RESEARCH ARTICLES Real Analysis Exchange Vol. 4 (1978-79)
M. Laczkovich and Gy. Petruska, Department I. of
Analysis, L. Eötvös University of Budapest,
Budapest, Hungary

## Differentiable Functions Have Sparse Graphs

Definition 1. A subset H of the plane is said to be a monotone graph if there exists a monotone function the graph of which can be transformed onto H by a rigid motion (of the plane).

Definition 2. (see[1]) A function f(x) is said to have a sparse graph if its graph can be covered by a countable number of monotone graphs.

The problem of whether or not a differentiable function has sparse a graph was raised in [1], Question 2. It is also stated in [1] that, the graph of an absolutely continuous function is not necessarily sparse. Our theorem 1 answers Question 2 affirmatively (which may be unexpected) and theorem 2 establishes that there is a Lipschitz 1 function with a sparse graph such that its constant multiples do not have sparse graphs. These multiples provide examples of Lipschitz 1 (and hence absolutely continuous) functions with non-sparse graphs; on the other hand they answer Question 10 of [1] in the negative.

Theorem 1. Let the real function f(x) be defined on a subset H of the real numbers and suppose

- (i) H is everywhere dense in itself;
- (ii) f'(x) exists at every point of H  $(f'(x) = \pm \infty \text{ is allowable}).$

Then, f(x) has a sparse graph.

Lemma 1. If |f(x) - f(y)| < |x - y| holds for every  $x,y \in H$ , then the graph of f is a monotone graph.

<u>Proof.</u> Rotate the graph with angle  $\frac{\pi}{4}$ .

Proof of theorem 1. Let

$$A_{i,n} = \{x \in H: \frac{f(x) - f(y)}{x - y} > 0 \text{ for every } | x - y| < 1/n, y \in H\} \cap [\frac{i - 1}{n}, \frac{i}{n}],$$

$$B_{i,n} = \{x \in H: \frac{f(x) - f(y)}{x - y} < 0 \text{ for every } | x - y| < 1/n, y \in H\} \cap [\frac{i - 1}{n}, \frac{i}{n}],$$

$$C_{i,n} = \{x \in H: |\frac{f(x) - f(y)}{x - y}| < 1/n, y \in H\} \cap [\frac{i - 1}{n}, \frac{i}{n}],$$

$$(i = 0, +1, +2, ..., n = 1, 2, ...).$$

It is obvious from the differentiability of f that

(i) 
$$H = \bigcup_{i=-\infty}^{+\infty} \bigcup_{n=1}^{\infty} (A_{i,n} \cup B_{i,n} \cup C_{i,n}),$$

furthermore for any i,n

(ii) f is increasing on A<sub>i,n</sub>,

- (iii) f is decreasing on  $B_{i,n}$ ,
- (iv) the graph of  $f|_{C_{i,n}}$  is a monotone graph by Lemma 1.

The countable decomposition in (i) and relations (ii) - (iv) prove our theorem.

Theorem 2. There exists a function f(x) on [0,1] such that

- (i) f satisfies Lipschitz's condition |f(x) f(y)| < |x y| (in particular its graph is a monotone graph by Lemma 1).
- (ii) For any c > 1 cf(x) does not have a sparse graph on I, where I is any nonempty open subinterval of [0,1].

We need the following lemma, whose simple proof we omit.

Lemma 2. Let f be defined on a set H which is everywhere dense in itself and suppose that  $f'(x_0) = 0$ ,  $f'(x_1) > 1$ ,  $f'(x_2) < -1$  hold for some  $x_0, x_1, x_2 \in H$ . Then the graph of f is not a monotone graph.

Proof of theorem 2. We take a decomposition

$$[0,1] = \bigcup_{n=0}^{\infty} H_n$$

with pairwise disjoint measurable and metrically dense subsets  $H_n$  (i.e. denoting Lebesgue's measure by  $|\cdot|$ , we have  $|H_n \cap I| > 0$  for every open subinterval  $\emptyset \neq I \subset [0,1]$ ). Put

$$\varphi(x) = \begin{cases} 0, & x \in H_0, \\ 1 - \frac{1}{n}, & x \in H_{2n} \quad (n=1,2,...), \\ -1 + \frac{1}{n}, & x \in H_{2n-1} \quad (n=1,2,...) \end{cases}$$

and

$$f(x) = \int_{0}^{x} \varphi(t)dt.$$

Obviously |f(x) - f(y)| < |x - y| holds for every  $x,y \in [0,1]$  and hence by Lemma 1, f has a monotone graph. By Lebesgue's theorem  $f'(x) = \varphi(x)$  holds a.e. and hence f'(x) takes the values  $0, 1 - \frac{1}{n}, -1 + \frac{1}{n}$  (n=1,2,...) almost everywhere on the corresponding subsets  $H_i$ .

Suppose that cf has a sparse graph for a given c > 1, that is

$$G = graph(cf) \subset \bigcup_{n=1}^{\infty} \Gamma_n$$

where  $\Gamma_n$  is a monotone graph for every n. We may clearly assume that the monotone function  $\Gamma_n$  whose graph is  $\Gamma_n$  is defined on the whole real line. Referring to Baire's category theorem there exist N

and a subarc  $J\subset G$  such that  $J\subset \text{cl }r_N$  . Let H denote the projection of  $J\cap \ r_N$  to the axis x.

Obviously, cf $|_{H}$  has a monotone graph. Since  $clr_N \setminus r_N$  is a countable set, H fills up the interval I corresponding to J apart from countable many points. Therefore  $|H_n \cap H| > 0$  holds for every  $n=0,1,\ldots$  and hence there exist  $x_0 \in H_0 \cap H$ ,  $x_1 \in H_{2n} \cap H$ ,  $x_2 \in H_{2n-1} \cap H$  such that  $cf'(x_0) = 0$ ,  $cf'(x_1) = c(1-\frac{1}{n}) > 1$ ,  $cf'(x_2) = c(-1 + \frac{1}{n}) < -1$ .

By Lemma 2, the restricted function  $cf|_H$  cannot have a monotone graph, a contradiction. The proof is complete.

Remark: With theorem 2 we can answer Question 10 of [1]. Let f denote the function of theorem 2, then putting f with the outer homeomorphism cx (c > 1) the composition of does not have a sparse graph. Let g(x) denote the inner homeomorphism

$$g(x) = \begin{cases} 2x, & 0 \le x \le 1/3 \\ \frac{1}{2}x + \frac{1}{2}, & 1/3 < x \le 1. \end{cases}$$

Then the composition f(g(x)) does not have a sparse graph, either. Indeed, the graph of f(g(x)) on  $[0,\frac{1}{3}]$  is similar to the graph of 2f(x) on  $[0,\frac{2}{3}]$  by the similarity tranformation F(x,y) = (2x,2y).

Similarity transformations plainly preserve the sparse graph property. We conclude that the sparse graph property is not an invariant with respect to home-omorphic transformations.

## Reference

[1] J. Foran, Continuous Function - A Survey, Real Analysis Exchange, Vol. 2, No. 2 (1977) 85-103.

Received July 17, 1978