Real Analysis Exchange Vol. 3 (1977-78)

R. Fleissner, Department of Mathematics, Western Illinois University, Macomb, Illinois 61455.

A Note on Baire 1 Darboux Functions

Let DB_1 denote the class of Baire 1 Darboux functions. For a function f to have the property that f+g beongs to DB_1 for each g in DB_1 , it is necessary and sufficient that f be continuous. A proof of this is given in [1, p. 12] and the analogous question for multiplication is raised. Let $M(DB_1)$ denote the class of functions f such that $g\in DB_1$ implies $fg\in DB_1$. It is shown in [1] that continuity is a sufficient, but not a necessary condition for membership in $M(DB_1)$. Sufficiency follows easily from Young's criterion for a Baire 1 function to have the Darboux property [2]:

If f belongs to B_1 , then f belongs to DB_1 if and only if at each point x there exist sequences $x_n \dagger x$ and $y_n \ddagger x$ such that $f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$.

From this criterion it also follows that the function $f(x)=\sin(1/x)$, f(0)=0 belongs to $M(DB_1)$ since f(0)g(0)=0 and $f(x_n)g(x_n)=0$ where $f(x_n)=0$. The following characterization of $M(DB_1)$ shows that this type of discontinuity is the only kind a member of $M(DB_1)$ can have.

Theorem. <u>A function</u> f <u>belongs</u> to $M(DB_1)$ <u>if and</u> <u>only if</u> (i) f <u>belongs</u> to DB_1 <u>and</u> (ii) <u>if</u> f <u>is discontinuous</u> <u>from the right (resp. left) at x=a, then</u> f(a)=0 <u>and</u> <u>there</u> exists a sequence $x_n \neq a$ ($y_n \neq a$) such that $f(x_n)=0$ ($F(y_n)=0$).

<u>Proof</u>. The sufficiency of conditions (i) and (ii) again follows easily from Young's criterion.

Before showing necessity we note that we can assume that $f(x) \ge 0$ since squaring preserves conditions (i) and (ii) and membership in $M(DB_1)$. It is also easy to show that if $f \in DB_1$ on I and $f(x) \ne 0$ for $x \in I$, then $1/f \in DB_1$ on I.

Since $g(x) \equiv l \in DB_1$, $f \in M(DB_1)$ implies $f \in DB_1$.

Case 1) Suppose f is discontinuous from the right at x=a and f(x)>0 on $(a,a+\delta]$. Choose K>0 such that there exists a sequence p_n a where $\lim_{n\to\infty} f(p_n)=K\neq f(a)$. Set

$$g(x) = \begin{cases} 1/f(a+\delta) & a+\delta \le x \\ 1/f(x) & a \le x \le a+\delta \\ 1/K & x \le a. \end{cases}$$

Then $g \in DB_1$, but $f(a)g(a) \neq 1$ and f(x)g(x)=1 on $(a,a+\delta]$.

Case 2) Suppose f is discontinuous from the right at x=a, f(a)>0 and that there exists p_n a such that $f(p_n)=0$. Set E = {x>a|f(x)<f(a)/2}. Since f \in DB₁, E is a bilaterally c-dense in itself F_o set which is nonempty (because of the p_n) and contains no interval of the form (a,a+ δ) since f has the Darboux property. For x>a let g \in DB₁ such that 0 < g(x) < 1 for $x \in E$, g(x)=0for $x \notin E$ and such that $\overline{\lim}_{x\to a} + g(x) = 1$, [1,Thm. 2.4]. For $x \le a \text{ set } g(x)=1$. Then $g \in DB_1$ but f(a)g(a)=f(a) and $f(x)g(x)\le f(a)/2$ for a<x. Thus fg does not have the Darboux property and the proof is complete.

References

- 1. A. M. Bruckner, <u>Differentation of Real Functions</u>, (preprint).
- 2. J. Young, <u>A theorem in the theory of functions of a real variable</u>, <u>Rend. Circ. Mat. Palermo 24</u> (1907), 137-192.

Received April 14, 1978