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Classes of Continuous Real Functions

by
B. Koszela, T. Swiatkowski and W. Wilczynski

Suppose that T is a topology in [0,1] different
than the natural topology. Let C([0,1],T) and C([0,1])
denote the class of all real functions defined on [0,1]
which are continuous with respect to T and to the natural
topology, respectively (in both cases we assume that the
range of functions is endowed with the natural topology).

Sometimes it can happen that C([0,1],T) = C([0,1]).
For example this equality holds if T is a topology in
which for every Xs and every neighborhood U of X5 there
exists a number § > O such thgt.U n (xo-a,xo+6) n [(0,1]
is residual in (xo-s,xo+6) n [0,1] (the so-called qualita-
tive topology). '

Observe that if T is not stronger than the natural
topology (recall that this entails that these two topolo-
gles are different), then therg exists an open set A,
which does not belong to T and C([0,1],T) # c([0,1]).
Indeed, the function f(x) = x is not continuous with
respect to T. .

Hence, if we want to characterize all topologiles for
which the above equality holds, it is natural to suppose
that T is stronger than the natural topology. A similar
question.can be put in a more general setting, namely,.if

X is an arbitrary non-empty set, TO,T are two topologies
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on X and we consider only real functions with the range
endowed with the natural topology. However, we shall be
mainly interested with the case when T < T and (X,To)

is a compact space. Let C(X,T) and'C(X,To) denote respec-
tively the classes of all real T-continuous and
To-continuous functions defined on X. Also, we shall

use the terminology, for example, T--(or TO-) neighbor-
hood, T- (or T,-) accumulation point, T- (or T -) limit

to make a distinctioo between two topologies under

consideration.

This survey will consist of two parts. In the first
we shall discuss the general casey in the second we shall
preéent some results connected with the special case when
X =([0,1], T, - the natural topology. The topology ter-
minology used in this paper is consistent with that
found in Engelking [1].

1. Suppose that (X,To) is a compact space and that
T > T,. Obviously C(X,TO) c C(X,T). Also every function
f € C(X,T,) is bounded. Thus, if C(X,T,) = C(X,T),  then
every function £ € C(X,T) 1s bounded.

This necessary condition is also sufficient in the
case when (X,To) is a mefrizable space.

‘Indeed, suppose that f is a T-continuous function
which is not T -continuous. Let xb be a point of To-

discontinuity of f. Then there exists an €, > 0 such

that for every To-neighborhood U of X, there is a point
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X € U for which

|£(x) - £(x;)]| > e,

e £(x) - £(x,)
X) - X
£(x) = ———> &,
£5(x) = min { £1(x), 2[1+c2(x,xo)] }
and
. -Tr ’
f3(X) = max {fe(x)’ 2[l+g2(x,xo)]}

where ¢ denotes a metric yilelding the topology T.
Then f3 is a T-continuous function, |f3(x)| < g'for every

x € X and sup |£4(x)]| = & .
xeX 3 2

If we put now
£y(x) = te f3(x) = tan f3(x),
then we obtain a T-continuous function which is unbounded

- a contradiction.

We shall say that a topological space (X,T) is called
a ¥*-compact space 1if for an arbitrary pair of families of
sets {Fy} and {Gy}, where y = Voo which satisfy the
conditions:
o .
1 Fy is T-closed, Gy ig T-open for y = Yo

>5G, Do F AD,b

(o]
2 Yy. <y, <y,=7F
LR - R £ T SR P

lo) .
3 Fy#ﬁﬁGyforyzyo
the following condition is satisfied

%° N F_ =N G #£4
v2y, Y vy, Y
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It can be proved without special difficulty that
every real T-continuous function is bounded if and only
if the space (X,T) is *-compact (Kocela [2]). Indeed,
suppose that (X,T) is a *-compact space and f is a real
T-continuous unbounded function. Then the pair of
families of sets F, = {x: |£(x)| = ¥y} and
G, = [x= |£(x)| > ¥y} for y 2 O satisfies conditions

1°-3° and N Fy = N Gy = @ because of the finiteness
y2¥q NEN A
of £ - a contradiction.

Suppose now that (X,T) 1s not *-compact. Then there
exists a pair of sets {Fy}, {Gy}, ¥2¥os fulfilling 1°-3°

such that N Fy = N, Gy = g+~ Obviously we can assume
y2¥, NENSN
Gy = Fy = X. If we define the function f in the follow-
o o -
ing way:

£(x) = sup (y: xer} for x € X,

then it 1s easy to see that £ is unbounded and, after
a bit of reflection, that f is T-continuous.

From the above it follows immediately that if (X,T,)
is a compact metrizable space, then C(X,T) = C(X,T,) if
and only if (X,T) is *-compact. Also it is possible to
prove (Nonas [7]) that a metrizable space (X,T) is compact
if and only if it is *-compact.

So if (X,TO).is a compact metrizable space and
T o To, then the following conditions are equivalent:

(1) C(X,Tp) = C(X,T)

(11) c(X,T) < B(X),
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where B(X) denotes the class of all bounded functions
defined on X.

Simultaneously (ii) is equivalent to the *-compact-
ness of (X,T). One can ask whether the metrizability is
essential. The answer is included in the following
theorems (Nonas [T]).

If (X,T,) is a compact space (even countably compact
will suffice) and if there exists a point x, € X such
that X, is a To-accumulation point of X but X, is not a
To-accumulation point of any countable subset of X,
then there exists a topology T o To such that (X,T) is
*-compact and C(X,T,) # C(X,T). It suffices to take
for T the coarsest topology which contains both To and
{XO}. As the example of a compact topological space
(X,Té) in which there exists a point x  having the above
mentioned properties we can take a set of denumerable
ordinals together with the smallest nondehumerable
ordinal endowe& with the topology generated by sets of
the form {0} U {z: ¥y < 2 < X}, where y < x < Q.

The abecve theorem of Nonas shows that compactness
of (X,To) without metrizability is not sufficient for
the equivalence of conditions (i) and (ii) (or (i) and
*_compactness, of course) for some topology T o T,.

However, it is possible to weaken the assumption
concerning the metrizability. In [7] it is proved that

if (X,TO) is a compact space such that every one-point
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set in XiszaToeG set and if T is a topology finer than

)
T,, then the conditions (i) and (ii) are equivaleﬁt.

Moreover, it is sufficient to assume only pseudo-
compactness instead of compactness of (X,TO) (a topologi-
cal space (X,TO) is called pseudocompact if it is a Tycho-
noff space and every continuous real-valued function
defined on X is bounded, compare [1]). The proof is
essentially the same as in the case of metriéability.

The last theorem is stronger than the'previous,

because there exist compact spaces in which every one-

point set is of type G6 and which are not metrizable

(Urysohn [12], pp; 936-939).

On the other hand, it is possible that (X,T ) is
a compact space, T is some topoloéy such that T o TO
and (1) is equivalent to (ii), but there exists a point
X, € X which is nota.TO-G6 set. One can construct an
example in the following way (Nonas [T7]):

Let X be an.uncountable set and let X, € X. Let
E € T, 1f and only if E c X and x Z Eor EcX, x, € E
and card(X—E) <R . It is easy to see that (X,T,) is a
compact space and {xo} is hot a TO-G6 set. It is a
little more difficult is to show that the only topology
T finer than To for which (X,T) is *-compact is T, itself.
So (i).iS*obviously equivalent to (ii) for T=T, and we
are done.

From the above it follows that if (X,T_ ) is a compact

space, then the supposition that every one-point set is a
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TO-G6 set is sufficient, but not necessary for the

equivalence of (i) and (ii) for a topology T o T,-
However, if we assume that the topology TO is deter-

mined by order, then this supposition becomes necessary

and sufficient (Nonas [T7]).

Question 1. How can the class of compact spaces (X,Tq)
for which (i) i8 equivalent to (ii) be

characterized?

To show how close the notion of *-compactness is .
to notions of compactness, pseudocompactness and coun-
table compactness we shall quote several theorems in
which functionally T-open set means a set of the form
f-l(G), where f£ is a real T-continuous function defined
on X and G is open subset of the real line.

The *-compactness of the space (X,T) is equivalent
to each of the followlng conditions ([4]):

a. Every locally finite functionally T-open cover

of X 1s finite

b. For every decreasing sequence {Gn} of nonempty

functionally T-open subsets of X the intersection

of their T-closures is nonempty.

If we assume that (X,T) is a normal space, then

*-compactness’ is equivalent to countable compactness ([6]).

Here is another simple characterization of *-compact-

ness in terms of continuous images ([6]): a topological
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space (X,T) is *-compact if and only if for every topolo-
gical space (Y,Tl) and for every continuous transformation

£: XoY the space (f(X),T;|f(X)) is *-compact.

There is also a close connection between the ¥*-com-
pactness of the topological space (X,T) and the behaviﬁr
of seéuences of T-continuous real functions defined on X.
Namely, a topological space (X,T) 1is *-compact if and
only if every sequence {f,} of T-continuous real func-
tions defined on X &hich is locally uniformly conver-
gent on X to.a function £ converges to £ uniformly on
X ([5]1). Recall that the sequence {f } converges
locally uniformly to f if every point x_ € X has the
neighborhood U(xo) in which the convergence is uniform.

The notion of ¥*-compactness allows the possibility
of generalization of the claséical Dini theorem. -This
generalization is stated in [10] in the following form:
A topological space (X,T) is *-compact if and only if
every monotone sequence {f } of real T-continuous
functions which 'is convergent on X to a T-continuous

real fﬁnctibn f converges to f unifermly on X.

Question 2. Is it peossible to prove theorems similar
to the last theorems for generalized

(Moore-Smith) sequences of T-continuous

functions?

To finish this section we present some connections
between ¥*-compactness and the approximation theorem of
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Stone and Weierstrass. We shall say that a tcpological
space (X,T) is a Welerstrass-Stone [W-S] space if and
only if the following condition is fulfilled: for every
family P c C(X,T) which includes all constant functions,
separates points of X, and is closed under taking linear
combinations, the uniform closure of F is equal to C(X,T)
(that is, if in (X,T) the thesis of the Stone-Weierstrass
theorem holds).

The following theorems have been proved in [11]:
If (X,T) is a W-S space, then (X,T) is *-compact. If
(X,TO) is a compact metrizable space and T is a topology
on X finer than T, then (X,T) is a W-S space if and

only if it is a *-compact space.

2. Suppose now that X = [0,1] and T, is the natu-
ral topology on the unit segment. Since (X,T,) is
compaét add metrizable, from the first section we have
that if T is a topology on [0,1] finer than the natural
tbpology, then c([0,1],T) = C([O,l]) if and only if
([0,1],T) is a *-compact space.

However, in the case of functions of a real variable
we are able to present a more detailled discussion.
Throughout this section T will always denote a topology
in [(0,1] finer than the natural topology in [0,1].

The following conditibns were introduced in [9]

during a study of asymmetry of functions:
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(W) If x, e~(En)é for n=1,2,... (where
(En)' is the set of all T-accumulation
points of En) and x, converges to x

(in the natural topology), then
@ : 1
X € U_En
n=1 T
(wr) For an arbitrary point x € [0,1] and for
arbitrary T-neighborhood U of x there

exists a number § > O such that the set

{(x-§,x+5) - U}' 1is empty.
T

In (9] it was proved that (W) is equivalent to
(W!). Kocela in [2] has proved that if (X,T) fulfills
(W), then C([0,1],T) = C([0,1]). For suppose that f
is a T-continuous fungtion which 1s not continuous at
some point Xge Then there exists an ¢ > 0 and a sequence
{xn} converging to X, ;uch that for every n we have the
inequality, say, f£(x,) < £(x,) - ¢. From the T-continuity
we have for each n a T-open set En such that X, € En
(so obvi§usly x, € (En)é) and f(x) < £(x,) - ¢ for x € E,.

But then X, € ( LjEn)' from the assumption, so f(x,)
‘\n=1 T

cannot be the T-1limit of f at X, - a contradiction.
- The inverse implication is false. The example of a
topology T finer than a natural topology for which (W)

does not hold but the classes C([0,1],T) and C([0,1])

are equal, can be constructed in the following way:
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The set U € T if and only if it has density one
at each of its points(right-hand density at O and left-
hand density at 1, of course) and if for every x, € U

there exists a number § > O such that

where Q is a set of rational numbers and Q+xo = x+x,: x€Q}
([3]1). Every T-continuous function is approximately conti-
nuous, so is a Baire 1 function. The proof that this
function is continuous depends on the fact that every
T-neighbqrhood of any point x 1s dense in some ordinary
neighborhood of x (see the discussion on the following
pages).

‘To prove that T does not fulfill the condition (W)
it suffices to observé that-if fér.every n

B, = [27%470,27] - Y (we-e (P e (M),

W €Q

where {eén)} is a sequence of positive numbers such that
_ .
T eén) < 47 ang X, € (E,)' (such a point does exist),
k=1 T _
then xn converges to zero, but O is not a T-accumulation

point of U E_.
n=1

Notice that the condition (W) also appeared in the

generalization of a theorem on monotcnicity in (8]

However, it is possible to modify the condition (W)

to obtain a condition which 1is equivalent to
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c([o,1],T) = ¢([0,1]). This condition, unfortunately,
is not very useful, because it depends on the notion of
functionally open sets.
Namely, the following condition:
(Wl) If x, € E  and E | is functionally T-open
for 551,2,..., and X, converges to x
(1n the natural topology), then
X € ( QlEn)é
This condition is a necesary and sufficient condition
for the equality C([0,1],T) = C([0,1]),([3]).
| The proof that‘(Wl) i1s sufficient is exactly the
same as for the condition (q). If the condition (W)
is not fulfilled, then it is possible to choose é
sequence {U } of-disjoint functionally T-open sets and
a sequenhe {xn} of points convergent to X, such that

@ 4
X, € Un and X, € (JﬁlUA)T . Next we can find a sequence

{f,} of T-continuous non-negative functions such that
U, = {x: fn(x)>0}. Multiplying, if necessary, ea.ch‘fn
by a suitable constant we can assume that sup f_ > n.
Then the function f = % fn is T-continuous and unbounded,
n=1
so €([0,1],T) # c([0,1]).
It is easy to observe that if C([0,1],T)=cC([0,1]),
then every interval [a,b] < [0,1] is a T-connected set.
In [2] it was proved that this equality implies that

every T-neighborhood of an arbitrary point X, € [0,1]
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is a dense set (with respect to the natural topology) in
some interval (xo-é,xo+6) n [0,1].

Suppose that it is not the case. It means that
there exists a point Xy, @ T-neighborhood U of Xgs and

a sequence of disjoint intervals {(a_ ,b )} such that

[--} .
Un U (a,b,) =g, lima_=1limb_ = x_.
p=1 VR nose O Doe O °

Let the function f be defiped in the followlng way:

r ~ Y
0 for x £ U (a,,b )
n=1 n’ n
a_+b
£(x) = < 1 for x=x = n2 8 n=1,2,...

linear in every interval [an,xn]

k. and '[xn,pn] .

This function is T-continuous, but not continuous at

xo - a contradiction.

It is Aatural to ask if these two conditions are
sufficient for the equality C([0,1],T) = C([0,1]). The
answer 1s negative ([13]).
Using the transfinite induction one can prove that
there exists a function F: [0,1] ».(0,1) such that:
i. For every y € (0,1) the set F-l{y} is dense
in [0,1] (with the natural topology)

2. TFor every interval [a,b] c [0,1] and for every
set P c [a,b] n [0,1] which is closed in
[a,'b]x [0,1] and such that Proj P (i.e. the

151



projection of P on the x-axis) includes some

interval {[c,d] < [a,b], there exists a point

x' € [a,b] such that (x',F(x')) € P.

If T is the coarsest topology in [0,1l]-such that

c([0,1]) « ¢([0,1],T) and F € C([0,1],T), then T is
the required topology. The inequality C([0,1],T) #C([0,1])
is obvious. From the first property of the function F
it follows immediately that every T-neighborhood of any
X, is dense in some neighborhood of Xg» because the
basis for T is the class of all sets of the form
F'l(C) n D, where C and D are open sets in the natural
topology. " The proof of the fact that every interval
[a,b] c [0,1] is a T-connected set is more delicate. It
is bésed on the second property of F and on the fact
that for every pair Gl,G2 of open sets in the plane and
for every straight line P included in the p;ane either
there is a point on the line P which does not belong to
the union of orthogonal projections 81,62 of these two
sets on this line or there 1s a linear segment on P

A A
which is included in Gl n Gg.

However, in [3] the following theorem was proved:
If every T-neighborhood of each point xj € [0,1] is
dense (1n the natural topology) on some interval, then
every T-continuous real functioh having a dense set
of points of continuity is continuous.(the last two
words denote continuity with respect to the natural
topology).
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The proof goes along the rfollowing line: If X, is
a point of discontinuity of f, then there exist an ¢ > C
and an interval [é,b] containing X, such that both of
the sets {xz: |f(x) - f£(x,)| < &/3} and
{x: |f(x) - f(xo)| 2 2¢/3} are dense in [a,b]. So f
cannot have a point of continuity in this interval -
a contradiction.

In particular, under this assumption eQery T-conti-
nuous Baire 1 function is continuous.

Hence in the last counterexample (from [13]) it
is impossible to obtain a topology T such that
c([o,1],T) - c([0,1]) includes the Baire 1 functions.
It is possible to modify the constructicn in such way
that the function F is Lebesgue_meaéurable, SO
c([o,1],T) - c([0,1]) does include the Lebesgue measurable

functions.

Question 3. Is it possible to construct such a topology

T which fulfills both conditions fi.e. every
interval [a,b] (0,11 is a T-connected szt
and every T-neighborhood U of each point z,
i8 dense in some interval (30-6,30+6) Lo,11)
such that C([0,11,T7) - ¢([0,1]) is nonempty
and

a) 1includes some Baire function?

b) <includes some Baire a function ( for a given

ordinal a )?
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e)
d)

e)

18 tncluded in the set of all Batire functions ?
18 included in the class of Baire a functions

(for a given ordinal a) ?

18 included in the class of Lebeséue measurable

functions ?
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