Real Analysis Exchange Vol. 4 (1978-79)

I. Z. Ruzsa, Mathematical Institute of the Hungarian Academy of Sciences

Locally Symmetric Functions

Throughout we let f denote an arbitrary function from the real line R into an arbitrary set A. We call f <u>locally</u>

symmetric if to each x in R there corresponds a $\delta_x > 0$ with (1) f(x-h) = f(x+h) for $0 \le h < \delta_x$.

M. Foran [2] proved that a measurable locally symmetric function is constant except on a nowhere dense countable set. Here we prove the following stronger result.

Theorem. If f is locally symmetric, then for some $q \in A$ the closure of the set $\{x: f(x) \neq q\}$ is countable.

The proof of this theorem will be preceded by the proof of a lemma concerning the function d, where d(x) is defined to be the supremum of the numbers δ_x that satisfy (1).

Lemma. d is upper semicontinuous if f is locally symmetric.

<u>Proof.</u> It suffices to prove that d is upper semicontinuous at 0. Suppose to the contrary that, for some constant c > 0, there are numbers x arbitrarily close to 0 with

(2)
$$d(x) > d(0) + c$$
.

Set $c_1 = (1/10)\min(c,d(0))$, and choose two numbers x_1 and x_2 satisfying (2) such that $x_1 < x_2$ and

(3)
$$|x_j| \le c_1$$
 for $j = 1$ and 2.

Set $c_2 = x_2 - x_1$ ($c_2 \le 2c_1$) and consider any number h with

(4)
$$d(0) \le h < d(0) + c_2$$
.

To complete the proof, we shall show that f(-h) = f(h) in contradiction with the definition of d(0).

We introduce the notation $[p]_j$ to denote the reflection of any point p about the line $x = x_j$ (j=1,2). Then in view of the definition of c_1 and the inequality $c_2 \le 2c_1$, it follows easily from (3) and (4) that

$$|x_1 - [h]_2| < |x_2 - [h]_2| = |x_2 - h| < d(0) + c$$
.

Consequently, since x_1 and x_2 satisfy (2), we have

$$|x_2 - h| < d(x_2)$$
 and $|x_1 - [h]_2| < d(x_1)$,

and it follows from the definition of d that

(5)
$$f(h) = f([h]_2) = f([[h]_2]_1)$$
.

Similarly we deduce that

(6)
$$f(-h) = f([-h]_1) = f([[-h]_1]_2)$$
.

Now direct computations yield

(7)
$$[[h]_2]_1 = h - 2c_2 = -[[-h]_1]_2$$
;

furthermore, the first of these equalities, together with (4) and the inequality $2c_2 < d(0)$, gives

(8)
$$0 < [[h]_2]_1 < d(0)$$
.

Then (5) - (8) and the definition of d(0) imply that the desired equality f(-h) = f(h) holds. \square

Remark. The key to the preceding proof is the fact that the composition of two parallel reflections is a translation.

Proof of the theorem. Due to the Lemma and to the local symmetry of f, the sets

$$X_n = \{x: d(x) \ge 1/n\}$$

are closed and their union is R. By Baire's theorem, there is an n for which X_n contains an interval I. If a < b < a + 1/n, $a, b \in I$,

then by applying the symmetry condition for (a+b)/2 we have f(a) = f(b). This means that f is constant on I. Denote this constant by q, and set $Q = f^{-1}(q)$. Then the set X of condensation points of the set $X = R \setminus int(Q)$ is either perfect or empty; suppose the former and let I = (a,b) be a complementary interval to X. (Note that $X \neq R$, as $int(Q) \neq \emptyset$.) At least one of A and A is an interval to A for sufficiently small A; that is, A is an isolated point of A, A contradiction. Therefore A and A is a countable closed set. A

Call a set locally symmetric if its characteristic function is locally symmetric. Then the following corollary provides an affirmative answer to Query 37 in [1].

<u>Corollary</u>. If S is a locally symmetric subset of R, then either S or R\S is countable.

In closing, we note that the Theorem is best possible in the following sense: every set of countable closure is contained in a locally symmetric set of countable closure.

REFERENCES

- [1] M.J. Evans and C.E. Weil, Queries, Real Analysis Exchange 3(1977), 107.
- [2] M. Foran, Symmetric functions, ibid. 1(1976), 38-40.

Received July 18, 1978