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 In this paper I will discuss a few problems which

 are on the borderline of geometry, number theory, and

 set theory and which have occupied me for a long time.

 Perhaps they are more difficult than important, but I

 find them fascinating.

 It is a common paradox that problems on infinite

 sets are often very much simpler than problems on finite

 sets. This prompted Ulam and myself to state the

 following somewhat impudent and unfortunately somewhat

 inaccurate motto:

 "The infinite we do right away t the finite takes

 some more time."

 (By the way, we "stole" this motto from the U.S. Navy -

 during World War II one of their mottos was "The diffi-

 cult we do right away, the impossible takes some more

 time".) To our motto (Ulam' s and mine) I just want to

 add that the finite takes in fact very much more time -

 perhaps more than the lifetime of the vini verse.

 In what follows I will give proofs only if the pub-

 lished proofs are hard to find, are excessively complicated,

 or are not quite accurate. In any case, I will give as



 complete references as possible. The first part of* this

 survey will give an overview of several problems without

 going into too much detail. In the second part I will

 discuss one or two of the problems in some detail and

 also will use somewhat more set theory.

 51.

 The first problem I want to consider is a clear-cut

 case of a problem in which the finite case is very much

 more difficult than the infinite one.

 THEOREM 1. Let E^ be_ 'a- dimensionai Euclidean space,

 S a subset °L E^ with I S I = m ^ &Q. Then S has a subset
 with I I * m such that all the distances between

 ■points af ave distinct.

 Although I first proved" Theorem 1 about 30 years ago,

 I will give the proof here in some detail since the pub-

 lished proof is obscure and not accurate. The main point

 is that the continuum hypothesis is not assumed and in

 fact the theorem is almost trivial if m is a regular

 cardinal (i.e. if m is not the sum of fewer smaller

 cardinals). It will be clear from our proof where the

 simplifications occur if m is assumed to be regular. Let

 cf (m) = n(n<m) be the smallest cardinal for which m is

 the union of n smaller .cardinals . Assume that our theorem

 holds if I S I £ p < m and also assume that it holds if
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 ļSļ = m and S is situated in a space of dimension less

 than k. By a subspace of E^ in this proof we will mean
 a hyperplane or hypersphere of E, . Assume now that r

 is the smallest integer, 1 £ r _< k for which there are

 n r-dimensional subspaces Pa, 1 _< a < such that

 I 1 U Tn a I 1 = m. Let S a 3 P a fis and | 'a' S | » p ra . We can 1 a 1 a a 'a' ra

 as s time without loss of generality that pa is an increasing

 function of a , that each pa is regular, and that

 Pa _> n for each a. All of these assumptions represent
 standard "tricks of the trade" when dealing with singu-

 lar cardinals. Further, we can assume by our induction

 assumptions that all the distances in the set are

 distinct, and this for every o.

 First we prove that there is a subsequence

 P , 1 < v < (a of the P 's such that no two elements of
 % , . ~ n a

 the subsequence are othogonal. It was pointed out to me

 by Bollobàs and others that this step is missing in my

 original proof. Consider the ordinals 1 < a < wn; join
 a-, to a0 if the corresponding subspaces P and P are

 a2

 orthogonal. Observe that there are at most k subspaces

 which are pairwise orthogonal. It immediately follows

 then from a theorem of Dushnik and Miller that there is

 a family of power n of subspaces no two of which are

 orthogonal. In the language of partition calculus the
 2

 theorem we use can be expressed as n-»-(n,k) , k finite.

 The theorem of Dushnik and Miller asserts that the theorem

 remains true if k = Nq.
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 Thus we can assume that no two of our subspaces are

 orthogonal. Clearly we can also assume that the sub-

 spaces are minimal in the sense that if P^ is a

 proper subspace of Pa, then |P^ D S| < pa. To see this,
 observe that if this would not hold then we would simply

 replace P^ by P^ and in a finite number of steps this
 replacement process would terminate.

 We can now complete the proof as was done in my paper.

 In fact we shall prove that for every a, 1 <_ a < wn

 there are sets S' c S with |S'| 1 a' = |S. 'ci1 I » p such that a a u 1 a' 'ci1
 II

 all distances in S' » (J S' are distinct. The supposi-
 01=1

 tion that | S ' | =» p would then give that | S 1 ļ = m and our Gt CL •

 proof would be complete. What is. left then is to con-

 struct our sets S' and we do this by J transfinite induction. a J

 Suppose then that we have already constructed sets

 S' for each a < ß < w. We use these sets S' and points r oc n et r

 z defined below to define Sģ c Sg. Suppose we have

 already found points z^, 1 £ y < 5. < oj^ which have the
 following properties. First of all, the distances in the

 set ( U S ) (J ( U ż ) are all distinct. Further, none of
 a<ß a y<6 ^

 the perpendicular bisectors of two points in this set

 contains a subspace P , and no subspace Pa is on a sphere
 whose center is one of our points . In other words , no

 Pa is equidistant from one of our points, and not all

 points of Pa can be equidistant from two of our points.

 Finally, if z is a point of our set and Pq one of our

 subspaces, then if Qa(z) is the locus of our points y
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 such that Pa is equidistant from z and y (i.e. the
 perpendicular bisector, of z and y contains P ) then none

 of our P' s is contained in Qa(z). These conditions, of

 course, exactly mean that we can find a z^ e S'g such that
 (US) U ( Uz) have all of their distances distinct.
 a<ß a 1<y<6 ^

 To complete our transfinite induction then, we have to

 show that we can choose our z^ so that our three con-
 ditions are satisfied. Since no two of our P.' are

 a

 orthogonal, we know that our z^ is excluded from fewer

 than Pg subspaces none of which can contain Pg. Using

 the minimality of Pg we know that the intersection of Pg
 with this subspace meets S in a set of power less than

 Pg and by the regularity of Pg we see that z^ can be
 chosen to satisfy all three of our conditions .

 In Hilbert space the situation is completely

 different. Several of us, Oxtoby, Kakutani, L. M. Kelly,

 Nordhaus, and I observed that one can find a subset of

 Hilbert space of power c such that every distance is

 rational. Trivially, one can find a countable set in

 Hilbert space which determines only one distance, but

 every uncountable set determines Infinitely many distances.

 Now let us investigate the finite case. Let f^fa)
 denote the largest integer so that if are any

 n distinct points in E^, then there are always f^in) of

 them such that all the distances between these f^(n) points,

 are distinct. The exact determination of f^(n) seems
 hopeless, and I cannot even get an asymptotic formula
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 for f^Cn) . However, it is not hard to show that there
 are constants and so that

 (1) ckn k < fk(n) < ckn ^
 where and tend to 0 as k tends to infinity. Perhaps

 (2) lim log f, (n)/log n - l/(k+l).
 n-M»

 But (2) is known only for k=l and there is no real evi-

 dence for its truth.

 Let us discuss the case where k=l. A plausible

 conjecture is

 (3) fx(n) » (l+o(l))n%

 The upper bound for f^(n) follows from the following
 I

 result of Turan and myself: Let 1 £ a^ < ... < a^ _< n
 be a sequence of integers so that the differences

 (i.e. distances) aij-a^ are all distinct. Then

 g^(n) = max k = (l+o(l))n^

 and in fact we conjecture that

 (4) gļ(n) = n^-HD(l).

 I offer 500 dollars for a proof or disproof of (4) .

 It is reasonable to conjecture that g-^(n) = f^(n) or in

 other words if (xļ,...,xn) is any set of real numbers,
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 one can always find g^(n) of them so that all distances
 between them are distinct. No proof of this plausible

 conjecture is in sight. A very beautiful and general
 « t

 result of Komlos, Sulyok, and Szemeredi only gives

 f^Cn) > en3 for a certain c > 0. Thus, to summarize,
 we know that

 (5) cn^ < fļ(n) < (l+o(l))n^
 and we conjecture that

 (6) fļCn) » gļ(n) = n^+0(l).
 I'll give 500 dollars .for cleaning up (6) - I am, however,

 being deliberately vague. A counterexample for a parti-

 cular value of n.(to f^(n) - g^(n)) would not be so
 interesting, but 'I would certainly pay the 500 dollars

 if someone shows that f^(n) í g^(n) holds for infinitely
 many n. And if at the same time he also proves that

 fļ(n)/gļ(n) + 1 (I am really sure that this conjecture
 holds), I will probably pay an additional 500 dollars

 (that is, if I live long enough and have the money).
 t

 Very little is known about f^Cn) for k ^ 2; one
 could guess that the extremal configuration is highly

 regular, but no proof of this is in sight. There is a

 paper of Richard Guy and myself, however, which contains

 some preliminary results.

 Denote by n^ the smallest integer for which

 f^Cn^) = 3. That n^ = 4 is trivial. I've observed that
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 1*2 = 7, and Croft proved that n^ = 9. It seems likely
 2

 that n^ < ck , but as far as I know it is not even known
 whether

 A related question has recently been nearly completely

 solved by Larman, Rogers, and Seidel. Let be a

 set in k- dimensional space which determines at most r

 distances. Trivially, max |S^^| = k+1 and they proved
 that

 max |S¿2> I - k2/2 + 0(k) .

 Their method, no doubt, will give that for fixed r

 C2^r < max |S^r^| < c^kr.

 The vertices of the k-dimensional cube determine k dis-

 tinct distances; perhaps max |S^r^| is not much larger
 than 2 . For further problems and results of this kind

 see my paper in Annali di Mat, and ray forthcoming book

 with Purdy.

 I hope I've convinced the reader that problems on

 infinite sets can be much simpler than problems concerning

 finite sets. Often the reason is that for . infinite

 2
 cardinals, m = m holds.

 Now we return to infinite problems. Kakutani and

 I proved that c = is equivalent to the statement

 that the real line is the union of countably many Hamel

 bases. First I'll show that if c = X then the real
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 line is the union of countably many Hamel bases . Let

 {a }, 1 < a < w, be a Hamel base and let S be the set a - 1 a

 of real numbers Ł 7c0a0 where the c_ are rational and Ł ß B ß

 max 0 = a. Since c = |Sa| » Kq. Enumerate the
 elements of in an ui sequence n » 1,2,... .

 Define H„ = {xa} where a runs through the ordinals less n n

 than oiļ. Clearly, the HQ give our required decomposi-

 tion of the reals into Nq Hamel bases. This proof
 (which is a bit simpler than the one given in our paper)

 is similar to our old (1938) unpublished result with

 Tuhey: The complete graph of power is the countable

 union of trees.

 Of course, our result with Kakutani implies that

 if c a Kļ then the real line is the union of sets
 S . n » 1,2,... such that all the S„ have all their n •ii

 distances distinct (i.e. any four points of Sn determine
 six distinct distances). I conjectured that if

 c =» then E^ is the union of Nq sets Sn so that each
 of the S„ have all their distances distinct. This con-

 jecture was proved by R. 0. Davies for k = 2, but as

 far as I know, k > 2 is still open* Ceder proved that

 E, is the countable union of sets S_ none of which con- K ri

 tains an equilateral triangle.

 *

 Added in proof: I just (May 1979) received a letter
 from K. Kunen and he has proved the
 conjecture for all k.
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 I will now move on to some curious geometrical

 and measure theoretical problems . It is not difficult

 to see that if S is a plane set of infinite planar

 measure, then for every positive real number a, S con-

 tains three points Xļ,X2»X2 such that the area of the

 triangle {xļ,x2,x.j} is a. The proof is an easy conse-
 quence of the Lebesgtie density theorem and is left as

 an exercise to the reader. In fact I published this as

 a problem in the Matematikài Lap ok and one of the

 readers proved a slightly stronger theorem: It suffices

 to assume that at least one line intersects S in a set

 of positive linear^ measure and that there are points

 arbitrarily far from this line. In fact it is easy to

 see that our triangle of area a can be taken to be

 isosceles or right angled. More generally and slightly

 vaguely, besides specifying the area of the triangle,

 one additional condition can be imposed on the triangle

 and still obtain the result. On the other hand it is

 very easy to see that there is a set S in the plane of

 infinite planar measure which contains no equilateral

 triangle of unit area.

 The following question seems interesting and per-

 haps difficult: Is it true that there is an absolute

 constant C so that if S has planar meas vir e greater than

 C then S contains the vertices of a triangle area 1?

 If S is the set |ç| < 2.3~^^ then S does not contain
 a triangle of area 1 (we use thé well known result in
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 elementary geometry that the triangle of largest area

 inscribed in the circle is equilateral) . The area of
 -3/2

 S is 4i 3 and perhaps this is the correct value of

 C. I have no real evidence for this conjecture. These

 problems can clearly be stated for higher dimensions

 as well.

 Here is another curious problem on measurable sets.

 Let S be a set of positive measure on the line and A

 any finite subset of the line. Then it easily follows

 from the Lebesgue density theorem that S contains a

 set similar to A (i.e. contains a set A' which can be

 transformed into A by a fractional linear transformation) .

 This result is substantially due to Steinhaus and has

 often been rediscovered. I have conjectured for a long

 time that if A is any infinite set on the line then

 there always is a subset S of the line of positive

 measure which does not contain a set similar to A. By

 the way, we can assume without loss of generality that

 A is a sequence of positive numbers tending to 0.

 If my conjecture is correct then one can further ask the

 following: Given a countable set A of [0,1] determine

 (or estimate) the largest possible measure of a subset

 S of [0,1] which does not contain a set similar to .A.

 Now I'll state a problem in geometric number theory.

 Denote by d(u,v) the distance from u to v. Let N(x,5)

 be the maximum number of points P^,...,Pn which can be
 chosen in the circle of radius x so that
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 injLn |d(P^,Pj)-k| 6, 1 ^ i < j £ n and k an integer.

 I conjectured that for every 0 < 6 < 1/2 that

 N(x, 6) = o(x) .

 and on the other hand I conjectured that there is a

 6 > 0 such that
 o

 lim N(x, 6 ) = °°.
 X-Vœ

 The analogous problems are trivial in one dimension

 and perhaps interesting new complications arise if the

 dimension is greater than two. The first of these
 I ••

 conjectures was proved by Sarkozy who showed that

 M ^ ✓ jc' ^ X 10^ X
 ^ ✓ jc' ^ X J3~ log

 The second conjecture was proved by Graham who showed

 that

 N (x, 1/10) > .

 f

 Sarkozy then improved this to

 ÎT(x , 1/ 10) > xc

 I

 where c > 0 is an absolute constant. Sarkozy further

 proved that for every e > 0 there is a 6(e) such that

 if <5 < 6(e) and x > x ( e , ô ) , then

 N(x,6) > xly,2"e
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 The exact magnitude of N'(x,<5) is not known and

 is perhaps difficult to determine.

 Let f(n) be the largest integer for which there

 are n distinct points c^e plane for which

 there are f(n) pairs (P^.Pj) satisfying the condition

 that d(P^,Pj) ■ 1. It is known that

 Ql+c/log log n f(nT . o(n3/2).

 Once again I refer you to our forthcoming book with

 George Purdy where these and related questions are

 extensively discussed.

 Before closing this section I'll state a few

 problems in a new subject which my collaborators and I

 call Euclidean Ramsey theory. À set S in a finite

 dimensional .Euclidean space is -called Ramsey if to every

 k there is an n. such that if E is colored by k colors
 k

 (or in other words, E is decomposed into k disjoint
 k

 sets A^, 1 <_ i £ k) , then S can be monochromatically

 imbedded into one of the A^'s. We proved that every
 brick (i.e. every set of vertices of a rectangular

 paral le lop ip ed) is Ramsey and on the other hand we showed

 that every set which is Ramsey can be inscribed in a

 sphere.

 The most interesting and challenging problems are:

 Are the obtuse angled triangles Ramsey? Is the regular

 pentagon Ramsey?

 Let u S2 - Eļ. Is it true that if T is any
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 triangle (with the possible exception of equilateral

 triangles of one fixed height) then either or S2
 contains the vertices of a triangle congruent to T?

 Many special cases of this startling conjecture have

 been proved by us and Schader, but so far the general

 case eludes us .

 Let S be a set of points in the plane such that no'

 two points of S are at a distance of one. We conjectured

 that the complement of S contains the vertices of a unit

 square. This conjecture was proved by R. Juhas z . She

 in fact showed that if {x^,x2,x2,x^} is any set of four
 points, the complement of S contains a congruent copy

 of {x^,x2>x2,x^} . It is not clear at present if this.
 remains true for five points ; indeed she showed that

 there is a k so that the result fails for k points .
 #

 Clearly very many more problems can be stated and

 I hope more people will work on this subject in the

 future and our results will soon become obsolete.
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 First I'll give a proof of the second part of ray

 theorem with Kakutani (see page 120).. In fact, the

 theorem I'll prove is slightly stronger.
 QO

 THEOREM 2. Suppose c > X-, and E, = U S_.
 - n_1.

 Then there is at least one n such that the distances

 determined by Sn are not all different .
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 What we shall prove is that there are four points

 in S which determine at most four different distances,
 n

 and to do this we use the following lemma due to Hajnal

 and myself.

 Suppose |A| » «2» lBl " Kļ» 311(1 A fi B = 0. Let
 K(A,B) denote the complete bipartite graph spanned by

 AU B (i.e. the vertices of the graph K(A,B) are the

 elements of A U B and every x e A is joined by an edge

 to every y e B) . Now, if the edges of K(A,B) are

 colored with Nq colors, there is a monochromatic
 (i.e. a' circuit of length four all of whose edges have

 the same color) .

 I'll prove this lemma of Hajnal and myself in full
 «

 detail since I cannot give an exact reference to it.

 Denote the edges of the i-th color by G^, i = 1,2,...
 "and observe that every vertex x e A has valency (or

 degree) Nļ in at least one of the graphs G^. Since
 I A [ = there clearly is an i such that there are

 #2 vertices x e A which have valency in G^. For
 this i, and for each such x e A there are .vertices

 in B which are joined to x and we denote this set of

 vertices by S(x). Note that S(x) c B and |S(x) | =

 Now consider all the pairs of S(x) for all of the ^
 vertices x e A mentioned above. There are only

 pairs of B and thus the same pair must be joined to

 b*2 elements of A which gives us our and indeed gives
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 a monochromatic K(j^2»2). In fact, Hajnal and I proved

 the following result: Let m > Kq (i.e. m is not the

 union of Kg smaller cardinals). Decompose K(m,K^) as

 the union of countably many graphs G^, i » 1,2,... .
 Then for at least one i and for every a < a>, con-

 tains a K(m,a). The proof is very similar to the one

 given here and can be left to the reader (the reader

 muse of course be familiar with Che standard arguments

 in combinatorial set theory, also known as infini tary

 combinatorics) .

 From our result with Hajnal it now follows
 00

 immediately that if c > Mi and E, = U S_ then for at
 1 1 n=l n

 least one n, Sn contains four points which determine
 exactly four different, distances. To aee this, let H

 be a Hamel basis (The fact that |H| >- fctļ follows

 immediately from the assumption that c > N^) , Ac H,

 B c H, A n B - 0, |A| ■ i<2, and Iß] » Consider
 the set Z of distinct real numbers x+y, x e A and

 y e B. This set can be represented by the edges of

 the bipartite graph K(A,B). The sets Z H Sn define
 the graphs Gn and give a decomposition of K(A,B) into
 coun tably many graphs. By the lemma, there is an n such

 that Gq contains a rectangle - in other words, there

 are four real numbers x^ e A, ^ e A, y^ e B, y 2 e B
 so that all four of the numbers

 (1) xl+7l> xi+?2' x2+yl' x2+y2
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 are in S and determine at most four distances - as
 II

 stated.

 Next we show that if c = there is a decomposi-

 tion of into Nq sets Sn, n = 1,2,... such that the
 distances between the points of Sn are all distinct
 except for relations of the form (1) . I realize that

 this informal formulation is -not as clear as it per-

 haps should be, but it will be clear to the reader

 from the construction of our sets S .
 Tl

 Again, let H = ^aa^» 1 £ a < u2 be 3 Hamel basis.
 Thus if y is a real number there is a finite set of

 rational numbers ica} such that the unique representa-
 tion of y with respect to H is

 <2> y - î caV
 a -

 Let h(y) » $ be the largest a so. that aa appears in the

 representation of y. Then h(y) < Denote by Rg
 the set of real numbers y with h(y) =* 8. Clearly,

 (kg) £ biļ and thus Rg can be decomposed into countably
 /g} ' many sets S': ' such that all the distances between
 n

 points of are distinct (e.g. use the method of
 n

 Rakutani and myself described earlier) . Finally put

 s n = U S ¿0) n . n ß n

 The reader can easily convince himself that this

 decomposition satisfies our requirements. This method
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 was used several times by Hajnal and myself (but very

 well might have been used earlier) .

 A special case of an unpublished theorem of Elekes,

 Hajnal, and myself states that if |A^| = 1 < i < r .
 are r disjoint sets and if we split the r- tuples

 (xp...,xr), x^ e into Kq classes, then there are 2r
 elements x£^ , e A^, i = l,...,r such that all the
 2r r-tuples (yj_,...,y ), y¿ ~ or are *-n c^e
 same class. This is, of course, a generalization of our

 theorem with Hajnal for r =» 2. Our theorem implies,

 just as in the case r =» 2, that if c > Nr and we

 decompose E^ into countably many sets Sn, n = 1,2,...,
 then for at least one n there are 2r real numbers

 *p> , x^ , i ■ 1 , . . . , r such* that each of the 2r sums

 (3) I 7i» 1 where y. 11 - xi1) or x52^ 1 i-1 1 11 1

 is in S_ . Thus, one of the S„ contains 2r points r which n n r

 determine (3r-l)/2 distances. Using the method of

 Hajnal and myself it is not hard to see that if c = Kļ

 then E^ can be written as the union of Kq sets

 Sn, n » 1,2,... such that for every n, the set of

 distances for Sn satisfy (3) and no other relations .
 In light of this, perhaps the study of the following

 question is of some interest: Denote by f(k,r,t) the

 smallest integer i such that if we as ¿time that c = Kr

 and decompose E^ into countably many sets Sn, n = 1,2,...
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 Chen there always are t points xp...,xt in one of the

 Sn such that determines at most i distinct
 distances. Using (3), f(l,r,t) can easily be deter-

 mined though the explicit formula for f(l,r,t) seems

 complicated. At present, nothing can be done in the

 case that k > 1. This is true even if we assume

 c = (r^l) since we do not even know if E2 can be
 decomposed into Nq sets none of which contains an
 isosceles triangle. In other words we don't know if

 f(3,l,3) is 2 or 3, though by a result of Ceder we know

 it is greater than 1. Perhaps using the method of

 Davies one can determine f(2,r,t) for every r and t.

 Throughout this discussion we have assumed that r < w

 (i.e. c <.^(1)). It seems certain that if we drop this
 assumption so that c _> then

 (4) f (k,c, t) - min f(k,r,t)
 r-H»

 but (4) remains unproved.

 Interesting and probably difficult finite problems

 remain. Let me state a few. Suppose there are n points

 in the plane: What is the maxi im im number of equilateral

 or isosceles triples? What is the maximum number of

 quadruples which determine exactly five distinct dis-

 tances? Purdy and I have some preliminary results on

 Added in proof: The new result of Kunen yields that
 f(k,l,t) = (J).
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 these questions and hope to write some more about them

 in our forthcoming book.

 Now assume that c > N-, and let S„ be a set of 1 II

 real numbers such that all sums x+-y, x e SQ, y e SR
 are distinct (or in other words the distances between

 points of Sn are distinct) . Then it is not difficult
 oo

 to show that US (i.e. the complement of the union
 n-1 n

 of countably many Sn) contains a translate of an ^
 dimensional linear subspace of the reals . That is ,

 there is a set of rationally independent numbers

 {ba>, 1 < a < aiļ such that for some t all numbers of
 the form

 t + I r.b,,, rfl is rational and the suca is finite,
 6 0 ß ß ;

 00

 are all contained in U S .
 1 H n»l 1

 To prove this, first observe that from our proof

 with Hajnal given at the beginning of this section we

 easily obtain that there is a set A with ļ A | ~ ^
 such that for every 3 rational r and a e A, ra is not
 -
 OO

 in U^Sn". Let B be any set of rationally independent
 reals whose power is A real number aa e A is
 called bad if there are reals of the form

 ra + y c0b0, r and c0 rational and bQ e B
 a a g p p a p p

 00

 i-n U S„. First note that there are at most Kt bad
 n=l 1
 a^'s. To see this notice that there are at most
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 countably many choices for rQ, n, and the c^'s and
 thus we can assume that there are a 's for which

 2 a

 they are the same. For each of these ^ aa's choose
 two numbers

 raaa + I c6b6 and raaa + ¡ c6b6" (r * °>
 P P

 which are both in the same SR. Now finally, there are

 only Nļ choices for *{bg} and {bg,}, and thus since
 the number of the aa's was N ^ there are two of them
 (in fact of them) a and a , which get <=» the same set z a a <=»

 {bg} and (b^i). Hence, the four numbers

 Va + I W raaa + ļ W" raV + ÎC6V W + * °Sb6 ' '

 all belong to the same Sn. But this is clearly
 impossible since the sum of -the first and the fourth

 equals the sum of the second and the third. Therefore

 there are only bad aQ's and so ^ t*10 aa's axe not
 bad. But if a is not bad, ' then there are at most a > ' 0

 bg's for which there are rational numbers {ra, c^} such
 that ra + ¿ J c0b0 is in U S . Omit these b0's. Thus, ra a a J ¿ c0b0 ß ß n=i U n . ß
 finally, we have a set of b^'s of power and an a^
 such that for every non-zero rational r and arbitrarily

 rational {c^},

 ra + J c0b0
 aa ļ ß ß

 00

 is not in (JŠ n (observe that if every cfl is zero, then n=l n 0
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 ao

 is not in U Sn) . Thus our assertion is proved.
 n=l

 Perhaps this result can be strengthened in two
 oo

 ways. First of all, U S perhaps contains all numbers
 In

 of the form ļ r0ba where the rfl are rational and {b_}
 g p p p p

 are chosen from a set of rationally independent

 numbers. (In other words, the additive constant t may

 be superfluous.) Secondly, perhaps can be replaced

 by b*2* * do not think the latter is likely, but have
 not yet found a counterexample.

 A few years ago I asked: Let S be a set of real

 numbers for which all sums x+y, x e S, y e S are

 distinct. Is it true that 5 contains an infinite

 arithmetic progression? Baumgartner proved this, and

 my proof given above borrows from Baumgartner ' s
 m

 %

 unpublished proof.

 Hilbert space behaves in a completely different

 way than the Euclidean spaces E^. Haj nal and I easily
 showed that one can give c points in Hilbert space such

 that all triangles are isosceles and acute angled.

 Also, there are c points in Hilbert space such that all

 the distances are rational.

 I asked two further questions: Is there a set S

 of power c in Hilbert space such that every subset

 of S with |SjJ = c contains an equilateral triangle?
 Also, is there such a set S such that every subset

 of S with |SjJ =• c contains an infinite dimensional
 regular simplex?
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 L. Posa answered both questions affirmatively;

 for the first he used no hypothesis concerning c;

 for the second he had to assume that c »

 Kunen and I proved that if c > then the

 union of Kq rationally independent sets always has .
 inner measure 0. As the proof of this has never- been

 published, I shall outline the proof here. First note

 that every set of positive inner measure contains a

 perfect set of positive measure. We then prove that

 if T is a perfect set of positive measure, then there

 are perfect sets P and Q so that P+Q c t. We suppress

 the details of this. Our result with Hajnal on the

 decomposition of K(A,B) with |A| » ^ l®l ""
 then completes our proof.

 §3. Some final remarks.

 Fajtlowitz and I observed that if c =» ft, then
 00

 the plane can be decomposed into sets U SQ such

 that no three points of any Sn determine a right angle.
 On the other hand, if c > then at least one of the

 Sn must contain a rectangle.
 Assuming c = K Sierpiński decomposed the real

 line into two sets, A^ and A£ such that any translation

 of A^ intersects in at most a countable set.
 P. Lax and I showed that this is best possible -
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 namely, if u A2, |A^ļ = c, and m < c, then
 there is a real number t so that ļAj+t^l J> m.

 I

 I conjectured, and Peter Komjath proved that if

 c = then there are sets A and B such that a A U B

 and for every real number z the number of solutions

 of x+y =» z, x and y e A or x and y e B is countable.

 R. L. Graham recently proved that if we decompose
 n

 E0 ¿ into finitely many sets S 1 . , E~ / « U S., then for ¿ 1 , / i=i J.
 at least one i, the set contains the vertices of

 triangles of any given area. Graham's proof will

 soon appear in the Journal of Combinatorial Theory,

 Graham and I tried to extend this result to countable

 decompositions of E2. There appear to be two possi-
 bilities: li There is a constant c, which perhaps

 m

 depends on the decomposition such that for at least

 one i and for every ex < c there is a triangle

 {x,y,z} in of area a. (A weaker form of this con-

 jecture would be that to every a < c there is an i such

 that there is a triangle (x,y,z) of area a whose

 vertices are all in S^) . 2. Assume that every
 is unbounded. Then there is an i such- that con-

 tains triangles of all areas. It is quite possible,

 of course that none of these conjectures holds.

 In a forthcoming triple paper, Kunen, Mauldin

 and I prove, among others, the following theorem:

 If c = Kp there there is a set, A, of real numbers
 such that I A | = c and for every set B of measure
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 zero, A+B also has measure 0 (A+B is the set of all

 a+b where a e A and b e B) . Now, Kakutani and Ox toby

 have obtained far reaching extensions of Lebesgue

 measure (countable additivity and congruence invariance

 are perserved) . Does our result remain true for these

 extensions? This question should, perhaps, be inter-

 preted to mean that there is a further extension in

 which all the sets A+B are of measure 0. The last two

 conjectures are rather new and we have had no time to

 think them over, so I must ask for the indulgence of

 the reader if they turn out to be either trivial or

 false.

 S. Kakutani and Oxtoby, Construction of non- separable
 invariant extension of the Lebeseue measure space.
 Annals ol Math. (2), 52 (1950) , 580-59.0.

 P. Erdos, Some remarks on set theory . Annals of Math.
 44, (1943), 693-696.

 P. Erdos, A. Hajnal and R. Rado, Partition relations
 for cardinal numbers . Acta Math. Hung. Acad. Sci. 16,
 (1965), 93-196. (This paper contains many results and
 Problems and arguments related to the one used by
 Hajnal and myself in this survey.)

 H. Halberstam and K. F. Roth, Sequences . Oxford Univer-
 sity Press 1966. (The result of Tur Sn" and myself
 (on a.+aj) and many interesting questions in additive
 and combinatorial number theory are discussed here.)

 Mathematical Institute
 Hungarian Academy of Sciences
 Reáltanodau 13-15
 Budapest V
 HUNGARY
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