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On Generalized Derivatives

Terminology and introduction. Let R = (-= ,«).

The words measure, almost etc. refer to the Lebesgue
measure in R. If S cR and x ¢ R, we write
d(x,8) = inf {|y-x|3y € 8}. If, moreover, S is
measurable, then mS denotes its measure. The notions
of the kth Peano derivative fk and of the kth approxi-
mate Peano derivate f(k) of a function f .-are de-
fined in the usual way (see,'e.g., [1] and [3]); f(k)
means the classical kth derivative.

Property Z of a real function g on R is de-
fined as follows: If x ¢ R, ¢ >0, n > 0, then
there is a § > O such that for each interval
Ic (x-8,x+5) with either g(I) c [g(x), =) or

g(I) c (-=,8(x)] we have
(1) n{y € I; |g(y)-s(x)] e} < n-(mI+ d(x,I)).

Property Z was introduced in [4] by Weil. He proved,
among other things, that if k > 0 and if fk exists
everywhere, then fk has Property Z. The proof,
however, is complicated. In [1], Babcock generalized
this result replacing fk by f(k)’ but a part of his
proof (actually a part of the proof of Lemma 6.1)
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consists of hints how to modify the mentioned proof in
[4]. The main purpose of this note is to prove a pro-
position (namely the present Theorem 1) enabling us to
simplify the proof of Babcock's assertion which is
stated here as Theorem 2. The present Theorem 3 is a
simultaneous generalization of Lemma 3.4 in [2] and
(with j=%) of Theorem 3 in [3].

At this opportunity I would like to express my

thanks to Prof. C. E. Weil for his encouragement to

write this note.

Lemma 1. Let f be a monotone differentiable
function on a bounded interval I. Let €¢ >0, B >0
and let m{x €I ;lf'(x)l z ¢} =z B. . Then there is an
interval J c I such that mJ = B/4 and that

Ifl z ¢eB/4 on J.

Proof. We may suppose thgt £f'z20 on I. Let
(a,b) Dbe the interior of I. There is a c¢ € [a,b]
.such that £ =0 on (a,c¢) and £ =20 on (c,b).
B/2

I

Set B = [(x€I;f'(x) = ¢e}]. If m(B N (c,b))

v

) X
and if x € (b-p/4,Db), then £(x) z [ £’
Cc

Z2 em (BN (c,x)) 2 e(m(BN(c,b)) - (b-x)) 2 e(B/2-B/4) =
= e¢B/4. If m(BN(a,c)) =z B/2, then, analogously,
f=-¢e¢B/4 on (a,a+B/4).

Lemma 2. Let I Dbe a bounded interval and let

be a natural number. Let g. be a function such that
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cither g3 20 on I or g3 20 on I. Let
€e>0, B>0 and let m{x €I ; lg(J) (x}| =z ¢} = B.

Then there is an interval J c I such that mJ =g/47

] Dde o od-9
and that |g]| = aBJ/4l+‘+ "J on J.

(Fdllows by induction from Lemma 1l.)

Theorem 1. Let k Dbe a natural number, let

x € R and let f be a function such that f(k) (%)
k .

exists. Define P(y) = 2 (y—x)l~f(i) (x)/1! (y€ER).
i=0

Let € >0, n> 0. Then there is a & > 0 with the

following properties:

a) If I is a subinterval of (x-6,x+8), J an

integer with 0 < 5 = k and if either £) =p(3) op

I or f(J) éP(J) on I, then

(

(2) miy €1: |£3) ()T (9) | 2 e ly=x ¥} =0 (mredx, 1))

b) If I 1is any subinterval of (x-6, X+ 8),

then (2) holds with j = O.

Proof. Let g=£f-P, a = 4]"}'24'“""k .

There is
a measurable set A and a 61 > O such that- x 1is a
point of density of A and that, for each

yGAﬂ(x—&l,x-t-él), we have
k k k
(3) 3V alg) | = enly-x|".

Further, there is a § €(0,6 such that, for each

l)
h € (0, 38), we have
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(4) 3-43 n([x-h,x+h]\a) £hn.

Now let I Dbe a subinterval of (x.- §, x+8) and let
j be an integer, O = 3j =k . Let

B=(yer; gD w|zely-x[?),8=35ns,

h mI + d(x,I). Now (2) becomes 38 = nh. Thus, we
may suppose that B > 0. Let C =B\ (x-B8,x+8).

Now h<3§,I c [x-h,x+h], |g(j)| 2 ¢p*J on ¢ and
mC 2p. If j >0 and if either g(j) 20 on I or
g(j) =0 on I, then, by Lemma 2, there is a set

S ¢ I such that

(5) . nms = p/al
and that
(6) alg| = ep¥ I .pd - e on s;

if j = 0, then these relations hold with S =C. If

there is a y € s NaA, then, by (6) and (3), 3ke|55k =
§'3ka|g(y) |-§~enkhk so that 38 =nh. If sNaA=¢dg,
then, by (5) and (4) , 38/47 = 3ms = 3m([x-h,x+h]\a) =

= h'q/43 whence 3B = nh again.

Lemma 3. Let k be a natural number and let £

be a function such that £ 2 0O on an interval 1I.

(k)

Then f(k) = f on I.

(k)
(See [1], Theorem 4.1.)



Theorem 2. Let %k Dbe a natural number and let
f be a function such that f(k) exists everywhere.

Then f(k) has Property Z.

Proof. Let x € R, € >0, n > 0. Choose a &
according to Theorem 1. If P 1is as above, then,
obviously, P(k) = f(k)(x). Let I be a subinterval
of (x-6,%Xx+8) such that either f(k)(Y) = f(k)(x)
for each y € I or f(k)(y) 2 f(k)(x) for each
f(k) on I. Thus, (1)

y € I. By Lemma 3, = f

(k)

with g = £ is the same as (2) with j = k.

(%)

Lemma 4. Let Jj be a natural number. Let ¢ be
a positive continuous function on an interval I. Let
g be a function such that g(j) exists (everywhere)
on I and let |g(j)] z © almost everywhere on I.
Then g(j) exists on I and either g(j) >0 on I

or g(j) <0 on I.

Proof. Let x € I. There is an ¢ > O and an
interval J such that x € J €¢I and that ¢ > € on
J. Thus, Ig(j)l > ¢ almost everywhere on J.
According to Corollary on p. 291 in [1] we have
|g(j)| z e on J; in particular, g(j)(x) £A0. It
follows from Corollary on p. 290 in [1] that either
g(j) >0 on I or g(j) <0 on ;. Now we apply

Lemma 3.
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Theorem 3. Let 3j,k Dbe integers, 0 = 3j = k,

k >D0. Let x € R and let f be a function such that
k .

£,.,(x) exists. Define P(y) = & (y-x) -f,., (x)/i
(y €ER). Let € >0, n>O0. Then there is a 6 > 0
with the following property: If L is a subinterval of
(x-6,x+8) such that f(j) exists on I and that
If(j)(y)-P(J)(y)l z e|y-—x|k—3 for almost all y €L,

then mL = nd(x,L).

Proof. Let ©§ Dbe chosen according to Theorem 1,
where mn 1is replaced by n, = n/(L+mn). Now let L
be as above. If L N (x,=) #g, set I =1L N (x,®) ;
otherwise‘set I=LN(-=,x). If j >0, then it
follows easily from Lemma 4 that either f(j) > P(j)
on I or f(j) < P(j) on I. According to Theorem 1
we have mI = nl(mI + d(x,I)) whence mI = n d4(x,I) .

In particular, d(x,I) >0 so that I = L.
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