for each function f satisfying (M) but not (N)
there is a g<(M) such that £ - g 1is monotone singu-
lar.

N,

Theorem 2. If £ 1is continuous and satisfies (1)

but does not satisfy (N), there exists a monotone

non-decreasing singular function a such that

f+h satisfies M)

Proof. Suppose I 1is defined on [Q,l1] and

satisfies (M) but not () . Then there is a
perfect set P with [Pl = 0 such that [£(P)i>0.
Let h(x) = [£(P1(0,x))| . Then h is ncn-decreas-

ing and is constant on each interval contiguous to

P . Let A = {x¢P|3t<x with t¢ and £(z) = £(x)}.
Then {£(P"(0,x))| = {£(AN(0,x))! and { 1is one to
one on A . Thus for any interval (a,b),

h(®) - h(a) = [£(an(0,0))i-1£(an(0,a)) =

£(An(a,b)) |



Consequently, for G open, a(G)|=/L£(GMA) ={£(G)]!
and therefore for closed sets F, la(F)|s|Z(F)|
Now suppose there is a P'cP such that £ + h 1is
bounded variation dut not absolutely continuous on

P' . Then

(1Y

is bounded variation on ?' which
implies £ 1is absolutely continuous on ?' and
'E£(P')l= 0 . 3ut for closed sets TzP',

"MM(F)I=i£(F)! and thus a is absolutely continuous

on ?' . Consequently, Z + a1 1s also absolutely
continuous on ?' . Thus £ + h satisfiss (M) on
P . Since h <Is constant on intervals contiguous

M

to P , it follows readily that ZIZ+1a satisfies

interval T and il {x¢I{f'(x) exists; has meas-
:re O , then thers i1s 2 perfect set ? wi:th

Proof. Suppose there is a function £ defined on

an interwval 1£'(x) exists: of measure
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0 2and <chere does mot exiszt a P<I with P20 =20
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2.

Choose

and f 1increasing on P

[£(P)|>0
1>:,50 such that f(l-:)) %>
£f on I and let

4

with
a be a relative minimum of
for x¢(a,b)

Let
with b>a and £(b)>fx)>f(a)
Let Eé = {xsFo|3t€F° with t<x
!
o

bel

Let Fo = [a,b]

Let Go J(x-rx, x+rx)
(x-rx, x+rx)

Let

£(t) = f(x){' then f is non-decreasing on E

with

and
f(’Eé)D [(£C@), £(b)]

and

where the union is over all
z ] H - +’. { [
X‘Eo and f((x r., X -x))1E0| =0
= Eé\\Go then, for each open interval J ,

o]
Eo o)

EOﬂJ is either empty or of positive measure.
contains a set which can serve
and so that

zoﬂJ
be a perfect subset of

P
1
Pl;éz'“:
This can be done since at
and the image

(Otherwise,

as P .) Let
that at each point of
51)

- +
Lo, =
is almost all of the image
be the set of intervals

so large

|rh

122 ) >1E(E) | (L-

almost every point of
- - +
J(E = -=)
’-

nJ

of the set Eg

Eo (3, p. 271]. Let (I
contiguous to Pl in Fo and choose XN
For each é?l which is not a

with n=<N , choose

< be the

that
n>N
which contains

f(cx)<f(x)
T

-

¢ Vo I so th
a that

end point of interwval a

the incervals [f(cx), f(dx)] cover all

33
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out a finice col ooints £(Py) . Selact

frocm a set of intexrvals {fct, d 1} a Zinite sub-

collection {{ey.
iU[f(ci), f(di)]{>lf(Pl)i(l-sl) and so that no

d.]} so that

interval (Z(c;), f(di)] is contained in another
interval [f(cj), f(dj)]

“Arrange the ¢;,» d; so chat cl<dl<c2<d2<...<c£:§

.
?

Since f(dl)<f(d2)<...<f(dk) , points
Uy, Uy on Oy, VL, Ty oLl Ty can be chosen induct
ively as Zollows with [(u,v,]<{c.d

let vy.

{ = e = L
lat 4, = sup 1x€[cldl];-\x) yl} ,
lat v, = inf (xe[cld.,]izbu1 and £(x) =Z(d, %
lat U; . = Suz ixé[cl+l, di*l]if(x) =

lec v, =inf (x%

i’'i
Lec Ei = LxéFlnECEFl wizth ©<x and
£(e) = Z(x):
cﬁen £ is non-decr2asizz on =,
Let G, = “(x-rx, x+rt whers the union Iis

(o V)
w

.



over all (x-rx, x+rx) with xSEl and
lf((x-rx, x+rx)ﬂEl)l =0 .

Let E; = E{\G; .

Then If(El)l = i‘(Ei)l and, for each open

interval J, Ean is either empty or of positive

measure. (Otherwise, ilﬂJ would contain a P .)

N ' °oF P.n =
Jote that g aoDPl » PioFy » ,
>F, cE i i<z, ,
ForF1 2By iFpiesy ,
and [f(El)!>§f(Eo)§(l-sl) .
In general suppose Pn , Fn , and En have been
-+ .
k cE <F C(f' = -= i
chosen so that Pn n-1"Fp-1 Pn (£ ), Fn is

the union of a finite collection of closed inter-
vals each of whose interior is contained in an

interval contiguous to P_ , {F_j<: s non-

>15E ) (me)? |, and

(S]]

| £(E

? i

decreasing on
* Tn

for each open interval J , E_1J is either empty
or has positive measure. Suppose further that iI

Xy is an interval of Fn and X, is in a dif-

ferent interval and X<X, , then f(xl)sf(xo)

Then, by following the steps of the construction
= p T s T

of P Fro and El’ the sets Pn+l’ Fo+r and

En*l can be obtained so that the above propercties

hold for them with =n replaced by n+l

Q
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Finally, let P = AF_ . Since 'F_i<

n ' n n

O
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y£(x.) = v and hence thers is a

n
limit point of the x_ , say X, with xoenFn .

n

By the continuity of £ , f(xo) =y . Hence,
L\J)4a i £ P> . - &2 in t aow Lo f
£(@)2Z and i£(P)|>0 It remains to show chat

is non-decreasing on 2 . 3ut if X1 xza? wich

X,<X and if x,-X,>:z_ then x, and < ares in
1572 = L IS (! 1 2

distinct intervals of F_  and hence

£(x,)=£(x,) . The existence of such a ?

-

1

contradicts our hAypothesis and thus the theorem is proved.
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