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Differentiable Functions‘Have Sparse Graphs

Definition 1. A subset H of the plane is said

Yo be a monotone graph if there exists a monotone

function the graph of which can be transformed onto

H by a rigid motion (of the plane).

Definition 2. (see[1l]) A function f(x) is said to

have a sparse graph if its graph can be covered by a

countable number of monotone graphs.

The problem of whether or not a differentiable
function has sparse a graph was raised in [1], Question
2. It is also stated in [1l] that, the graph of an ab-
solutely continuous function is not necessarily sparse.
Our theorem 1 answers Question 2 affirmatively (which
may be unexpected) and theorem 2 establishes that there
is a Lipschitz 1 function with a sparse graph such that
its constant multiples do not have sparse graphs. These
multiples provide examples of Lipschitz 1 (and hence
absolutely continuous) functions with non-sparse graphs;
on the other hand they answer Question 10 of [1] in

the negative.
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Theorem 1. Let the real function f(x) be

suppose

(1) H is everywhere dense in itself;

defined on a subset H of the real numbers and

(11) f£'(x) exists at every point of H

(f'(x) = += 1s allowable).

Then, £(x) has a sparse graph.

Lemma 1. If |£(x) - £(y)| < |x - y| holds for

every X,ye€H, then the graph of f is a monotone graph.

Proof. Rotate the graph with angle

=8

Proof of theorem l. Let

A:I.,n =

{x€H: 2-(3%:—5-(-11> 0 for every |x-y| < 1/n,y€H}n [1';1-—1-,%],

Byn = |
{xeH: &(ﬁ%ﬂ < 0 for every |x-y| < 1/n,y€H} n [—3—%‘- s
Ci,n =

{xel: | X = 'f |<l for every |x-y| < 1/n,y€H}n [%’i,%]

(i=0,il,iz,...,n=l,2,,. c)e

It 1s obvious from the differentiability of f that
+w
(1) E= L__{_c ngl(A ,*1 in in)’
furthermore for any i,n

(11) £ is increasing cn Ai,n’



(iii) f is decreasing on Bi,n’

(iv) the graph of f|C is a monotone graph
i,n

by Lemma 1.

The countable decomposition in (i) and relations

(11) = (iv) prove our theorem.

Theorem 2. There exists a function f(x) on [0,1]

such that

i f satisfies Lipschitz's condition
(1)

|£(x) - £f(y)| < |x - y| (in particular

its graph is a monotone graph by Lemma 1).

(ii) For any ¢ > 1 cf(x) does not have a sparse

graph on I, where I is any nonempty open

subinterval of [0Q,1].

We need the following lemma, whose simple proof we

omit.

Lemma 2. Let f be defined on a set H which is

everywhere dense in itself and suppose that

£'(x,) =0, £'{xq) > 1, £'(x;) < -1 hold for some

xo,xl,xzeH. Then the graph of f is not a monotone
graph.

Proof of theorem 2. We take a decomposition




with pairwise disjoint measurable and metrically
dense subsets Hn (i.e. denoting Lebesgue's measure
by ||, we have |HnnI| > 0 for every open subinterval

d#1Ic[0,1]). Put

o, X € Ho,
¢(X) = 1l - 'I-];' ) X € H2n (n=l,2,ooo) s
1
"1 + H E] X E Han-l(n=l,2,ooo)

and

£(x) = Sx o(t)dt.
o
Obviously |f(x) -~ £(¥)| < |x - y| holds
for every x,ye[0,1] and hence by Lemma 1, £ has
a monotone graph. By Lebesgue's theorem f'(x) = @(x)
holds a.e. and hence f'(x) takes the values
0, 1 - %?, -1 +'%-(n=l,2,...) almost everywhere on the

corresponding subsets Hi'

Suppose that cf has a sparse grapn for a given
¢ > 1, that is

G = graph(cf) <« U
n=

1 n

where rn is a monotone graph for every n. We may
clearly assume that the monotone function fn whose
graph is Fn is defined on the whole real line.

Referring to Baire's category theorem tnere exist N
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and a subarc J <« G such that J < cl PN' Let H denote

the projection of J N PN to the axis x.

Obviously, cf|H has a monotone graph. Since
ClPN\‘PN is a countable set, H fills up the interval
I corresponding to J apart from countable many points.
Therefore |HnnH| > 0 holds for every n=0,1,... and
hence there exist X, € H0 n H, X, € H2n n H,
X, € Hy, 7 N H such that cf'(x ) =0, cf'(x;) = c(l—-—i—)>l,

ef!(x,) = c(-1 +3) < -1.

5)
By Lemma 2, the restricted function cf[H cannot

have a monotone graph, a contradiction. The proof is

complete.

Remark: With theorem 2 we can answer Question 10
of [1]. Let f denote the function of theorem 2, then
putting £ with the outer homeomorphism cx (¢ > 1)
the composition ¢f does not have a sparse graph.

ILet g(x) denote the inner homeomorphism

2x, 0 <x<1/3

g(x) =
%k +-% R 1/3 < x < 1.

Then the composition f(g(x)) does not have =
sparse graph, either. Indeed, the graph of f(g(x))
on [O,%J is similar to the graph of 2f(x) on
[o,%] by the similarity tranformation F(x,y) = (2¢,2¥).
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Simila.rity transformations plainly preserve the sparse
graph property. We conclude that the sparse graph
property is not an invariant with respect to home-

omorphic transformations.
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