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 Derivates for Symmetric Functions

 A real-valued function f defined on IQ= [0 , 1] is
 said to be symmetric if for each x e 1° = (0,1),

 f(x+h) + f(x-h) - 2f(x) = o(l) as h->0. In [3],

 Neugebauer has studied the relation between continuity

 and symmetry and discovered properties that symmetric

 and continuous functions have in common. In particular,

 he has proved that if f is measurable and symmetric on

 IQ, then {x: f~(x) £ f+(x) or f~(x)^f+(x) } is ą set of
 the first category. This is an extension of a theorem-

 obtained by him [2]. The purpose for the paper [5] is

 to prove that the sets {x: f~ (x)<f+(x) or f* (x)<f~(x)}
 GLjj gL]3

 and {x: fs(x) / f+(x) } are of the first category if f is

 measurable and symmetric. It follows easily from this

 work that

 iļp(x) * f 1VM = f¡pu) = r(x) = f-(x) = f3(X)

 holds except possibly for a set of the first category.

 This observation for continuous functions has been noted

 by Evans and Humke [1]. Here, f~p(x) , f+p(x), f|p(x),
 f~(x), f+(x), fs(x) denote the various upper derivates
 of f at x. For these definitions we refer the reader
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 to [6],

 Theorem 1. The set {x: f~p(x) < f+(x) or
 f^p(x) < f-(x) } is a set of the first category.

 Theorem 2. The set {x: f3(x) -, ¿ f+(x)} is of the

 first category.

 The proof for these theorems is more complicated

 than the one used for continuous case in [4] . It i3

 heavily based on the fact that the set {x: * f is

 continuous at x} has full measure on IQ and its comple-

 ment relative to IQ is a set of the first category [3].
 Prom Theorem 1, we conclude that (x: f~ (x) £ f* (x)} is

 cip gLJj

 a set of the first category.
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