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Since the appearance of Zahorski's article _76_ in
1950, a great deal of work has been accomplisned con-
cerning the differentiation of real functions. Much of
this work has, in fact, been accomplished during the last
decade, and even this most recent work haé iavolved a

number of different directions of inquiry.
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ory manner. While we stats

.

some o:f the recent results in pracise form, our gurpose is

more to impart the flavor of the subject than it is to pro-

vide a complete up-tc-dats catalogue of the results. For
that reason, our styls is often informal, none of <the
chapters is intended to fully summarize the present stats oI

knowledge, and we have omitted certain topics of current

interest. Notable among the omi:ted :topics ars th2 importan

works oy Laczkovich and Petruska on 2xt2nsicns 0, 2pproxi-

mations of, and separation by, derivatives; Sv 3arg om the
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delicate differsntiabilicy sctructurs of functions; bv

S. Marcus and others on the stationary and detsrmining sets
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£ various classes of functions; and bv

certain generalized derivatives.
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I. DIFFERENTIATION AND CHANGES OF SCALE

Perhaps the simplest example of a continuous function

which fails to be differentiable at some point is the

function F(x) = !x

. The corner appearing on the graph of
F disappears nhowever, when F is composed with the homeo-

morphism h(x) x> of [-1,1] onto itself: that is, the

function (Fo h)(x) = |x°| is evervwhere differentiable
whereas F is not. In short, we have been able to create
differentiability via a homeomorphic change of variables.
In recent vears there nave been a number of studies of
the effect of changes of scales on various classes of
functions, particularly classes related to differentiation
theory. Most of the results of these studies have intrinsic
value to the study of differentiation, of course, but they
also can be appliead in a variety of ways. For motivational
reasons, we shall begin our discussion with statements of a
f2w of these results and some applications. We do this in
Section 1, below. Then in Section 2 we consider some general

questicns; we devote Section 3 to a summary of known results

and end with a brief discussion of related questions.

1. Applications of Theorems on Changes of Scale.

To give an indication of the kinds of applications to
which these change-of-scale theorems give rise, let us begin
with a single such theorem (and some variants) and discuss

several applications.
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Qur starting point is the following theorem _202, Z17C..

Theorem. A function F defined on the interval [9,1°
can be transformed into one with a dounded dsrivacive via
a homeomorphic change of variablss if and only if F is

continuous and of bounded variation con Z0,17.

We discuss several applicaticns of this theorsm and its
modifications.

a) Differentiables Cantor-like Functions.

The Cantor function fails

t

o) ferentiable at anv

5

i
e J1

o°

point of the Cantor set. Yertr, this function is continucus

e transformed into

o

and of bounded variation and can therstfore

one with a bounded derivative. The transformed function is,

of course, a Cantor-like function: that is, it is cocastant

on each intsrval contiguous to some nownere-dense perfsct

set, but not ccnstant on any open iaterval containing points
] .

- .
r2rentia

12, wizh a Sounded

Fiy

of that set. And it is di
derivative:
b) Nowheres Monotcone Functions.

A continuous nowhere-diff

»

rentiable function cannct be
monotonic on any interval. Almost one aundred vears ago,

the problem arose of determining whether or not a differsntiabd

-
H
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function could be nowhere monotcnic. Arsund the turn o

ry

the century, a number o:Z auth

(o]
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s publishsd sxamples of such

functions. Unfortunatelv, their complicatsd cons=zructions

contained errors. Finally, in 1913, Deniov -217 presentad
a (correct) lengthy study of such functions. Needless 0
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sav, his constructions were quite complicated.

The machinery available to contemporary mathematicians
allowed for simpler proofs of existence of differentiable
nowhere monotonic functions. Thus, Zahorski [76] obtained
such functions by using his deep results about derivatives,
Goffman {31] based a proof of existence on properties of the
density topology, Petruska and Laczkovich [60] used work they
had de&eloped concerning extensions of derivatives and Weil
£71] based a proof on the Baire Category Theorsm.

Interesting '"elementary'" proofs were recently advanced by
Katznelson and Stromberg [40J and by Bla:zek, Borak and
Maly (6].

Suppose we wished to construct such a function from
scratch. How could we proceed? A natural attempt would be
to try to make judicious use of Pompeiu derivatives.

Pompeiu 51 constructed a difrerentiable increasing functicn

F such that F' > 0 on a dense set and F' = 0 on another dense

"ry
(9]

set. DPerhaps one can construct two such functions and

50 that F-G has the desired properties. One can, but it

[

isn't easy! There just are too many things that have to be
controlled simultaneously. Cur theorem is helprful here,

however —397. Let A be a measurable set with the propercty

that both A and its complement A intersect each subinterval

of 70,13 in a set cf positive measure. Let F

’

x) =

-

(t)dt. Then F' = 1 on a dense set,
G' = 1 on a different dense set and the function

absolutely continuous nowhere monotonic function. It isn't



differentiablie 2vervwhere, of course, but cur theoraa
guarantses the sxistence of a homeomorpnism a 9f _0,1°
onto itself such that (F-G) 2a is differentiadble (with a

bounded derivative). It is clear that this function is
nowhere monotonic because monotonicity cannot be created
or destroyved by a homeomorphic cnange of scale.
Incidentally, Pompeiu derivatives exhibit a number of
interesting properties, and such derivatives are not
difficult to construct by 2lementary means
Ve mention in passiﬁg that Solomon Marcus has pointad out
that a bounded Pompeiu derivative furnishes an sxample of

[}

a pounded derivative which fails to be Riemann intsgrabls:

th

lows from completely

(=

on any interval and this fact 2o
2lementary considerations {the lcwer Darboux sums must bDe

0).

1as parametric represenzaticn x = xit), v = y{T), (02 < Tt < 1)
with x and v differentiabls with >Soundad derivactives. What

does that say about v? Does it imply, for 2xampls, that

v has a tangent at sach point, the rtangent being vartical
at points at which x' vanishes? The answer i1s that it savs
nothing, bevond the obvious (that v is a conrtinuous rscti-

fiable curve). This foliows £from a small variant of our
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allows us to choose a homeomorphic change of scale which
simultaneously.transforms the coordinate functions into ones
with bounded derivatives.

d) Level Sets of Functions.

Independently, Fleissner and Foran [25] and Kaplan and
Slobodnik [39] proved that a function F can be transformed
into a differentiable function via a homeomorphic change
of variables if and only if F is continuous and of generalized
bounded variation (VBG,). Because a differentiable-function
must have almost every level set finite, the same must be
true of each continuous function which is VBG,. This fact
is well known [66], but it provides an example of the way
a change of scale theorem can be used to establish a structure
property for a class of functions when that property is known
for aﬁ appropriate subclass. The propefty must, of course,
be one that is invariant under homeomorphic changes of
variables.

It may be interesting to note for comparison that if we
weaken differentiability to differentiability a.e., the
result of the paragraph above fails completely. Such a
function can have every level set perfect. To see this we
invoke another change of variables theorem together with an
example of Gillis'.

Gillis {307 constructed a continuous function G for
which every level set is perfect. Then, in [13] it was shown
that a2 function G can be transformed into one which is

differentiable a.e. if and only if G is continuous on a dense

l‘.l
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set. The resultiag function G » n i
function - {every level set is perfact), and it is

differentiable a.2. VNot2 (G » a}' vanishes wherever it

w

xists. Ia this connection, it is interesting to observe
that a singular function (i.e., a continuous nonconstant
function of bounded variation whose derivative vanishes a.e.),

must 2lso have an infinits derivative on some c-dense set.

2. The General Situation.

Let us formulate some questions pertaining to the

effects of changes of scale on 2 class of functions. Let
T e a class of functions defined on, say, the intsrval _5,1°.

Let % denote the class or (increasing) homeomorphisms o2
9,11 onto itself aand l=2t F o ¥ denote the set of all
functions of the form £ o h where £ € ¥ and h € H.

A systematic study orf the effects of % cn & migh

ct

include consideration of the Zollowing gquestions:
(i) Does Fa:» =77 In other words, is the class =

invariant under homeomorpnic changes of variabliles? The

.

level set is finite furnish examples for which the answer

to cur guestion is affirmative. Usually classess of

3
w0
w
w
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[8)
w

functions differsntiables in scme generalized sen
classes of their (generalizesd) derivatives are not

invariant under such a caangs oI scale.

If the answer tc (i} is negative, there are severzl
other questicas which arise naturally

-
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(ii) How can we characterize the class Fo ?
Observe that the class 9% consists of those functions
which can be transformed into the class Z» by a suitable
homeomorphic change of variable. The theorem of the previous
section shows that for 5 the class of functions with bounded
derivatives, & o ¥ is the class of continuous functions of
bounded variation.

(iii) .How can we characterize the class
F* = (f€F: £f o n€&€F for every h ¢ ¥ }?

Here we are calling for a characterization of those
functions in > which remain in ¥ under all homeomorphic
changes of scale. Note that F* o M = %* in general.

(iv) How can we characterize the class

"

H* = {h€x:

H

L s~ ~ . S
5 h €5 for all f€51}:? (i.e., under which

homeomorphic changes of variable does % remain invariant?)

One can, of course, ask the analogous questions for

scale of the range of the functions in F. Thus,

rt,

O
oy

anges o
if we now denots by ¥ the class of increasing homeomorphisms

we can call for characterizations of the

of Rl onto itself
classes X o>, #* and ™%, where the notations have the cbvious
meaning.

5. Summary Of Recent Work.
Much work pertaining to the questions we discussed above
has been accomplished in recent years. We summari:ze some

of this work in the chart below. The numbers appearing in
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INNER CHANGES OF SCALE
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Remarks About the Char:.

(1) The class C' o X consists of those Zunctions

=
o]

which are continuous, of bounded variation and whose se:

("))

V of points of varying monotonicity map into a set of
measure zero. A point x is said to be a point of varving
monotonicity for f if there is no neighborhood of x on
which f is constant and no neighborhood on which £ is

strictly monotonic. For example, for the Cantor function

£, V is the Cantor set. Since £ (V) 79,17 in zhis case,

£ EC sm.

f2) The condition obtained by Lac:zkovich and Petruska
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127 is too complicated to state here. It i

v ‘

[8)

re2latad to the condition that 1/a' be continuous and of
bounded variation.

(3) The condition is that if X, is a point of density

J

of £, then h l(xo) is a point orf densicy of the set a ~({Z).
{4) The charactsrization for 2 5> X can be formulazts
in a manner which allows comparison with the class Yipge 2

as foliows: F ¢ 4,4 0 M if and cnly if each incterval conta

H

a perfect set P such that F is continuous at each point of

[4))
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A

A M ow equire only relative contir
apae ° veé Trequire onl ativs continu

Note that Aae o ¥ contains, in particular, all 3airs 1

functiens, and Anoae s X contains all measurabls functions
and all functions with the property of Baire.
(5) The condition S' is relazad to Luzin's condition

(N). A function F satisfies condition 5' if there is no
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interval which is contained in the image undef F of sets of
arbitrarily small measure.

(6) Hancock's conditions are quite complicated. In
addition to the obvious requirement of approximate continuity,
each member f of Mo L must satisfy certain growth and
density-like conditions. In particular, if f is approximately
continuous and its set of non-Lebesgue points is denumerable,
then f € X o L.

(7) Characterizations of the classes Mo &' and o ba'

are not known. The inclusions X o A'<c /Mm%, and ¥ o ba' <My
b}

(4]

follow from the work of Preiss 637 and Zahorski {767,
respectively. Both inclusions are proper.

(8) Bary [4] showed that C<¥o LY In the same paper
she showed C < S0 © H.

(9) An interesting application of Maximoff's theorem is

Lipirs i C457. °F Xpres <8 s uni f sets
due to Lipinski {45 He expressed .l 1 35 2 union o e

whose intsrsection is C.

4. Related Questions.

There are many other questions one could ask concerning

rh
m
‘I l

the composition £ o h, ( , h € ). For example, one

could replace ¥ by a more restrictive class of homeomorphisms

w)

or by a larger class orf functions. Thus, Tolstoff Z70C
studied the composition & » D, where D denotes the diffeo-

£, and Laczkovich and Petruska

@
[

morphisms of [0,1] onto its

studied the composition £ 5 ¢, £ < aA', ¢ a convex

3

homeomorphism. Similarly, in Z10J one finds a characterization

1

of those hcmeomorphisms h whose inverses are infinitsly
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differsnciable such that © o a € C_ whenever { & C__.

Cne of the early researches o0:f these tvpes of

of Wilkosz. He studied functions

.

snowed that this

.

f such that both f and £° are in ba', an

ct
ct

2

class consists of the bounded approximately continucus

- . . . .2 . - -

functions. de viewed £~ as the product £ - £ because he

was interested in products of derivatives, but one can also
. 2 s . -

view £~ as the composition s 5 f where s{x) = x~. We can

view Wilkos:z' rTesult as a special case of the theorem that

¢ o £ € ba' for ¢ s=crictly convex and £ £ ba' if and enly if

3 CaD f127. It follows from this theorem, Zor example,

that if 9 < k < £ < X < = and £ & 1', then 3 & ' if and
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onlvy if 1l/f

approximate continuity. For example, the fact that the

function f£(x) = sia L (£(0 pbut £ is not,

N~
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One finds in L127 additional tieorems which show how

»-

totally devastated some derivazives ars under svary nowhers
linear homeomorphism change of scals of th2 range.

Similar guestions involving the structure oI
4 o F for other classes of functions navs aiso Seen answerzad.
See for example C2271977353- and 157 which deal with Fourier
series and 3aire 1 equivalent Zuncticns, raspecztivelv. See
also the survey article _23_ by Foran for further discussions
of change of scale theorsms within the class of continuous

functions and for s

“t

atements of some ocpen prcblams.
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As a final remark, we mention that transtormations
involving inner and outer homeomorphisms simultaneously can
also be studied. We can ask the same kind of questions
we asked before in connection with classes of the form
X o F o X where the notation has obvious meaning. For
example, if 5 = 4 or Ay, the classes Mo % o (in both
cases) consist of those continuous functions f such that
(*){y:f'l(y) is finite} is c-dense in the range of £.

This result (for 2) was recently proved in {393, but both
results follow immediately from our first theorem (Section 1)
together with a theorem of Bary _4, p. 635 according to
which * o CBV consists of those continuous functions for

which (*) is met. (See also {28].).
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IT. MCNOTONICITY

During the last few yvears, a plethora of theoranms,
each concluding that a function is monotonic, has sappearesd
in the literature. This is due in part to the fact that a

ed in various sorts of

ct

number of authors have become interes
generalized derivatives, and each such generalized derivative
can give rise to a variety of monotonicity theorsms. Many
of these theorems follow a certain format which we examine

1

in Section 1, below. Then in Section 2 we discuss a

"

2W

results of a more abstract nature.

(o]

1. A Format for Monotonicity Theorems.

Many of the theorems which generalizs the elementary

-

theorem that a function F whose derivative is positive on
an interval I0 is increasing on ZO follow a certain format.

One assumes that 7 meets some ragularity condition f(e.g.,

- ~ v - .
£f€¢C, £ € Coport €-€l), that some sort of generalized

derivative 2xists exc

(/]

pt, perhaps, on some set which is

small (s=.z2., csuntable) and that thi

n
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is nonnegative except on some (possibly larger) small set.
For the elementary theorem, the resgularity condition is
differentiability, and both small sets are empty. OJften,

a new monotonicicy theorsm improves an older one in that one
or more of the aypotheses of the clder theorsm are weakened
a bit. Although the weaksning of a3 part of a hvpothesis

may abpear minor, this weakening could requirs z2n entirely

.

based on very delicate arguments.

rh

different sort of proo
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We shall consider only one chain of theorems as an
illustration of the preceding remarks. The interested
reader may wish to consult the original articles appearing
in this chain to get a real grasp of the work involved in
establishing such a chain.

Our starting point is the following theofem of Goldowski
and Tonelli established in 1928 and 1930. See Saks [66] for
a prooft.

Theorem (Goldowski and Tonelli). Let F satisfy the
following conditions on IO'

(i) F is continuous.

(ii) F' exists (finite or infinite), except perhaps on

a denumerable set.
(iii) F' > 0 a.e.
Then F is nondecreasing on'IO.

In 1959, Tolstoff 7597 obtained the following improvement
of this theorem:

-

Theorsm _Tolstoff]. Let F satis

Fy

v the following conditions

.

on I,:
9
(i) F is approximatelv continuous.

(ii) F!

(4]

xists (finite or infinite) except perhaps
on a denumerable set.
(iii F'!' > 0 a.e.
(i11) Fyo >
Then F is continuous and nondecresasing on IO'

Another generalization of the Goldowski-Tonelli theorem

was obtained by Zahorski C76- in 1950.

~)
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Theorem clahorskxi.. Let F satisfy the following
conditions on IO'
(i) F nas the Darboux property.

i) F' exists (finite or infinite) except perhaps on

Y
[y

a denumerapole set.
(iii) F' > 0 a.e.

Then F is continuous and nondecreasing on IO'

It is now natural to ask the question: ''Can one =take
the weaker of each pair of hypotheses in the last two
theorems, and stiil infer monotonicity orf F?2"

This question has a negative answer [5§27, but if cne
assumes also that F is in the first class of éaire, the
question has a positive answer. (Observe that the avpotheses
of Zahorski's theorem imply F is in the first class of Baire.)

The following theorem was established in Z32{3s3C.

Theorem. Let F satisfy the following conditions on Iy
(i) F has the Darboux property and is in the first

lass of Baire.

0

(ii) Fép exists {(finizes or infinite) 2=xcept, perhaps,

on a denumerable set.

Then F is continuous and nondecrsasing in IO'

Lat us focus, for a moment, on %the structure of the

four theorems we stated and con tae kinds of zenerali:zation



frequently in the recent literature.

Condition (i) is a regularity condition. One can
replace it with some other such condition, (e.g., symmetric
continuity, preponderant continuity, qualitative continuity,
etc.). It is then natural to.deal with an appropriate
generalized derivative (e.g. the symmetric derivative,
preponderant derivative or qualitative derivative). Now,
in each of our theorems the exceptional set of generali:ze
nondifferentiability was taken to be at most denumerable,
and the set on which the generalized derivative was not
known to be ncnnegative was taken to be a null set. And
this is typical of many such theorems. What other possi-
bilities are thers for these exceptional sets? The negative
of the Cantor function shows that care must be taken in
attempting to replace the denumerable exceptional sets in
condition (ii) by sets in some g-ideal including nondenumer-
able sets, and it is clear that a g-ideal containing sets
of positive measure would very likely not work as excsptional
sets for condition (iii). Roughly speaking, the denumera-
bility of the exceptional sets in (ii) may stem £from the
principle that denumerable sets cannot influence growth
pattarns of continuous functions very much. ({We state this
principle vaguely because we know of no precise formulation
of it - but denumerably many exceptions are often allowed
in the hypotheses of theorems invoiving growth of continuous

functions.) While the hypotheses of our four theorems did

~N
[32]



not always require continuity, the General Reducction
Theorem of Section 2 below indicatss that various cther

hypotheses can be rsduced to the continuous case. On tae

3

other hand, the set on which generali:zed derivative Zails
to exist is usually a Borel set. Nondenumerable 3orei
sets always contain perfect sets of measures zero. Usually
a Cantor-like function can then be constructad as a

counterexample.

Sy

g

Regarding the exceptional sets in {iii) being aull sets,
we remark that if a set E has positive measure, thers will
always be a differsntiable function r such that
P # (F' <« 0 <C E. Thus, the null sets form a naztural
g-ideal of exceptional sets ia (iii).

But there are other possibilities obtained by controlling
the growth of the function on the exceptional sets. For

example, here is a theorsm with a very simple proof.

Theorem . Let F satisfy the folliowing conditions in

(i) F is continuous.

(ii) F(A) has measure z=r0, where A = (%' does not exist).

fiii) F(B) has measure zero, where 3 = (F' < 0>,

Then F is nondecreasing.

.

. . .
tat2c 1n taat

This theorem differs Zrom the others we

w
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we are concerned with the images of the exceptiona

rather tha

=}

the sets themselves. ' Many monotonicity cheorsams
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sort, but thevy usually are stated in tsras



of the images of the sets where some extreme derivate
(rather than the derivative) is not positive. For

example, if the set on which D'F < 0 maps onto a set with
empty interior and F is continuous, then F is nondecreasing.
(The same simple proof works.) We cannot change the
hypothesis to [D*F < 0} has measure zero, however, (consider
the negative of the Cantor function), but we would be able
to make this change if we also assumed that D'F is in the
first class of Baire [34]. We mentioned this now in
anticipation of one of the open problems which we discuss

in Chapter V.

We close this section by mentioning that a number of
mbnotonicity theorems involving the growth of a function on
an exceptional set can be found in Saks [662, Leonard [347 and
Redheffer 7643. A relatively up-to-date bibliography of
papers dealing with monotonicity theorems iavolving a

- - -

variety of generalized derivatives can be found in [73.

2. Reduction Theorems and Abstract Theorems.

The theorems in Section 1 wers all specific in nature:
each involved a specific {perhaps generalized) derivative.
We chose the few theorems that we did because they offered
scme sort of perspective on the way in which increasingly

istorically. 3But the

o

more general theorsms developed
large number of chcices one has for regularity conditions,
for generalized derivatives and for exceptional small sets

makes it clear that the total number of ''reasonable"



monotonicity ccnjectures is enormous. How can one trans-
roerm the resulting chaos into order? T, phrased
differently, how can one get a hold on the distinction
between a theorem and a plausible, but false, conjecture?
These questions are, of course, difficult to answer -
they are not even well posed. But sQme rscent results are
of such a nature as to make it possible to obtain a whole

family of theorems from a single theorem. The four results

we shall discuss are of two types: ''rsduction'' theorsms

which alliow one to obtain monotonicity theorems about a

large class of functions from analogous theorems zbout 2a
smaller class; and 'absctract' theorems, in which the
definition of the genérali:e derivative 1s abstract rather
than specific. (Our discussion will clarify what this

means.) For example, an immediats-application of our first
reduction theorem gives Zahorski's theorem Zrom the Golidowski-
Tonelli theorem and an immediate application of ocur first
abstract theorem is a monotonicity theoresm in terms a3
axtreme approximate derived numoerts.

We mention that our statsment abcut chaos 2nd order

is a serious one. So many monotonicity theorems have been

oroved in the last few vears that it is reaily difficult o
sort them out. And a catalogue of theorems and count=art-
examples would have only limited value. What is needed are

theorem from a

m

r2al insights about what distinguishes

false conjecture.



Let us turn to our first reduction theorem. Roughly
speaking, it asserts that any monotonicity theorem valid
for the class of continuous functions of bounded variation
is also valid for the (much) larger class of Darboux
functions in Baire class 1 (aﬁ@l). (A mild side condition
is necessary here.) Thus, if one knows a function is in
4681 and satisfies some conditions (probably involving
some generalized derivative being nonnegative on some large
set) and wonders whether this condition implies that the
function is increasing, we can (roughly speaking) assume the
function is continuous and even of bounded variation and
check whether the condition suffices under that stronger
hypothesis.

N¥e need a bit of notation. Let IO be a fixed interval
and ®Pa family of functions ﬁefined on IO. For each interval

ICI let 2(I) denote the restrictions of the functions

0’
in @ to the interval I. Let 7] dencte the familyv of non-
decreasing functions on IO’ let ¥ denote the family of
functions of bounded variation on IO and let ¥ denote the

functions which are V3G on IO' As usual, C will denote the

continuous functicns on IO.

General Reduction Theorem 7385, If,

(i) CVYP(I)c NI

H,
(@)
o}

every [ C IO and

(i1) 8 2(1) < H(I) for every I € I,, then

O’

[ 1)
(o]
i

géusl@(I)CCﬂ(I) avery IC-IO.



(given by the family &), is sufficiently strong to

guarantse that a continuous Zfunction of bounded variaticon
possessing that property must be nondecreasing, and that a
Darboux-Baire 1 function possessing that provercty is V3G,

then the property is also sufficisntly strong to imply that
each function in AEH that possesses the property is continuous
and nondecreasing. The theorem does not mention derivatives

or generalized derivatives axplicitly, but a typical such

ot

property will usually involve some generalizad derivative.

For example, if & denotes the family of Zunctions F such
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that F' exist
denumerable set, and F' > 0 a.e., then our Reduction Theorem
allows us to‘infe Zanorski's <theorem from the Goldowski-
Tonelli theorem {In this case C’c;'d.' This is often :Irue
when the class @ is given in terms of gsneralizad derivatives.)
Using the Reduction Theorsm, Leonard ~ 14
a number of monotonicity theorems invelving various sorts of
generalized derivatives, (2.g., oreponderant derivativas,
qualitative derivatives, unilateral derivatives, and Jini
derivatives). In addition, 3Bullen and Mukhopadhyay 71:3]
and O'Malley {37 have applied the theorem to obtain mono-

ria in terms oI ?Peano derivaczives and selactivs

w

tonicity crict
derivatives respectively. Some of these, as well as other
applications of the Reducticn Theorem ars discussed in 7_.

A more specific reduction theorem was rscently proved

by 0'Malley and Weil -337.



deals only with the approximate derivative.

Specific Reduction Theorem. If

AP(I)C 7N(I) for all I CIO
then )
Aap@(I)cTL(I) for all I C I0 .

Thus, a property sufficiently strong to imply mono-

tonicity for differentiable functions is also sufficiently
strong to imply monotonicity for approximately differentiable
functions. It is easy to verify that if the condition is
given in terms of properties of the ordinary derivative,
one could also state it in terms of approximate derivatives.
For example, the fact that a differentiable function with‘
a nonnegative derivative a.e. .is nondecreasing, implies
that the same conclusion is valid for an approximately
differentiable function whose approximate derivative is
nonnegative a.e.

The O'Malley-Weil theorem requires everywhers
differentiability. It would be of interest to kno# how much
weakening of that requirement is possible. It would also
be of interest to know what other generalized derivatives
admit similér reduction theorems. Perhaps there exists a

very general reduction theorem which could be applied to a

rh

number of generalized derivatives. If so, a great deal o

order could be restored to the present chaotic state of

affairs.

32



Let us turn now to 3 discussion of what we called
abstract monotonicity theorems. The generalized derivatives

which appear in the literature usually involve some sort cof
difference quotient approaching a limit in some sense. One
such generalized derivative differs from‘another in the
manner in which x is to approach X in the calculations of
the limit. Thus, the approximate derivative requires approach
through a set having density 1 at Xy the preponderant
derivative weakens that requirement to 2 ''prepondsrance of
density" and che qualitative derivative replaces the notion
of density with that of category.

Two recently-studied notions of derivative indicare
the method of approach in more general terms. O0O'Malley Z357C
defined a notion of selective derivative as follows: From
each interval [ € R, select a point PI from the incterior of I.
The collection of points obtained in this way is callad a
selsction 5. For Xq € R and a given selsction S, we define

the selective derivative sF' of the function F at Xy 25

g(p_ N-F(x)
) ( 1y, Xg*h (xq)
sF'(x) = lim 5 =
h-0 =x0,xo hl 0
if this limit =xists. {The notation :xo,xo+h] denotes the

interval determined by the points X5 and xo*h even 1Z n < 0.)

-

Using the General Reduction Theorem, O'Mallsvy obtained

33



O'Malley's Abstract Monotonicitvy Theorem. Let S be

a selection and let F satisfy the following conditions
on IO:
(i) F G[JBI
(ii) sF' exists except, perhaps, on some denumerable set
(iii) sF' > 0 a.e.

Then F is continuous and nondecreasing on IO.

We consider O'Mallevy's theorem an abstract one because
judicious choices of selections can give rise to monotonicity
theorems involving specific generalized derivatives. For
example, if F has an approximate derivative (possibly
infinite) at each point of IO’ then there is a selection S
such that sF' = Féo cn IO. Thus each approximate derivative
can be realized as a selective derivative. Thus, we can
infer from O'Malley's theorem that an approximately differenti-
able function whose approximate derivative is nonnegative a.e.
must be continuous and nondecreasing. This result has been
known for some time, of course, but another of Q'Malley's
monotonicity theorems nas as an‘immediate corollary a mono-

tonicity theorem in terms of extreme approximate derivates

F
I3

which was new at the time: If F is measurable, —ép >0 a.e.

-
i

and Eép > - = everywhere, then F is nondecreasing [57C.
It is now natural to ask which of the other generali:zed
derivatives can be realized as selective derivatives (even

almost everywhere). Positive results in this direction could

W
=



also lead

.

lead to new monotonicity theorems, and coul
to 3 better understanding of wnhat makes monotonicity
theorems work.

We discuss very briefly another abstract monotoni-
city theorem due to Mastalerz-Wawrzvnczak [30]. Here
one assigns to each x € IO a family T(x) of subsets of

[, meeting certain natural conditions. Each set in

0
T(x) is called a T-neighborhood of x. The notion of
a T-limit of a function F at a point x is also delined

in a2 natural manner, as is the T-derivative, F.. IZ,

for example, T({x) is the family of sets containing x
for which x is a density point, -then FL(x) = F
The main theorem asserts that if F and T satisfy cerctain

conditions and F; > 0 a.e. on I,, then F is nondecreasing

o

and continuous on IO' A special case of this absctrac:
theorem is Zahorski's theorem of Section 1.

e t! < i gossibly be useful £ btainirs
The theorem could geo bly be us 1 Zor obtaining

certain kinds of monotonicity theorsms. 3Such theorems

clusion involves not only the monotonicitv and conziauity

of the function, but also that the function be &iffsrantiab

sxcept, perhaps, on 2 denumerable set. Note, however,

\

v
e taeo

ems we discussed in

oy

that this is also true o0f =t

-

Section 1, because a3 monotonic function is diffsrentiabls

at each point of approximate differentiabilsy. And svan

3

when differentiability sxcept, perhaps, on a2 denumersdle

set, 1s not a conclusicn 9f 2 monctenicity theorsm,



continuity usually is. This is so because the regularity
part of the hypothéses of manv monotonicity theorems
includes the Darboux property, and a monotonic Darboux
function must be continuous. Theorems for which the con-
clusion is simply that the function be monotonic do exist,
of course. Some such theorems actually provide

characterizations of monotonic functions. See, for example,

Saks [66] for such characterizations with Zygmund's con-

lim F(x+h) for all x) for

-

regularity and Lee [453) with the regularity conditicn

dition (lim, F{x-h) ¢ F(x) <

18 S d

involving a notion of semi-absolute continuity.
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The first example of a continuous acwhersa d
function is widely assumed to be due to Weisrstrass (about
1875), although there appears to de some evidencs that 3cl:zano
had constructed such a function somewhat earlier. It was
not until 1331 that the existences of such function was proved

bv use of the Baire Catsgory theorsm is2e 3anach {3

Mazurkiewicz £5347) Shortly thereastar,Marcinkiswicz 447
and Jarnik [363{373{33] used the 3airs Catagory theorsm 0

-

show that tyni
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continuous Zunctions e2xhibit a great deal

9f pathology with respect to differentiation propertiss.

{Hers, and throughout this chapter, we shall uss the term
""typical continuous function” to mean tha: the sat of Sunctions

L)

oit the oroperty we are discussing is residual in
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the compiete mezric.spacs C = C[9,13.) More recentlvy, other
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authors have obtained a number of similar resulcs, 2ach showing

that the tvypical conti
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with respect to differentiation and/or zsneralized differsnti-
ation.

In Section 1, we discuss some of the pathological henavior

‘U

of typical contiauous Zfunc:ions. Then, ia Section 2, we
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ent a result which indicatass that the behavior, wnils

w

pathological, is also very "'regular’” in nacture.

1. Pathologyv.
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Our starting point is the

tvpical continucus Zuaction. Mow, To sav that T 1s nacwnere



differentiable is to say that at no point does F have a

finite (two-sided) derivative.

derivatives to be infinite?

be one-sided?

what happens if we allow

Or if we allow derivatives to

An inspection of the standard category

argument shows that one can, by perhaps modifying the

arguments a bit,

allow either of these relaxations in the

definition of the derivative and still conclude that a

typical continuous function is nowhere differentiable (in

the reslaxed sense).

simultaneously without losing the result!

But one cannct allow both relaxations

In fact, Saks

{651 showed that a typical continuous function has an

infinite unilater

It was not until

ftunction with no

f

t any
function in

What
with some
where
functions?

generalized derivative

shown that a typi

mately differs

analogous result

direction,

571 proved that

~—

able

generalized derivative?
(generaliized) differentiability of

The answer
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approximate symmetric differentiation.

Marcinkiewicz

almost everywhere in

al derivative on a nondenumerable set.
1925 that the =xistence of a continuous
finite or infinite unilateral derivative

proved. Besicovich constructed such a

nappens if one replaces the ordinary derivative

Does one still get

g no-

typical contiauous
depends, of course, on the specific
one considers. Thus, Jarnik
function is nowhere
Xcstrvko [117 has obtéined the
for symmetric differentiation, and Evans
In the
Schelz

rs°3 and

e .
e differenci-
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tvpical continuous



discuss Schol:z' result, the s
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a function for which
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as a point of density and F i
1= T =
. x+h)-F(x
1im £C 4% )
h=J
néc
approximate derivative of F at the point x. If the limit

exists for some x. This ilimit is then the

[}

roximately diffe

.

exists for almost svery x, then F is ap

‘g

8}

2nt-

able a.e. in some strong sense because the same set E is

e

involved for a.2. x.

Let us_weaken the requirsment by asking only that the

upper density of E at the origin is i1, i.e., that

Tim h "a{(EN2,21) = L.
h=0

F(x+h)-F(x)
h

If lim
h-0
heE

E-differentiabpls at x. Now the :tvpical continuous F is

2xists for some Xx, we say ~© is

be a-set I with unit upper dansity a:t the ori:

f is E-differentiable 2.2. Thers is5 2 proolem hers, aswever
How do we Xncw that diffsrsnt choices ¢f Z wen't lz2zd o
antirely different E-derivatives? We don':t! A typical 7

-

can have many differesnt E-derivatives. DYMNot onlv ‘“'can' -

it does! How manv? Scholz proved the following ramarXable

Je a typical continucus function and

1l

Theorem. Lat

let £ be an arbictrary measurabls Zunction. Then thers

exists a set I having unit upper density at the origin such
that £ is the E-derivative of 7 for almos:t everv x.



Thus, not only is a tyéical continuous function a.=2.
differentiable in Scholz' sense, but we are free to pick
in advance what its derivative is to be!

By taking constant values for £ in Scholz' theorenm,
one sees immediately that a typical continuous F has every
real number as an essential derived number a.e. This
is Jarnik's theorem [37] Jarnik also proved in [36] that
every extended real number is an ordinarvy derived number
of F at everv point. These results give §ohe sort of indi-
cation of how badly nondifferentiable a typical continuous

function is.

2. Regularity.

The results of Scholz and Jarnik that we mentioned at
the end cf Section 1 suggest a great deal of pathology in
- the differentiability structure of typical continuous functions.
But they also might suggest a rtegularity of sorts: two
typical continuous functions behave very much alike. To
obtain a clearer picture of this regularity, we shall discuss
the manner in which the graphs of typical continuous functions
intersect straight lines.

We mentioned in Chapter I that Gillis constructed a con-
tinuous function whose graph intersects each horizontal line

in a perfect set. He claimed sven more; namelv that each

t
o

nonvertical line intersacts the graph in a perfect set. This

w
w

D

latter claim was incorrect, however. [n fact, Garg has

un



continuous functicn must
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observed tha
intersect many limes in sets containing isolated points.
Suppose, for the moment, that Gillis' claim nad been
correct. Then the graph of Gillis' function would pro-
vide a '"'clear picture’" of a continuous function for which
each real number is a (bilateral) derived anumber at each
point of (0,1).

Now Gillis' claim was not correct, bdut theres are
ike

does! To formulate this typical behavicr, we nesd 3 bit
of terminology. Let 9 be a direction, let F 5e in C

and let La denotes the familv orf lines in the direction 9
which intersect the grapn of F. We say that F behaves
normallv in the direction 9 if the graph of intersects

{i1) the two 2xtreme lines of La in singletons,

(ii) the lines of somé denumerable ''densa'" subset
of L9 in the union of a nowhers danse per-
fect set with a singleton,

(iii) all other lines of L.a in a nowhers dense
perfect set.

Theorem [16]. The typical continuous function behaves
normally except in a denumerabls dense set of directions.
In each exceptional dirsction, the behavior is normal

except for a singls line for which the intsrsection con-



This theorem lends substance to the statement
'""typical functions look alike."

Because of the existence of isolated points in the
intersections of the graph of F with certain lines, one
cannot ''see" the nondifferentiability of F as easily as
one could from Gillis' claimed function. (These isolated
points arise from relative strict extrema of functions
of the form F(x) - ¥x). But much of the nondifferentiability
structure appéars plausible from the picture, and, in
fact, much of it follows from some of the preliminary
theorems needed to prove the stated theorem. It would be
of interest to obtain an improvement to the stated theorem -
one from which many of the results we discussed in Section 1
could be visualized.

Finally, we mention that every continuous function F
possesses a certain type of "internal'" differentiability
structure [14]. Each nonempty perfect set P contains a non-

v perfect subset Q such that FiQ is differentiable.

[
ct

mp

urthermore for x cutside some denumerable set, there exists

g}

perfect set P containing x as a two-sided limit point

)

such that F!P is differentiable.

"1y

Let us call a set A a differentiable road for

.

provided F!\ is differentiable. The statements of the pre-

ceding paragraph indicate something about the kinds of

differentiable roads possessed by all continuous functions.

<

In the other direction, the tvpical continuous function



l

possessas no differentiable road of positive measurs and
no dense differentiable road. This last fact can bHe

contrastaed with a theorem of Blumberg's which asserts that
averv function f possesses a dense continuity road (i.s.
——

1 dense set D such that F[D is continuous).

There is a great deal known about nowhere differentiabls

functions - both tvypical and nontypical - that we have not

+ &
[

been apls to discuss in this short chaptar. We retfsr the

interestaed readsr o a2 number orf recsat papers on tha sub-

(g]
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ject by X. M. Garz.
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Consider the function F(x) = x“sin % (E(0) = 90)
with derivative F'(x) = -cos % + 2x sin % (F'(0) = 0).

Simple considerations of the expression for F' show that

|

the function f(x) = cos (£(0) = 0) must be a derivative.

~

But one can also show that the function fz f-£f is not

a derivative. This example shows that the product of two
derivatives need not itself be a derivative. Two queétions
now arise:

(1 Under what circumstances is the product of two

~

(or more) derivatives itself a derivative? and

(ii) How can one characterize the class of functions
expressible as a product of two (or of n) derivatives?

The first of these questions has been studied sxten-
sivelv and the present state of knowledge has been summari:ced

and discussed bv Fleissner in the rscent survey [243. We

D

nave nothing to add to that survey.

The second question was posed by Solomon Marcus in 1977.
While little work has been done on that question (and none
of it published), it offers a number of interesting possi-

bilities and it raises the larger question of characterizing

rt

Alg &', the algebra of functions generated by a'.

ct

is Xnown regarding the second question. My two
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colleagues S. Agronsky and R. 3iskner and I observed that
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characteristic function of a nonempty proper 9open subset

R can never e representad as a product of znv number
of derivatives. These rtesults have deen extended in a
aumber of ways by J. Mafik, who also showed the sxistsnce
of functions representable as a product of n+l (but not
of n) derivatives (for each n = 2,3,...). His work in this
connecticn leads to the following very instructive example.

~

Lat G = ’~{0} and let f be a2 function continuous on 5 such
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< £ < 2 on G and such that the sets !
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have density 1/2 at 0. For each »€ e

ct

on G and £_(0) = x. Then

. - . - 3
(i) f£,€ a' if and only if a = 3,

(ii) £ is a product of no more than n derivatives

2
- . . 1/n
if and only if = > ((1+2 / Y/ 2).
- - . ma= (7 .71/”-\/7\“* Aecraas - =y -t
Cne can show that (({1+2 }/2) "} decresases to /2. Thus,

~

or a2 <72, f; cannot be represented as a finite product of

(5}

derivatives. As we lower the value of
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Let us complicate things a 2it. What functions I can

[N}

be expressed in the form = g' + h'k'

complets answer is known to this question, but scme
interesting results have been obtained by Ma¥ik. For

exampla, if £ is locally bounded and for sach x £ R thers

exists a function P, centinuous on R - ix! such that
lim £(¢) - @k(t) = 0, then £ can be re2presentad in that Zora.
t+X ’



In particular, each function possessing finite unilateral

limits at each point admits the representation. The

same is valid for each function of the formZ;:KxE", whers
A

the sets EK are closed pairwise disjoint sets and the

numbers «, are nonnegative withXe:K < =, The function

N

(0 if x is irrational
£(x) =+ 1 , furnishes an example.
3 if x = % in lowest terms
N

a function f admits the representation £ = g' + h'k'

i
Fh

ct

it must, of course, be in 31. What else must be true? The

t

O

answer to that question does not seem to be knocwn. In fa
we have no sxample of a Baire 1 function not representable
in that form to offer! If there are such functions, then it
becomes natural to ask whether 61 = Alg Ao'. TIf the answer

is affirmative, then one <can 2stablish without difficulty

that th t be a positive integer N such that sach £<13

(4]
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ssed in terms of sums and products of no more

w

can be expr
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than N derivatives. If the answer is negative, then there

are many gquestions to ask. We mention that sach £ & 1is
S

expressible as a uniform limit of functions in Alg a'. In

fact each f ¢ ﬂl can be =xpressed as a uniform limit of

-
)

functions of the form g' + ak' (g,h,x € 1). Why of that

particular form? We shall answer that question, but we pre-

rr

class of functions f representable in the form f = g' + hk

L 9

g,h,k € 1), which seems to be of some interest. This class

is discussed in [1! and denoted thers by [.'].

-
[}

fer to postpone the answer until we have briefly discussed the



Suppose we kaow g, h and k are differentizble on R
and £ = g' + Ak'. what does that sav apou: £? [ X' is

iy

summable then the product ak', and therefore I, must de a

re,

derivative. But, in general, hk' £ a', so £ < a'. VNone-
theless, £ must possess some derivative-like structure.
For example, there must exist a dense open set T and

functions F&4a and G differentiable on T such that F' = £

w

on R\T and G' = £ en T. The 2xistencs of such

e in [A'3. Several other
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characterizations of [a'] can be found in 1

Cne of the features of the class fa'?! which mav maks

functions related to diffsrentiation theory. Thus, esach

approximately continuous function, each approximats derivative,
and each function in O'Malley's class 87 is in
approximate derivative heavy use is made cf a propertvy

ocbtained by 0O'Malley [387.

rh

Now the fact that 3% C({:'] implies immediatelv that 2

3aire 1 function with finite vange is in

that B is contained in the uniform closura of [:i'7.

-

C {A'] may be userful to an understandia

The fact that Aép
of why an approximacts derivative possesses 50 many Jropertiss

~
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S = ! Wt e £ = - ~hW = -3 3
T =g + ax’. Lan we, IOoT e.ample, T2DTr2senc 23aca TuUnCIlon in
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£a'] as hk' with n,kx T a4? The answer is negativa. [In fact
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only one point of discontinuity cannot alwavs Sz ax:
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in that form, or even as a product of two or more derivatives.
The central problem is probably that of characterizing

Alg a'. But there are also many questions, some of which

may be rather difficult, concerning the structures of functions

which admit certain specific representations in terms of

derivatives. Solutions to some of these problems could possi-

bly require a deeper undersfanding of the structure of deri-

vatives than we currently have. If so, the methods of a

solution might be more important than the answers themselves.

(g
[§ 9]



—
~»

O
48]
n
Z
'y
-0
(@]
w
—
om
=
wn

We have already mentioned a number of open problems

in differentiation theory. We now turn

to

of three additional problems. (We shall not discu

important problem of characterizing derivatives because

that problem has been discussed extensively elsewhere

1. Derivatives Versus Approximates Derivatives.

Although the notion orf approximats deriv
g2neral than that of {(crdinary) deri ve

(8%
4]
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ivative possesse

w

sach of the many progerties

L]
=3
Fey
'
(o]
ot

b}

o

(since 1960) to be valid for approximate derivatives.

Dy

timing is not surprising: the Zahorski
was the starting poiat Zor many ot th

derivatives, and the Gofiman-Neugsbauer

many of the properti

valid for ordinary derivatives has

also
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Sap
T, Denjoy [22] Marcus [483
m3 Zahorski [76] Weil [72]
3 7 %
14 Zahorski (76]
P Weil [73] : Weil [73]
ma Preiss [631%% Preiss [63]
7n§ Preiss [631*%** Preiss [63]
7n§ Preiss [63] Preiss [631
*Zahorski showed that ba'C m,. Since bgé = ba', the

corresponding result bgé cm, is trivially valid.

**and *** These results involve derivatives and approxi-
mate derivatives which are allowed to be infinitse.
Preiss characterized the associated sets £for such
functions and found no distinction between the classes
of derivatives and approximate derivatives with respect
to associated sets.

In addition, recent investigations {271, [59], have

~

shown that much of the behavior of an approximate derivative
can pe accounted for on the set cn wihich F;o = F'.
Some of the similarities in behavior can be explained

by the fact that an approximate derivative is also a

selective derivative (see Chapter II), and some can be

explained by the representation F}D = g' + hk' (see Chapter 1IV).
But there still are two problems wnhich we believe should be

addressed:

1) Find a more satisfying explanartion for the
similarities, ideally one which could apply equally well to
2xplain why some other generali:zed derivatives behaves so

much like ordinary derivatives while some others do not.
33
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also a property cof apoproximate derivatives.

\

In connection with 2), we mention that the known
differences between approximate derivatives and ordinary

derivatives seem to involve the primitives, or, what amounts

s

to the same thing, integration. For example, if £ = Eén

then F need not be continuous and f need not be integrabl

in the Denjoy sense.

s A
P

2. The Baire (Class of Extreme Derivates of Continuous Func

ct

-Suppose a continucus funciidn F has nonnegative exiren

]

- -

derivataes a.2. Must F be no

3

decreasing? We saw in Chapts

8]

- -

that the negative of the Cantor function provides a negativs
answer to this question, but we also mentioned that if we nad
also required that D F £ B,, we would have obtained an

affirmative answer to the guestion. This situation

r
w
ot
<
J
' 4
(g]
fo
-

in the sense that the assumption D F & ﬁl cften allows
desirable conclusions wnich are not valid without thats
assumption. For exampis, Mukhooadaravy [36] has snown that
the Dini derivates of a continuous function possess scme

Zahorski-iike properties under certain conditions including

membership in ;. In particular

- - .
(iv) -= < D F < = excest perhaps for some denumeradble set

o o~ - . ~ . . .
then D F&€mM,. It follows readily Zfrom this result that the

in Zahorski's class 77,.



The aforementioned theorems, and others like them,
suggest the problem of determining conditions under which
the Dini derivates of a continuous function are in L%.

This problem seems to have been first posed by Solomon Marcus
in 1960 ([47]. Let's take a moment to discuss what is known.

a) If D'F € ﬁﬁ, then D'F must be continuous on a
residual set. This implies that F is differentiable cn a
residual set. The converses are not valid, as the negative
of the Cantor function shows.

b) The Dini derivates of a continuous function are
always in i%, although they can be very badly behaved. The
function F- - G of Chapter I, Section 1b, satisfies a Lipschitz
condition but each of its Dini derivates takes on every value
between -1 and +1 continuum many times on every subinterval
of (0,1). It is possible to construct an absolutely continuous
function F such that D'F takes each rational value on a
set having positive measure in each interval and each
irrational value on a null set having continuum many po0ints

+_ o~

in each interval [9]. Thus, the fact that D F& Z, is not

. - . . +_
very nelprful in taming D F,

to oz ;
c) We cannot conclude that D F & £, from the knowledge

].

2

that some other Dini derivate is in aa

[han ]

4

A=

d) Marcus ([47] proved that a necessarv condition for all
Dini derivates to be in %3, is that the set of points of non-
differentiability be the union of a null set of the first

category with a nowhere dense set. Leonard [447 showed that

U
~N)



s that tais set be a denumerabla

P

a sufficient condition

2) R. Keston has given examples of continuous functions
F and G such that D'F &M@, D'GE B but D' (F+G)E 2,. (He
did not publish this resulrct.)

f) The Dini derivates of a continuous function F are
semi-Baire 1. Thus, for example ‘DF < ¢} £F_ for each ¢ £ R,
out (D'F > ¢} need not be.

g) Results analogous to those in £) for functicns F in

Bairs class = have ra2cantlv bdeen advanced bdv Misik [5337.
' ) . v . . - . -
Hajek [34] has shown that the 2xtreme bilatsral derivates of

an arbitrarv function ares in T,. (One can ask for conditions

under which these derivates are in 23 .)

-
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that conditions involving restricted differentiability zre of
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5. Approximate Continuity of Derivatives.

[t is easy to prove that the set of points of continuity
of a derivative must be a dense set of type G5. One can also
prove without much difficulty (7] that each such set must be
the set of continuity of some derivative.

We pose the analogous problem of characterizing the set
of points of approximate continuity of a derivative.

Not much is known about this set. The following remarks
may lend some perspective to the problem.

a) A derivative, being measurable, must be approximately
continuous a.e.

b) A derivative, being continuous on a residual set, must
also be approximately continuous on a residual set.

c) Thus, the set of points of approximate discontinuity
of a derivative must be a first-category null set. It seems
likely that each null set of type Fj is the set of poiants of
approximate discontinuity of some derivative.’

d) Let N be an arbitrary null set. hen X\ is approxi-
mately continuous exactly on ~N. (Thus, each null set is the
set of approximate discontinuity of some measurable function.)
Now the upper and lower essential boundaries of xy <oincide

ever

<

where, but does not agree with these boundaries cn N.

(\‘
situation cannot occur for a bounded derivative since

Thi

wi

pa'< m,. One might, therefore, be able to obtain a necessary

Hy

condition on the set of approximate continuity of a derivative
through the use of essential boundaries. If this condition
were also sufficient, we would very likely have a characteri-

cation valid for these functions whose values lie betweer

N
P
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ntial boundaries at each point; i.2.,

re,
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[h}

tZ: ess lim ©(x) < f{xo) < ess lim £(x): f£for all X -
X+ Xg X > X

There are certain related questions one can ask. For

example, the ''typical” bounded derivative is approximately

1

discontinuous on some dsnse set. {(More precisel oa'

<
-

| add
iy

is furnished with the sup norm, then {f £ ba': { is

approximately continuous on some intsrval: is a first cats-

ct

3ory subset of Ha'.) The proor of this statament is not

difficult £73. How much stronger 3 statement is possible?
Most likely, any pathology (with respect £c z2pproximate

derivative will be tvpical orf

L&)
w

continuity) possible o

bounded derivative

wvi

Ne menticn one more question becauss2 an aaswer o thi

[¥/]

juestion would have been useful on several sccasions.

Suppose £,z £ &', £ continuous =xactly con A and g approxima

oy

-~
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- .

continuous 2xactly on 3. If A <3, dces thers exist

=2

.<

such that n 1is continuous exactlv on A and approxinately con-

tinuous =xactly on 37

(72
(€])

‘\
Ly



1.

(=)
[§¥]

REFERENCES

S. Agronsky, R. Biskner, A. Bruckner and J. Ma¥ik,
Representations of functions by derivatives, to appear.

A. Baernstein and D. Waterman, Functions whose Fourier
series converge uniformly for every change of variable,
Indiana Univ. Math. J. 22 (1972), 569-576.

S. Banach, Uber die Baire'sche Kategorie gewisser
Funktionenmengen, Studia Math., 3 (1931), 174-179.

N. Bary, Memoire sur la representation finie des
fonctions continue, Math. Ann. 103 (1950), 185-243
and 598-653.

A. Besicevitch, Diskussion der stetigen Funktionen im
Zusammenhang mit der Frage uber ihre Differentierbarkeit,
Bull. Acad. Sci. de Russie, 19 (1925), 527-540.

J. Bla¥ek, E. Bordk and J. Maly, On Kopcke and Pompeiu
functions, Cas. pro pest. mat. 103 (1978), 3533-61.

A. Bruckner, Differentiation of Real Functions, Springer,
Berlin, 1978. :

, An affirmative answer to a problem of
zahorski and some consequences, Mich. Math. J., 13 (1966),
15-26.

, Some remarks on extreme derivates, Canadian
Math. Bull. 12 (1969), 335-3383.

, Density preserving homeomorphisms and a
theorem ot Maximoff, Quart. J. Math. Oxford 21 ({1979),
537-347.

, On transformations of derivatives, DProc.
Amer. Math. Scc., 48 (1975), 101-107.

, Inflexible derivatives, Quart. J. Math.
Oxtord, 29 (1978), 1-190.

, Differentiability a.e. and approximate
altferentiability a.e., Proc. Amer. Math. Soc., 66 (1977),

294-298.

A. Bruckner, J. Ceder and M. Weiss, On the differentiability

structure of real functions, Trans. Amer. Math. Soc.
142 (1969), 1-15.

A. Bruckner, R. Davies and C. Goffman, Transfornations
into 3aire 1 functions, Proc. Amer. Math. Soc., 67 (1977),
62-66.

in
(93]



(4

-

-

"~
[RS]

"~
(%]

A. Bruckner and X. Garg, The lsvel structure of a residual
set of continuous functions, Trans. Amer. Math. 3Soc.,

252 {1977), 3507-321.

A. Bruckner and C. Goffman, Differentiabilicv through
change of variables, Proc. Amer. Math. Soc. 81 (197¢),
235-241.

P. Bullen and S. Mukhopadhyay, On the Peano derivatives,
Canadian J. Math. XXV (1973), 127-149.

M. Chaika and D. Waterman, On the invariance of certain
classes of functions under composition. ?roc. Amer. Math.
Soc. 43 (1974), 345-348.

G. Choquet, Application des propriétds descritives de la
fonction contingent 3 la théoris des fonctions de variable
reelle et 3 la géometrie diffédrentiells des varidcsds
cartésiennes, J. Math. Pures Apol.,(19) 26 (1947), 1153-22%
A. Denjoy, Sur les foncticns deérivées sommables, 3ull. Soc.
Math. France, 43 {(1915), 151-243.

, Sur une propriété des fonctions dérivies,
znseignement Math., 18 (1914), 320-328.

M. Evans, On continuous functions and the anoroximate sym-
metric derivatives, Coll. Math. 31 (1974), 129-134.

- - -9»\ -

R. Fleissner, Multiplication zand the FundamentaT Theoren of

Calculus: A survev, Real Analysis Zxchange, 2 5), 7-3¢
R. Fleissner and J. Foran, A not2 on differentiable
functions, Proc. Amer. Math. Scc. 53 (1373), 3%5.

, Transiormations of diffsrenziabls functions,

Coll. Math., to appear

R. Fleissner and R. $'Mallev, Condizions 1 ving the sum-
mability orf approximate derivatives, to zppear.

J. Foran, Continuous Functions: A survey, Real Analvsis
Exchange, 2 (19377), 35-104.

, Changes of variabis whicn preserve almost
everywnere approximate differentiabilicy, to zppear.

J. Gillis, Note on a ecture of EZrdos, Quars. J. Math.
]

Oxford 10 (1939), 1

C. Goffman, Everywhere diffsresntiabl
density topology, Proc. Amer. Mat!

C. Goffman and C. Neugsbauer, Cn approximacts derivatives,
Proc. Amer. Math. Soc. 11 (1960), 962-369
57



(92)
(92]

40.

11.

C. Goffman and D. Waterman, A characterization of the
class of functions whose Fourier series converge for
every change of variable, J. London Math. Soc. 10
(1975), 69-74.

0. Hdjek, Note sur la mesurabilité B de la dérivée
sup€rieure, Fund. Math., 44 (1957), 238-240.

P. Hancock, Homeomorphic transformations of approximately
continuous functions into derivatives, doctoral disserta-
tion, UCSB, 1979. :

V. Jarnik, Uber die Differenzierbarkeit stetiger Funktionen,

Fund. Math. 21 (1933), 48-58.

, Sur les nombres derivées approximatifs, Fund.
Math. 27 (1934), 4-16.

: , Sur la dérivabilité des fonctions continues,
Spisy Privodov, Fak. Univ. Karlovy, 129 (1934), 3-9.

L. Xaplan and S. Slobodnik, Monotone transformations and
differential properties of functions, Mat. Zam. 22 (1977),
359-871. (In Russian.)

Y. Katznelson and K. Stromberg, Everywhere differentiable,
nowhere monotone functions, Amer. Math. Monthly 81 (1974),
549-354.

P. Xostrvko, On the svmmetric derivative, Coll. Math. 25
(1972), 265-267.

M. Laczkovich and G. Petruska, On the transformers of
derivatives, Fund. Math. 100 (1278), 179-199.

C. Lee, An analogue of the theorem of Hake-Alsxandroff-
Looman, Fund. Math. 100 (1978), 69-74,

J. Leonard, Some conditions implying the monotonicitvy of a
real function, Rev. Roum. Math. Pures Appl. 12 (1972),
757-780.

J. Lipindski, Mesure et dérivee, Colloq. Math., 3 (1961),
8§3-38.

J. Marcinkiewicz, Sur les nombres dérives, Fund. Math., 24
(1935), 304-308.

'S. Marcus, Sur certains prcblemes et théorémes concernant la

continuité et la dérivabilité des fonctions, Monat. Math.
(1960), 119-150.

n
(e8]



13.

19,

, On a thecren
derivatives, Monatsn. Maczh.

Jenjov and on approximats
(1062), 155-440. °

[e1Ne)
O H,

r

-
-

[}

s }
w wun

dont 1
e, Rend.

, Sur les da
ensemble :trontiere parctou
(2) 12 (13635), 1-3%6.

S
o
a
e

orment un
r

-
T

.
ta

M. Mastalerz-Wawrzynczak, Cn a certain condition of the
monotonicity of functions, Fuand. Math 97 (1977), 137-198.

I. Maximoff, On continuous transformation of some functions
into an ordinary derivative, Ann. Scuola Norm. Sup. Pisa.,
12 (1943), 147-160.

, Sur la transrormation continue de fonctions,
Bull. Soc. Zhvs. Math. Xazan, (3) 12 {1940), 9-41.
(Russian; French summary.)

, Sur la transformation continue de quelques
—r - .7 . ’; -
tonctions 2n derivaes exactes, 3ull. Soc. Phvs. Math.
Xazan, (3) 12 (i13490), 57-31i. (Russian; French summary.)

S. Ma: urk*ewl--, Sur lss fonctions non-derivablass, Studis
Math., 3 (1951), 92-94.

L. Misik, Halbborelsche Funktionen und EZxtreme Ableitungen
Math. Slov. 27 f19“", 109-421.

’
-

S. Mukhopadhyay, On Dini deriv
of Zahorski, Coll. Matzh. 23

derivatives, iactaMath. Acad. Sci.

, Decomposition of approximate darivatives,
Proc. Amer. Math. Soc. 59 (1378), 243-247.

R. C'Malley and C. Weil, The oscillatory benavior of certain
derivatives, Trans. Amer. Math. Soc., 234 (1977), 467-4381.

G. Petruska and M. Laczkovich, Baire 1 functions,
approximately continuous functions, and derivatives, Acta
Math. Acad. Sci. Hung., 23 (1974), 189-212.

D. Pompeiu, Sur les Zonctions dérivées, Math. Ann., 33 (1906),

326-352.

D. Preiss, Approximate Zerivatives and 3aire classes,
Czech. Mazh. J. 21 (1971), 573-38Z.
42

, Level sets of derivatives, to appear.

R. Redneffer, Increasing functicns, to appear.



68.

69.

S. Saks, On the functions of Besicovitch in the space of
continuous functions, Fund. Math., 19 (1932), 211-219.

, Theory of the integral, Monografie Mathe-
matyczne 7, Warszawa-Lwow, 1937.

J. Scholz, Essential derivations of functions in Cla,bl],
to appear.

T. Swiatkowski, On the conditions of monotonicity of
functions, Fund. Math., 39 (1966), 189-201.

G. Tolstoff, Sur quelques proprietes des fonctions
approximativement continues, Rec. Math. (Mat. Sbornik)
N.S., 5 (1959), 637-645.

, Parametricheskoe differentsirovaniei Uzkii

Integral venjoy, Math. Sbornik 53 (1961), 587-392.

D. Waterman, On functions of bounded deviation, Acta. Sci.
Math. 36 (1974), 259-263.

C. Weil, On properties of derivatives, Trans. Amer. Math.
Soc. 114 (1965), 363-576.

, A property for certain derivatives, Indiana
Univ. Math J. 25 (1973/74), 527-536.

, On nowhere monotone functions, Proc. Amer.
Math. Soc. 56 (1976), 3588-339.

W. Wilkosz, Some properties of derivative functions, rund.
Math., 2 (1921), 145-154.

Z. Zahorski, Sur la premiére dérivée, Trans. Math. Soc.,
69 (1350), 54 :

.
]

University of California
Santa Barbara

()]
Q



	Contents
	p. 9
	p. 10
	p. 11
	p. 12
	p. 13
	p. 14
	p. 15
	p. 16
	p. 17
	p. 18
	p. 19
	p. 20
	p. 21
	p. 22
	p. 23
	p. 24
	p. 25
	p. 26
	p. 27
	p. 28
	p. 29
	p. 30
	p. 31
	p. 32
	p. 33
	p. 34
	p. 35
	p. 36
	p. 37
	p. 38
	p. 39
	p. 40
	p. 41
	p. 42
	p. 43
	p. 44
	p. 45
	p. 46
	p. 47
	p. 48
	p. 49
	p. 50
	p. 51
	p. 52
	p. 53
	p. 54
	p. 55
	p. 56
	p. 57
	p. 58
	p. 59
	p. 60

	Issue Table of Contents
	Real Analysis Exchange, Vol. 5, No. 1 (1979-80) pp. 1-190
	Front Matter
	EDITORIAL MESSAGES [pp. 3-3]
	PURDUE UNIVERSITY CONFERENCE IN ANALYSIS [pp. 5-6]
	SUMMER SYMPOSIUM IN REAL ANALYSIS [pp. 7-8]
	TOPICAL SURVEY
	CURRENT TRENDS IN DIFFERENTIATION THEORY [pp. 9-60]

	RESEARCH ARTICLES
	Variations of Hardy's Inequality [pp. 61-81]
	A Generalization of Absolute Continuity [pp. 82-91]
	Maximoff's Theorem [pp. 92-104]

	INROADS
	CLASSICAL PARABOLIC CAPACITY AND QUASILINEAR PARABOLIC EQUATIONS [pp. 105-112]
	RECENT DEVELOPMENTS IN APPROXIMATE DIFFERENTIATION [pp. 113-118]
	How Small is a Curve? [pp. 119-123]
	SOME NEW INEQUALITIES IN COMPLEX ANALYSIS (AND WHAT THEY DO) [pp. 124-127]
	SOME EXTENSIONS OF THE GAMMA AND BETA FUNCTIONS [pp. 128-131]
	SOME PARTIAL DIFFERENTIAL EQUATIONS IN BANACH SPACES [pp. 132-135]
	A SURVEY OF MY JOINT WORK WITH CASPER GOFFMAN [pp. 136-139]
	Changes of Variable which Preserve Almost Everywhere Approximate Differentiability [pp. 140-142]
	Derivative Measures [pp. 143-144]
	NOWHERE MONOTONE FUNCTIONS AND A PROBLEM OF K. GARG [pp. 145-147]
	Generalized bounded variation - recent results and open questions [pp. 148-150]
	DISTRIBUTIONAL DERIVATIVES AND ABEL SUMMABILITY OF ULTRASPHERICAL EXPANSIONS [pp. 151-157]
	Having Small Selectors [pp. 158-163]
	CHARACTERIZING CLUSTER SETS OF REAL FUNCTIONS [pp. 164-179]
	A generalization of the total differential and of the Lipschitz condition [pp. 180-187]

	QUERIES
	QUERIES FROM THE TEXT [pp. 189-189]

	SUMMER SYMPOSIUM [pp. 190-190]



