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Deri#ates for Symmetric Functions

A real-valued function f defined on Io==[0, 1] is
said to be symmetric if for each xe Ig = (0, 1),
f(x+h) + f(x-h) - 2f(x) = o(1l) as h—-0. 1In [3],
Neugebader has studied the relation between continuity
and symmetry and discovered properties that symmetric
and continuous functions have in common. In parficular;
he has proved that if f is measurable and symmetric on |
o0 then {x: F(x) £E(x) or £7(x)#££Y(x) }is a set of

the first category. This is an extension of a theorem-

I

obtained by him [2]. The purpose for the paper [5] is
to prove that the sets {x: f;p(x)<:f+(x) or f;p(x)<:f'(x)}
and {x: £o(x) £ ¥ (x)} are of the first category if f is
measurable and symmetric. It follows easily from this

work that
T:Zp(x) s ‘f;p(x) = f;p(x) = FH(x) = T (x) = F3(x)

holds except possibly for a set of the first category.

This observation for continuous functions has been noted
s F+ =S

by Evans and Humke [1]. Here, fap(x), fap(x), fap(x),

£7(x), F'(x), £5(x) denote the various upper derivates

of £ at x. For these definitions we refer the reader
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to [6].

Theorem 1. The set {x: f;p(x) < ¥ (x) or

f;p(x)~< (%)} is a set of the first category.

Theorem 2. The set {x: T (x) # FH(x)} is of the

first category.

The proof for these theorems is more complicated
than the one used for continuous case in [4]. It is
heavily based on the fact that the set {x: xe Ig , £ is
continuous at x} has full measure on I° and its comple-
ment relative to I  is a set of the first category [3].
From Theorem 1, we conclude that {x: ?;p(x) £ fgp(x)} is
a set of the first catego:y.
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