
 TOPICAL SURVEY Real Analysis Exchange Vol. 4 (1978-1979)

 Bounded Variation and Absolute Continuity

 in the Theory of Surface Area

 by

 Casper Goffman

 This survey is a compilation of the lectures on
 functions useful in surface area given by Professor
 Goffman at the SIMPOSIUM IN REAL ANALISIS at Western
 Illinois University 3 July 19-23, 1978. It has been
 prepared and edited by the editorial board of the
 Exchange from Professor Goffman' s lecture notes and from
 video tapes of his lectures . For cohesiveness 3 the
 final lecture on bounded variation and absolute continuity
 in the theory of Fourier series has been omitted. The
 lectures and this survey are expository in nature, intended
 to provide insight into the theory. Nevertheless , several
 proofs and indications of proofs are included as a
 vehicle to further this insight. The reader in search of
 detailed proof for a particular result included here should
 consult the appropriate bibliographic reference .

 We of the editorial board wish to express our thanks
 to Professor Goffman for his assistance in the preparation
 of this survey.

 50. Introduction

 Functions of bounded variation were Introduced by-

 Jordan in the last century and were found by him to

 have importance both for the theory of arc length and

 for the convergence of Fourier series.

 In the third and fourth decades of this century,

 Tonelli and Cesari introduced appropriate notions of

 absolute continuity and bounded variation to handle two

 dimensional surface area and double Fourier series.

 Much has been done during the last decade to

 obtain analogous parallels in higher dimensions
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 involving Sobolev spaces on the one hand and refined

 spaces of functions of bounded variation on the other.

 The results are mostly for the area formula and for

 localization for multiple Fourier series.

 The main purpose of these notes is to develop

 needed properties of these spaces. Little attention

 is given to the applications themselves.

 5 1.

 In this section we consider three classes of real

 valued functions defined on an interval I = [a,b].

 These are the bounded variation functions, the continu-

 ous bounded variation functions, and the absolutely

 continuous functions. The three classes are designated

 by BV, CBV, and AC, respectively. Analogues of these

 classes for functions of several variables are important

 in the development of surface area theory. Hence, it

 seems appropriate to begin by considering some of the

 properties of these classes in the one variable setting.

 Proofs for these properties are outlined here for a

 couple of reasons - 1) the proofs are considerably

 simpler than those of the corresponding several vari-

 ables results and 2) hopefully the one variable proofs

 will provide insight into what lies ahead.

 In order to give a perspective for the analogous

 definitions in higher dimensions, we characterize these

 three classes in terms of distributions. A distribution
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 is a continuous linear functional on the vector space

 of continuously differentiate functions having compact

 support where the vector space topology is suitably

 chosen. The derivative L' of a distribution L is

 defined by L'(cp) = -L(^') for cp € Cœ. Thus., every dis-
 tribution has a derivative. This definition is motivat-

 ed by the case where L is determined by a continuously

 differentiable function f, i.e., L(<p) = $f (x)<d(x)cLx.

 Then , the integration by parts formula yields

 L'(cp) = J f ' (x)cp(x)dx = - J f(x)çp'(x)dx = -L(cp').

 Now, L is given by an absolutely continuous function if

 and only if L' is given by a summable function; L is

 given by a bounded variation function if and only if L'

 is given by a totally finite measure; and L is given by

 a continuous bounded variation function if and only if

 L' is given by a non-atomic totally finite measure.

 We shall first note that functions in AC may be

 characterized as those which can be approximated in a

 certain sense by functions in C^. More specifically,

 let f be defined on an interval J and let ¿(f,J) denote

 the arc length of the curve determined by f over J. For

 an open set G = Uln.« where the In are pairwise disjoint,

 we define ¿^(G) = l(f ,G) = E¿(f,In). This set function
 n

 generates a length measure ¿^(E) defined on the Borei
 sets in I. If f and g are such that (I) < <=,

 ¿ (I) < ®, and f(x) = g(x) for every x in some Borei S
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 set E, then by a result of Verchenko [15]* -tf(E) =
 O

 In the present one dimensional case this follows from

 the fact that length measure equals Hausdorff one dimen-

 sional measure.

 THEOREM 1 . A function f : I-*R belongs to AC if and

 only if , for each e > 0 there is a g € C^ such that if

 G = fx|f(x)¿g(x)}, then ¿f(G) < e and -Łg(G) < e.

 Proof. To prove the sufficiency, suppose f satis-

 fies the condition. Then f 6 BV and hence ¿^(I) < ®.
 Let e > 0; let g be the function of the theorem for

 this e i and let G = {x|f (x)j^g(x)} . Then

 lr(I) » '• lf(a) + ¿ S (I'G) * I ^L+[f'(x)]2dx + e, '• S I'G

 whence tr(I) 1 n J Jī+t t ' (x)]¿dx and f ç AC. 1 I

 For the converse, suppose f e AC. Let e > 0. By

 a customary real variables argument, there is a perfect

 set Eel whose complement has measure less than

 e/2, such that f is uniformly continuously differentiable

 on E, in the sense that for each r' > 0 there is a 6 > 0

 such that, for every interval J c I of length less than

 6 and for every two pairs of points in J n E, the

 corresponding difference quotients of f differ by less

 than ti. We can then extend f from E to I by defining

 it to be linear on the complementary intervals of E and
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 then "rounding off" at the end points in such a way

 that the resulting g satisfies the desired conditions.

 Theorem 1 also follows from a deep theorem of

 J. H. Michael [12] 3 a form of which will be described

 in §2. of this article.

 There is a companion result for functions in B73

 and it has a similar proof.

 THEOREM 2. If f : I-»R belongs to W , then for each

 e > 0 there is a g ç such that f (x) = g(x) except on

 a set of measure less than e and (1)1 < e.
 _ _ _ _____ I o

 Proof. As before j there is a perfect Eel such

 that m(I'E) < e and f is uniformly continuously differ-

 entiable on E. We extend f as before to a continuously

 differentiable function h on I in such a way that

 ¿h(I) < ¿fí1) + € • Pick one open interval J of I'E and
 modify h on J to a function g Ç such that

 I ¿^(I) -¿g(l) ļ < e.

 The third one variable result we discuss has the

 most interest for us. It is a theorem of F. C. Liu [11].

 Consider the compactification IT of R obtained by adjoin-

 ing -o» and +®. A function f : I-»R is called weakly

 continuously differentiable if the derivative exists

 or is +a> or -oo at each x Ç I and is a continuous

 function from I into R.
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 THEOREM 3. If - € CBV then for each e > 0 there

 is a weakly continuously differentiable function g such

 that if G = {x|f (x)^g(x)} , then ¿f(G) < e and ¿_(G) < e .

 We shall not give the proof but shall make some

 instructive remarks. Accordingly, consider the Cantor

 function f. Now, I = [0,1] and f(I) = [0,1]. Let

 c I and Eg c f(I) be perfect sets such that

 f (Ex) n E2 = 0, m^) > 1 - e/2, m(E2) > 1 - e/2, f is
 uniformly continuously differentiable on E^, and f""1" is

 uniformly continuously differentiable on Eg. We may

 then extend f from E^ u f'^Eg) to a weakly continuously
 differentiable g as desired.

 Suppose that by a similar argument we have the

 theorem for monotone functions. It is natural to use

 the decomposition of f as a difference f = f^ - fg of

 increasing functions, obtain g^ and gg as above, and

 let g = g^ - gg. The danger is that these functions
 could have infinite derivatives at the same point. It

 seems plausible that a satisfactory pair f^, fg could
 be obtained by using a Hahn decomposition. Let E and F

 be disjoint Borei sets in I such that the variation

 measure is non-negative on every subset of E,

 non-positive on every subset of F, and zero on every

 subset of I=(EuF). Let f^(x) =m[(a,x)nE] and
 fg = fi - f. It should then be possible to define g^

 and gg as needed.
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 The actual proof of Theorem 3 as given by Liu is

 quite delicate.

 S 2.

 This section is devoted to a brief study of

 generalizations of the notion of bounded variation to

 higher dimensions. In particular, we will discuss

 bounded variation in the sense of Cesari, giving appro-

 priate equivalent definitions, and the specific properties

 of functions in these classes which will be important to

 subsequent discussions. Finally, associated work of

 Federer and Goffman is examined.

 Let Q denote the unit n cube. A function f is of

 bounded variation in the sense of Cesari (fÇBVC) if f

 is summable and if for every i = 1, 2, ..., n there is a

 function g3" which is equivalent to f and which is of

 bounded variation in x^ for almost all values of the
 other n-1 variables and the variation function is a

 summable function on the n-1 cube. In a, b, and c, to

 follow, we state several properties and equivalences.

 a. A function f is in BVC if and only if the partial

 derivatives, (in the distribution sense) of f a.re totally

 finite measures. That is, there is a vector valued

 measure jj = ...j |jn) such that for every cp 6 C00
 we have

 jcp(x) dUŁ(x) = - [ f(x) dx, i = 1, 2, ..., n.
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 This was first noticed by Krickeberg [10] and later a

 simpler proof was given by Goffman and Serrin [9].

 b. If f 6 BVC, there is a function g (independent

 of i) which is equivalent to f and which is of bounded

 variation in x^(i=0L,2, . . . ,n) for almost all values of
 the other n-1 variables , and the variation functions

 are all summable functions of the n-1 cube. Indeed, it

 can be shown that g has this property for all directions ;

 this fact was first proved by Serrin and Hughs independ-

 ently. Each proof depends upon the fact that for suiy

 given coordinate direction, the properly chosen equiva-

 lent function is the difference between two summable

 functions, each of which is nondecreasing as a function

 of one variable in this direction for almost all values

 of the other variables. It is interesting that these

 functions, although summable, need not be in BVC. The

 required function is actually the lim sup of functions

 which have been regularized via circularly symmetric

 regularizers .

 c. A theory of surface area was given by Cesari

 [1] for such functions and later Goffman [4] extended

 these ideas and developed many properties of these

 functions. We shall give some indication of this work.

 A real function p on Q is piecewise linear if it is

 continuous and if there is a simplicial decomposition

 of Q such that on each simplex a in this decomposition,
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 p is linear. The area a(p) is defined by

 a(p) = Sv(p(o))

 where v(p(a)) is the n volume of the simplex p(a).

 This particular area functional was extended by Lebesgue

 to all continuous functions f on Q. This extension is

 accomplished by noting that a(p) is lower semi-continuous

 on the metric space of piecewise linear functions

 (denoted by P) where the distance is defined as

 d(p,q) = max |p(x)-q(x)ļ.
 xeQ

 Every lower semi-continuous functional on a metric

 space has an extension to a maximal lower semi-

 continuous functional on its completion. The completion

 of P is the space C of continuous functions on Q., and

 the corresponding extended functional, A(f)¿ is the

 Lebesgue area.

 This completes our introduction to Cesari' s theory

 and we now consider Tonelli 's theory and its generali-

 zations. Tonelli [14-] not only introduced a generalized

 notion of bounded variation, but also introduced a

 suitable generalization of absolute continuity and both

 of these notions play a major role in the theory. A

 function f is of bounded variation in the sense of

 Tonelli (f € EVT) if f € BVC and f is continuous. The

 function f is absolutely continuous in the Tonelli

 sense (f Ç ACT) if f £ BVT and if f is absolutely
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 continuous in each variable for almost all values of

 the other variables. If f € BVT then its partial

 derivatives exist almost everywhere. Tonelli' s main

 theorems are listed below as Theorem T^ and Theorem Tg*

 THEOREM T^. The area functional A(f) is_ finite
 if and only if f € BVTj and then

 1/2
 A(f) s i[l + + it + ... + r ] dŁ...dx .

 Q 1 2 n

 THEOREM T2. The function f ç ACT if and only if

 I/2
 A(f)=j[l + f| + f I + ...+f®] dx^. . .âxn.

 « 1 2 n

 The method of extension employed by Goffman [4]

 is to alter the metric on P in a suitable way. First

 consider the coarser distance given by

 6(p,q) = [ |p(x) - q(x)|dx.
 Q

 The functional a(p) is again lower semi-continuous on

 P. (This is easy to show using the fact that conver-

 gence in implies convergence in measure.) Now,

 consider the extension of a(p) to a lower semi-

 continuous functional E(f) defined on the space of

 equivalence classes of summable functions. An important

 and interesting relationship is that A(f) = E(f) if f is

 continuous 3 and so the new area functional is an
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 extension of Lebesgue area. We indicate the proof of

 this. Clearly E(f) <; A(f). The opposite inequality

 follows from the fact that if f is continuous and

 A(f ) < œ, then for every e > 0 there is an t) > 0 such

 that if g is continuous and |f(x) - g(x) ļ < -q except on

 a set of measure less than ti, then A(g) > A(f) - e.

 A similar fact holds if A(f) = ®.

 We now consider the area functional E in the

 extended theory. The role EVT played for Tonelli is

 now played by BVC, and the role of ACT is now played

 by those functions whose partial derivatives, in the

 distribution sense, are summable functions. These

 functions are the Sobolev spaces and we now have

 the following theorems.

 '

 THEOREM G^. The area functional E(f ) is_ finite
 if and only if f € BVC, and then

 * P P P

 E(f) ^ J * [1 + f* P + f ļ P + ... + fļ P ] dx1...dxnc
 Q 1 2 n

 THEOREM Gg. The function f f wļ if and only if

 1/2
 E(f) « í ti + 'S + fx + ••• + fx ] dxx---<lxn-

 Q 12 n

 d. A function f may be in and yet be everywhere

 discontinuous in the sense that every function equivalent

 to f is everywhere discontinuous. Consider the open
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 unit square intQ. A pole xQ of a function f is a point

 such that for each M there is a disc a with center Xq
 such that Jf(x)| > M for each x ç <j» We use the ele-

 mentary fact that for each e > 0, k > 0, and x Ç intQ

 there is a spine function p with center x and height k

 such that a(p) < g. Now., let {xn: n=l,2j...} be a
 dense subset of IntQ. For each n let pn be a sum of

 spine functions whose centers are {x^J...Jxn}i whose,
 heights are all n, and the sum of whose perimeters are

 less than l/n2n with a(Pn) < l/2n. The function
 f = Zp„ is in wļ" and has area less than 2. n 1

 e. We turn now to an exposition of some associated

 results of Federer. There are certain geometric proper-

 ties of bounded variation functions of one variable

 which have suitable analogues for functions in BVC.

 Federer exploits these analogues in his work which is

 described briefly below. Let f £ BVC. The role of

 continuity is assumed by approximate continuity and the

 notion of finite sets (empty set) is replaced by the

 notion of finite (zero) Hausdorff (n-1) dimensional

 measure 3 Hn_^» (The zero dimensional measure of a set
 is equal to its cardinal number) . The graph of f is

 completed by a vertical line segement, ¿ . joining the
 X

 upper and lower approximate limits of f at x for every

 x ç Q. The main results of Federer [2] are listed below

 as Theorems F^ F F^j and F^.
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 THEOREM Fr If f € BVC then E(f) is equal to the
 Hausdorff n dimensional measure of the graph of f

 Sf = U[¿x: X € Q].

 THEOREM F 2 If f 6 BVC., the variation measure of
 the vector valued measure determined by grad(f ) is given

 b£
 ~hūD

 ' Hn-1(f~1(y))dy.
 -co

 THEOREM F^ . If f 6 BVC 3 then f is_ approximately
 continuous except on a set S which is the union of

 countably many sets of finite Hausdorff (n-1) dimensional

 measure .

 THEOREM F^. If f € BVC j then at each point, except
 for a set of Haus dor ff (n-1) dimens ional measure zero,

 there is a hyperplane though the point on each side of

 which f has a unique approximate limit.

 f. We culminate this section with a statement of

 Michael's Theorem. We first note that if f ç BVC then

 f defines an area measure E^. on the Borei subsets of Q.

 THEOREM M. If f f BVC then for each e > 0 there is

 a g £ C^" such that f (x) = g(x) except on a. set G with

 m(G) < e and |Ef(Q) - Eg(Q)J < e.

 In the case that f g it follows immediately that

 for every e > 0 there is a g ç such that if

 G = [x: f (x) g (x) } J then Ef(G) < e and Efl.(G) < e.
 O
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 §3.

 We now discuss the analogue in several variables

 of the fact that a function of bounded variation is the

 difference of two nondecreasing functions. Let f : Q -* R

 belong to BVC. We may suppose that f is of bounded vari-

 ation in for almost all of the other variables . . . ,xn.

 For each such X2j...jXn consider the increasing part of

 f in x^ as for functions of one variable. It is not
 difficult to show that the resulting function g of n

 variables is measurable and summable on Q. Then f = g - h,

 where g and h are increasing in x^ for almost every X2*...jXn
 and are summable. This is a very useful fact.

 It is somewhat surprising that it may be impossible

 to choose the functions g and h so that they belong to

 BVC. In the two dimensional case this is a consequence of

 the following fact which is of interest in its own right.

 THEOREM. If f ç BVC a function of two variables

 X and y and f monotonie ally nondecreas ing as a function

 of y for almost all values of x, then f has an equivalent

 g which is continuous almost everywhere .

 The proof of this theorem rests on two simple lemmas

 which involve the notion of m-continuity. A function f

 is m-continuous at a point (x,y) if there is a set of

 measure zero such that f is continuous at (x,y) relative

 to the complement of that set.
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 LEMMA 1. A function f is_ m-contlnuous almost

 everywhere if and only if there is a set S, whose comple-

 ment has measure zero, such that f _is_ continuous on S

 relative to S.

 Proof. The sufficiency is obvious. For the converse,

 let T be the set of points of m-continuity and let e > 0.

 Every point in T is the center of a ball of radius as

 small as we please in which the oscillation of f, ignoring

 a set of measure zero, is less than e» By the Vitali

 covering theorem, there is a set S^, whose complement is
 of measure zero, such that the oscillation of f, relative

 to S^, is less than g at each point of . Let S = o S-jyn.

 LEMMA 2. A function f is m-continuous almost every-

 where if and only if there is an equivalent function g

 which is continuous almost everywhere .

 Proof. Again, sufficiency is obvious. Suppose f

 is m-continuous almost everywhere. Let S be a set, whose

 complement has measure zero, such that f restricted to

 S is continuous at each point of S. Let

 g(x) = lim sup f(t).
 t-*x, t£S

 Then f(x) = g(x) on S. Let x ç S and let e > 0. Then

 there is an r > 0 such that if y ç S and |x-y| < r, then

 jf(x)-f(y)ļ < e. Hence, for any y such that |x-y| < r,

 we have ļf(x)-f(y)ļ ¿ e and, consequently, g is continuous
 at each x 6 S.
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 Proof of tiie theorem. We suppose the support of f is

 in the unit square. We shall show that f is m-continuous

 almost everywhere. Suppose, on the contrary, that the

 set of points where f is not m-continuous has positive

 measure. We may then assume that there is a k > 0 and

 a measurable set E such that m(E) > k and the upper

 m-limit of f at (x,y) exceeds f (x,y) by more than k.

 Since f is continuous in y almost everywhere, we may assume

 that this holds at every point in E. For each xQ, let
 E = f(x,y) ç E: X = xn} . Then m(E ) > k for an infinite

 x0
 set of values of x. Let r he a positive integer and let

 X, < . . . < X be such that m(E ) > k, i = 1,..., r. Let
 X X i

 a = minf (x^-x^_^) : i = 2,...,r}. Then a is positive.
 Let i be an integer between 1 and r, let (x^yQ) ç Ex ,

 i ^
 and let e > 0* There is an h such that 0 < h < e

 and f(x^,yQ4-h) - f(x^,yQ) < k/2. There is a (u,v) with

 I x j^-u I < a/2, v < yQ + h/2, f (u,v) > f(xi,yQ) + k, and
 with f monotonically decreasing as a function of y for

 x-= u. Now, f (u,y) > f (x^,y) + k/2 for a set of values of

 y whose relative measure in [y0,yQ+h] exceeds 1/2. By
 the Vitali covering theorem there are pairwise disjoint

 intervals I ^ , . . . , on the line x = x^, the sum of

 whose lengths exceeds k/2 and such that for each

 3 = 1, ... n^, there is an a^ with ļa^ļ < a/2 such that
 for every y ç

 ř(x1+a.j,y) - f (xŁ,y) > k/2.
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 If Vf (y) is the variation of f as function of x, for y
 fixed, then the above inequality implies that
 /) ļ p
 I V-(y)dy > k r/2 and since this holds for every r,
 JO

 Vf(y) is not summable. This contradiction completes
 the proof.

 Now j suppose f is an everywhere discontinuous BVC

 function. Let f = g-h be a decomposition of the type

 discussed in the opening paragraph of this section. The

 functions f and g cannot both be in BVC., for if they were,

 the above theorem would dictate that f be continuous

 almost everywhere.

 By a rather complex discussion one may use this two

 variable result to further show that there is a BVC

 function f of n variables such that for any direction d,

 f fails to have any decomposition f = g-h for which both

 g and h are in BVC and are nondecreasing in the direction d.

 The theorem of this section does not hold for n > 2.

 This depends on an example, a refinement of one given in

 the previous section, of a function g of n-1 variables

 which is in the Sobole v space and is everywhere

 discontinuous. Letting f(x^,...,xn) = g (xg, . . . ,xn), we
 have an example of an everywhere discontinuous function

 of n variables which belongs to , and which is n-1 ,

 monotonically nondecreasing in x^ for almost all values of
 the other variables. We point out, however, that if we

 25



 have a function in p > n-1, then the analogue of

 our theorem does hold.

 5

 We now define a special class which lies between

 and BVC and which plays the role in n variables that

 the continuous bounded variation functions play in one

 variable. This class is denoted by L and as the

 n-dimens ional case is wholly analogous to the two varia-

 ble case, we will restrict our attention to two dimen-

 sions. The material of this section and the next can

 be found in [5] and [6].

 Let Q be the closed unit square. A function

 f :Q •+ R is called essentially linearly continuous if f

 has equivalent functions g and h such that g is continu-

 ous in y for almost every x, and h is continuous in x

 for almost every y. The function f is linearly continu-

 ous if it is continuous in each variable for almost all

 values of the other variable. Finally, the function f

 is strongly linearly continuous if for each direction it

 is continuous as a function of one variable along almost

 every line in that direction.

 THEOREM. If f is_ essentially linearly continuous

 and BVC then there is an equivalent function g which is

 linearly continuous .
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 We will give some indication of the proof. Let

 {cp : h > 0} be a family of regularizers and let
 V» u

 f =0 * f. As f is essentially linearly continuous ,

 there is an equivalent function g which is continuous

 in y for almost all values of x. As f is BVC, g = g+ - g~

 where g+ and g~ are continuous and monotonically nonde-

 creasing in y for almost every x and such that each of g+

 and g~ is summable. Now, (g ) converges to g almost

 everywhere, and (g ) is monotonically nondecr easing

 in y for every x. So, for almost every x, the monotoni-
 i

 cally nondecreasing (g ) converges almost everywhere

 to the montonically nondecreasing g+. It is easy to

 see that for such x the convergence is everywhere and
 u

 uniform. Analogous results hold for (g") and g".

 It follows that g*1 converges uniformly on almost
 u

 all lines parallel to one of the axes . If the cp are

 symmetric (i.e. are square integral means) then g also

 converges uniformly on almost all lines parallel to the

 other axis. The function lim sup g*1 is equivalent to

 f and is linearly continuous .

 Now, it is also true that f is equivalent to a

 strongly linearly continuous function, but this result is

 somewhat deeper and is the topic of the next section.

 Let Q = Ix J. If f is linearly continuous, then for

 each e > 0 there are closed sets Eel and F c J such

 that the measure of each set is at least 1 - e and such

 that f is continuous on (ExJ) U (IxF). It follows that
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 the space of linearly continuous functions is complete

 with respect to the metric d(f ,g) where

 ã(f,g) = inf£k: there are E c I, F c J with |E| > 1-k and

 I F ļ > 1-k such that |f(x,y) - g(x,y)| < k

 for each (x,y) € (ExJ) U (IxF)}.

 The piecewise linear functions are dense in this

 space. The area functional , a(p), is lower semicontinu-

 ous with respect to this metric and extends to E(f) on

 the entire space. The intersection of BVC with this

 space is the space, L, of linearly continuous functions

 of finite area.

 Pederer [3] (also Mickle and Rado [13]) has shown

 that if f is continuous, then A(f) = H2(gr(f))J

 [H = Hausdorff two dimensional measure ; gr(f) = the

 graph of f]. It follows easily that the area measure ,

 Af.(S)J is equal to the Hausdorff measure of the graph of
 f restricted to S. This result extends to the functions

 in L ; sets whose projections on both axes have measure

 zero are negligible and have E^. measure zero. In
 computing Hausdorff measure, such a set Z is ignored.

 THEOREM. If f € L , then its surface area is

 equal to the Hausdorff two dimens ional measure of the

 graph of f on Q'Z.

 We also have a Verchenko type theorem, i.e.
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 THEOREM. If f , g € L and f = g on the Borei set S,

 then Ef(S) = E (S).

 We conjecture that the functions in L are those

 whose gradient measures are zero on sets whose (n-1)

 Hausdorff measure is finite.

 15.

 In this section we show that functions in JL are

 strongly linearly continuous for n=2. The cases where

 n>2 are much more difficult and will be considered later.

 First, however, we give the following example which shows

 that EVC is a necessary hypothesis in the result mentioned

 above.

 EXAMPLE. There is a linearly continuous function

 f which is not strongly linearly continuous .

 Proof. Let E denote the Cantor ternary set. Then

 the projection of ExE onto the line y=x is a line segment

 of length ^2". Let Jn be the union of the 2n~*1" open
 intervals of length 3~n which are contiguous to E. Let

 n

 In = [0,1] U In and let IQ = [0,1]. Now,
 n=l

 CO

 Q'ExE = (J C where
 n=l n

 cn *
 "f"Vi

 the sets Cn are the n stage "crosses" contiguous to
 ExE. Shrink each interval in J to a concentric closed

 n
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 interval and let J' denote the union of these closed but
 n

 slightly smaller intervals. Finally 3 let

 Kn *
 09

 and define the function f: ( (J K )u(ExE)-»[0,+®] by
 n=l n

 f(x) = Cn if xeK^
 / +00 if xçExE

 CO

 It is easy to see that f is continuous on ( (J I^)u(ExE)
 and so has a continuous extension f^: Q-»[0,-H»] such

 that f*^"(+®) = ExE. If we consider f* as a map from Q

 Into R (redefining f^(ExE) = -1) then f* is continuous

 in y for each x¿E. However 3 if ¿ is any line meeting

 intQ then l contains a point of ExE and consequently f^

 is not continuous on l. Further, if g is any function

 equivalent to f, then g=f on almost all of each cross Kn.
 It follows that g is also discontinuous on almost every

 diagonal line which intersects intQ. This completes

 the presentation of the example.

 We now introduce some preliminary work which will

 be used in the proof of the main result of this section.

 We will consider specific integral means f*1 where

 = -^2* S f(UjV)dudv.
 nh S((x,y),h)

 Let f^BVC j then f*1 is continuous and E(f|l) = limit ( f*1 1 1_h) .
 h-»0
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 Here, I_^ denotes the interval which is concentric with
 I, but whose side lengths are each 2h shorter than the

 respective side lengths of I. In addition we have the

 following lemma which we state without proof.

 LEMMA. If f ç L and I is_ any open interval, then

 E(f|l) = limit E(fb J I) .
 h-*0

 Now, suppose f ç L and let G = (a,b)x(c,d) contain

 the support of f. Let e>0 and let Sc(a,b) and Tc(c,d)

 be compact sets such that:

 i. For each xQçS, fil(xQjy) converges uniformly

 on (c,d) to f(xQ,y), and, for each yQ€T,
 t*(x ,y ) converges uniformly on (a,b) to

 f(x*y0)-
 ii. The function f is uniformly continuous on

 M = Sx(c,d) u (a,b)xT.

 iii. Ef(M) > Ef(G)-e
 We can define a function in each of the open intervals

 contiguous to M in such a way that this function is

 continuous, agrees with f on the boundary of the domain

 interval and has small area. The actual argument is

 rather delicate, but it does yield the following result.

 THEOREM. If f 6 L and 0 >0 , there is a continuous

 function g such that if S = {(x,y): f(x,y) ^ g(x,y)}

 then Ef(S) < e and Eg(s) < e*

 The converse of this theorem is also true. Let

 f Ç BVC 'L. There is a set Kc(a,b) of positive measure
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 such that for every xQ€K there is a yQ and a k>0 with

 the properties that if y €(y0-k,y0) and y' €(yoJyo+k)

 then f(xQ,y') > f(xQ,y) + k (this is but one of four
 possibilities). It follows that there is a u>0 and an

 Sc(a,b) with m(S)>u and such that for every xQ^S there

 is a yQ €(c,d) for which y 6(yQ-u3 yQ) = 3^ . Also,

 y' €(y0>y0+ ) = Jx implies that f(x0,y') > f(xQ,y) + u.
 P ^

 Let e=u. P /^j and suppose g is continuous with E^(I)<c

 where T = { (x,y) : f(x,y) / g(x,y)}. Then, m(T) < Ef(T) + e.

 There is then a yç I such that f(xQ,y) = g(xQ,y) for
 O

 every xQçS except for a subset whose measure is less than
 u/4. Similarly, there is a y'çJ such that

 o

 f(x0,yl) = g(xo,y') for every xq€S except for a subset
 of measure less than u/4. It follows that there is a

 UcS with m(ü)>u/2 such that for every xQ€U there is a

 y€lx and a y'€Jx for which f(xQ,y) = g(xQ,y) and
 o o

 f(x .y') = s(x ,y ' ) . For each x ÇU, let H be the
 o

 maximal closed interval containing (xQ,y0) in its inte-

 rior on which f(xQ,y) ¿ g(xQ,y) except possibly at

 (x0,y0) and at the endpoints. The variation of g on
 p

 this interval exceeds u and as such, m^(T) > u /2>e
 where m^ is the partial derivative of g with respect to

 x. But, Eg(T) ^ m^(T) and the theorem is proved.
 As a corollary we now obtain the desired result.

 COROLLARY. If f is_ essentially linearly continuous

 and BVC, then f is. strongly linearly continuous .
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 § 6.

 The goal of the final three sections of this survey

 is to show that, in any dimension n., a BVG function

 f : Q-*R belongs to L if and only if 3 for each e>0, there

 is an approximately continuous function g such that if

 E = {x: f(x)?%(x)}j then af(E) < e and ag(E) < where
 <Xf(E) denotes the area measure determined by f , [7] and
 [8], This area measure may be obtained in two ways:

 first j we may extend the area from an interval function

 to one defined on the Borei sets; or if x is Lebesgue

 measure and . _>un) gradient measure correspond-
 ing to the derivative of f 3 then a^. is the variation

 measure of the vector measure . . . *Hn) • T*10
 so-called co-area or partial area is the variation

 measure of . . . ,|jn) . As an outer measure we have
 that Of satisfies the following three conditions :

 (i) if the distance between E and F is positive,

 then af(EuF) = af(E) + af(F);
 (ii) if E is measurable and e>0, there is a compact

 F and an open G with FcEcG and af(G) < af(F) + e;
 (iii) compact sets have finite measure.

 The following Vitali-Besicovitch covering theorem

 will be useful to us.

 THEOREM. If an outer measure m on n-space satisfies

 the above conditions (i), (ii)j (iii) and if S is^ a set

 covered by a family R of closed oriented cubes such that
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 for each e>0 and xçS there is a cube In H with center x

 and diagonal less than e 5 then a countable set of pair-

 wise disjoint cubes in R covers almost all of S.

 We shall let f denote the spherical integral means

 of f over balls of radius 1/m. The sequence {fm} con-
 verges uniformly along almost every line parallel to the

 coordinate axes to a function g which is equivalent to f.
 n

 Also, for each 6>0 there is a set E. = (J (E4 i x (a. ii 3bĄ)) õ i=i i ii
 on which g is uniformly continuous and on which fffl = g^

 m = 1,2,... converges uniformly to g, and x(Qj_ < ò3
 i = 1, ...,m. We can say even more:

 LEMMA. Us ing the notation of the previous paragraph»

 given an e>0 vre can choose E^ for which ) < e •

 Proof. For each i=l, . . . ,n,

 l^ijj (Q) = J V(f ,x^, (ai*b^) )dx^j

 where x^ denotes the vector in n-1 space obtained by

 deleting x^ from (x^, ...,xn). Now, there is a 6>0,
 6 < e/(n+l), such that x(Qļ_'Ei) < à implies

 luj = J V(fJxli(aļ,bļ))dxļ > IjjJ (Q) - e/(n+l).
 Ei

 n

 For E. = U (E.,x(a, 11 ,b, ) ) we have 5 n=l 11
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 af(QNEfi) * ? |uí|(QNE6) + x(Q'E5)

 - ï kil (Q) - £ i »Ll(V(a i'b i)) +2(^6) 0 i=l 1=1 0

 < e •

 In i 7 we shall verify the necessity of the condition

 mentioned in the beginning of the present section and

 in l8 we shall prove its sufficiency. Before giving the

 necessity proof we consider the following construction

 which will be used in that argument. Let f € L and let

 e>0. We obtain a special zero dimensional closed set

 V for which af(V) > af(Q) - e-

 To this end let E^ be as in the previous lemma.

 For each 1=1,...,^ let S^cE^ be the points at which the

 (n-1) density of E^ using cubes in is 1. Let
 n

 S = (J (Sj_x(aj_íbj[)) ♦ Then af(QNS) < e. Let T^cS^ be
 ^ ^ n

 closed and such that x(Q.'T. ) <6. If T = U (T,x(a, ,b. ))
 ļ-ļ

 then af(Q'T) < e and T is closed in Q.
 We apply the above covering theorem to T to obtain

 a system of oriented closed cubes. Let be a collection

 of oriented closed cubes centered at x} all of diagonal

 less than 3/^and some arbitrarily small. Let

 R = U{RX: x € intftn T} .
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 There is a finite set Rļ, ...,Rn of pairwise disjoint

 cubes in R such that

 ni
 af{Q' U (Ej nT)) < e.

 In the same way, for each jļ=l, . . . ,rip there is a finite
 set R^ n s pairwise disjoint, interior to R. ,
 Jlx Jrj, n J1

 such that

 ni ah
 af(Q' U U (B, < HT)} < s .

 ¿1=1 J2=1 12

 Continuing, we obtain a system

 R j j ļ k = 1.2« .. .

 =

 for each j2 = 1, ...,nj

 for each ^ = 1, . . . ^ and jg = 1, . . . ;

 J3 = 1,...,^^;

 for each , j^j jfc = 1, . . . . • jfc-1,

 of pairwise disjoint closed cubes. Each R. . .

 is in intR. . and is of diagonal less than 1/2^. For
 Jl* *'Jk-l

 each k. the cubes R. . are pairwise disjoint and
 jl"-Jk .

 < f
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 The R. . are said to be of rank k.
 Jl**,Jk

 For each k=l,2,..., let V. = u(R^ flT) and let
 K Ji« . . Jfc

 V = nv^. K Since T is closed it follows that k K

 V = ñ (uHi 1 ).

 In this construction all cubes chosen are taken so

 that {fm} converges uniformly on almost all lines on
 their faces which are parallel to the coordinate axes .

 The density of S is 1 at each point of T and hence

 of V. We consider a closed frame about the boundary of

 each R. . so that the frames are pairwise disjoint and
 J ļ • • • J ķ

 their union has density zero at each point of V. This .

 is done as follows: For any cube R we consider frames of

 width h about bR. Each R. has a frame G.

 and they may be taken so that they are all pairwise

 disjoint, even of different ranks. Each G. ^ may
 ^1* * k

 then be shrunk to a frame F. , still about òR^ ,
 jr..jk , Jr*-Jk

 in such a way that UUF. . has density zero at each
 Jl***Jk

 xçV. Then S'UUF^ * has density one at each xçV.
 Jl'*'Jk

 We make one further remark s.t this point . If f ç L

 and H is an oriented hyperplane, then af(H)=0. So, for
 any open interval I it readily follows that

 lim af (I) = af(I). This may fail for f ą BVC.
 ' m m
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 5 7.

 In this section we complete the proof of the

 following theorem.

 THEOREM. For each f6i and e >0 there is an approxi-

 mately continuous g such that if E = fx: f (x)^g(x)} ,

 then af (E) < « and ag(E) < e •

 Proof. Let V be as in the previous section. We

 shall extend f } restricted to V3 to a function g on Q

 which is approximately continuous at every x 6 QWj

 except possibly at points on the boundaries of the cubes

 Rj . .
 J ļ • • •

 Via a truncation of f, which reduces the area

 slightly, we may suppose |f(x)ļ < M for each x€Q.

 For each k, let Qv = uR-r * and let A. be the
 K Jļ* • • Jļ£ K

 (n-1) measure of òQfc. We choose sequences {rļ^) s [Çk}j

 (Çk}j where S§k<ej £TikAfc<e and S^fe<e/2M.

 We first define g on QNQ-, as an integral mean f
 doLjl

 so that

 (al) lfm < 1 for eac^ x^s (see
 (bi) jfm (x)-f (x)| < ri-^ on all of öQ^ except for

 a set of (n-1) measure less than for each

 m>mļJ

 (c^ af (Q'intQ1) < af (QNintQ.^ + § .
 ml

 Now, (c^) follows from the last remark in the pre-

 vious section and (a^) and (b^) follow from the choice
 of S and the properties of the R., .

 J1
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 We next define g on Q^NintQ^ as fffl a where m^pm^is
 such that

 (a2) lfm2(x)_f(x) I < 1/2 on S'
 (b2) |fm (x)-fm(x)| < t]2 on all of öQ2 except

 for a set of (n-1) measure less than ç2
 for each m>m2,

 (c2) af (Q1MntQ2) < af (Q-^intQg) + ç2.
 m2

 Continuing in this manner we obtain m^<m2<. . .-cm^. . .
 and for each k we define g on as where

 (ak) lfm (x)_f(x)l < 1/k on S>
 k

 (bk) ļfm (x)-fm(x)ļ < Tļk on òQfc for each m>mk except
 le

 on a subset of measure less than

 (ck) af < af('-ì^infc') +
 mk

 Since Q V = U where Qq = Q, we have defined
 k=l

 g everywhere on Q. It is two branched on òQ^« Pick
 one of the branches.

 We now remove the discontinuities on the bQfc sets.
 Note that any modification of g within the frames F.,

 Jl***Jk
 will not change the approximate continuity of g at any

 point of V. Let R=R. j be any cube in our system
 Jl* * ,Jk

 and F the frame about òR. We shall transfer the

 discontinuities of g from bR to the surfaces of two

 other cubes with boundaries in F, but with greatly reduced

 oscillations. By repeating the process } we obtain a

 sequence of functions which converge to a continuous h in

 F with an(F) n not much greater than a (F) . n 0
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 To dc this, letn>0, EÇ^Crv» A an<* B
 be closed cubes concentric with R with òA and òB in intF,

 AcintR, RcintB. Then let £Am) be a decreasing sequence

 and {Bm} an increasing sequence of closed cubes con-
 centric with R, converging to A and B, respectively,

 with A^cintR, BcintBļ, intA^A , intBcB^ m=l,2, ... and

 A^+1cintAm> BmcintBm+ļ, 01=1,2,... . Let ^ be the frame

 bounded by òA^ and öBm and H the one bounded by öA and ÒB.

 Then fl^} is an increasing sequence of frames about òR all
 contained in H, which is in turn in intF.

 We define a sequence {gm} of functions on F.

 Let g^*=g on FVH^. On H-^ let g"^=gķ where is so large
 that

 (ax) |g(x) - gfe (x)| < d -on òH-l,

 (@l) ttglCtrit^) < agCintH^ +
 (Vi) aglíòH-j^) < dgCòH-j^ + 311(1
 (0ļ) |g1(x) - g(x) I < 2K for every xpF where K is

 the maximum of the oscillation of g on òR.

 Then a^lÍF) < aff(F) + 2§, and the oscillation of g^"
 O O

 does not exceed at any point of F.
 2 1 2 1

 Next, let g =g on F'H2. On H2 let g =gfc where kg

 is ^such that

 (a2) |g1(x) -g^(x)| < C2 on öH2,

 (ß2) ag2(intH2) < agl(intE2) + §2,

 (y2) ag2(òH2) < agl(òH2) + §2, and

 (ô2) |g2(x) - g1(x) ļ < 2ç1 for each x€F.
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 Then a 2(F) < a_l(F) + 2ç0 ¿ and the oscillation of g2 o & ¿

 does not exceed any point of F.

 Continuing we obtain a sequence {gm} of functions

 each continuous and agreeing with each other on F'H and

 such that

 (i) gm is discontinuous only on

 (ii) |gm+1(x) - gm(x)| < 2£m for each x£F

 (iii) agm(F) < agm-l(P) + 2?m,
 (iv) the oscillation of gm does not exceed at

 any point of F.

 Now, {g111} converges uniformly to a function h. For

 each m and each XÇF the oscillation of h at x is less

 than

 00

 t = r + £ 2? •
 m *m .. ... *r

 r=m .. ...

 Since {tm3 is a null sequence, h is continuous on F.
 By lower semicontinuity

 CO

 ah(F) s lim inf agm(F) < ag(F) + 2 Z 5m < ag(F) + 2r, .

 Having established this, we order and relable the

 countable set of frames F4 . as F, , F0. . . . ,F_. . . . . 1 , . . . m'
 00

 Let n^O be such that E F or eac^ 111 modi-fy g as
 m=l

 above in so that
 m

 ah(Fm) < ag(Fm^ + nm*

 Then has the desired properties and the theorem is

 proved.

 M-l



 §8.

 We now treat tne converse. Let f ç BVC and for a

 direction i = l,...,n, let denote the n-1 cube obtained

 by deleting the i 1 coordinate from Q. So, Q = Q^x(a_,b).

 For each x^ € (a5b) and x^ 6 let x = (x^,x^) and let
 V(x) = V(x^,x^) be the variation of u(x^x^) on the inter-
 val (ajX^), where u is the upper linear measurable boundary
 of f. Then V(x) is measurable.

 Suppose f £ L . For reals 0 < s < t let

 T = {x: V(x)<s) and U = {x: V(x)>t}.

 These sets are measurable. Define functions and tļr on

 as follows:

 cp(xL) = supfxt: (x^x^çT}

 <t(xL) = inffx^ (x^x^eU}.

 These functions are measurable. Since V(x) = V(x^jx^)
 is monotonically non-decreasing in for each x^ and for

 some i the set {x^|V is discontinuous at (x^x^) for some x^}
 is not of measure zero, there is an (s,t) for which the

 corresponding cp and tļr are such that the set

 A = (xL: cp(xi)=t|f (x^)}

 has positive measure.
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 We need the following

 LEMMA. If f is £l measurable function of n variables

 on a, measurable set A, then for every k > 03 for almost

 all X ç A, the upper densities at x of the sets for which

 > -* -â < *

 are positive«

 From these facts we obtain by a delicate computation

 the following

 THEOREM. If f ç BVC i£ approximately continuous

 everywhere , then f ç i .

 Another computation yields

 LEMMA . If f e BVC ' l> there is a k > 0 such that for

 every g €L,ag(E) > 1 e* where E = {x: f(x)¿g(x)}.

 These two facts complete the proof of

 THEOREM . A function f ç L if and only if for each

 e > 0 there is an approximately continuous g such that

 af(E) < e and ag(E) < e where E = {x: f(x)?¿g(x)}.

 This theorem implies that if f ç ļ , then f is

 strongly linearly continuous. This follows from the

 fact that if f ig approximately continuous and g is

 bilipschitzian, then fog is linearly continuous . In

 particular bilipschitzian maps take d open sets (open

 sets in the density topology) into d open sets.
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 We now put a metric on L and observe that both L

 and its subspace are complete. Let ô(f3g) be the

 convergence in measure metric and the supremum

 of jaf (E)-dg(E) ļ where E = {x: f(x)^g(x)). Then let d
 be the metric on L given by

 d(f,g) = 6(f,g) + A(f,g).

 THEOREM. L is complete.

 Proof. Suppose f ç. BVCxI . Then for some i=l,...,n,

 for a set E of positive outer measure there is a k > 0

 and 6 > 0 such that for each x^ £ E there is an x^(x^)
 such that

 f(xi(xi)+ł xŁ) > f(xi(xi)-, x±) + k

 and the variation of f(x^,x^) in x^ is less than k/8

 in each of the intervals (x^(x^)-ô, x^(x^)) and

 (Xi(xŁ), x^(x^) + ô). There is an q > 0 such that
 I

 5(f,g) < n implies that for each x^, not in a set of
 measure less than me(E)/2, for every interval (x^x^+5),

 there is a ą (x^x^+ô) such that | f (§1^x^)^(51^, x^) ļ < k/8.
 So, let g be continuous and such that ô(f*g) < n .

 There is F c E, with m (P) > m (E)/2, such that for every
 w C

 Xļ ç F there are intervals I = (x^(3c^)-6,xi(xi) ) and

 J = (Xj, (x^(3č^), x^(5E^)+ô) on which the sum of the variations

 of g exceeds k/2. Then A(afjag) > k me(E)/A-. Since EVC
 is complete, so is L .
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 THEOREM. is complete .

 Proof. We shall indicate the proof for the one

 variable case. Let f with support in (a^b).

 There is a k > 0 and compact E of measure zero such that

 for each 6 > 0 there is a disjoint set of intervals

 [a^jb^] 3 , [a-m,bm] , the sum of whose lengths is less than
 m ,

 ôj with i (f (bj)-f (a.) I > k. Let g ç W,. There is a
 Ì=1

 6 > 0 such that for each set S of measure less than 6,

 ag(S) < k/2. For S = uU^b^, af(S) > ag(S) < k/2.
 Now af(A) 1 = a,,(A) for any A on which f(x) = g(x). So 1 S

 there is a B c S on which f (x) £ g(x) and a.f(B) ^ > a_.(B) + k/2. ^ S

 Hence is complete.
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