INROADS Real Analysis Exchange Vol. 3 (1977-78) Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

On Generalized Derivatives

<u>Terminology and introduction</u>. Let $R = (-\infty, \infty)$. The words measure, almost etc. refer to the Lebesgue measure in R. If $S \subset R$ and $x \in R$, we write $d(x,S) = \inf \{|y-x|; y \in S\}$. If, moreover, S is measurable, then mS denotes its measure. The notions of the kth Peano derivative f_k and of the kth approximate Peano derivate $f_{(k)}$ of a function f are defined in the usual way (see, e.g., [1] and [3]); $f^{(k)}$ means the classical kth derivative.

Property Z of a real function g on R is defined as follows: If $x \in R$, $\varepsilon > 0$, $\eta > 0$, then there is a $\delta > 0$ such that for each interval $I \subset (x - \delta, x + \delta)$ with either $g(I) \subset [g(x), \infty)$ or $g(I) \subset (-\infty, g(x)]$ we have

(1)
$$m\{y \in I; |g(y)-g(x)| \ge c\} \le n \cdot (m I + d(x,I)).$$

Property Z was introduced in [4] by Weil. He proved, among other things, that if k > 0 and if f_k exists everywhere, then f_k has Property Z. The proof, however, is complicated. In [1], Babcock generalized this result replacing f_k by $f_{(k)}$, but a part of his proof (actually a part of the proof of Lemma 6.1)

87

consists of hints how to modify the mentioned proof in [4]. The main purpose of this note is to prove a proposition (namely the present Theorem 1) enabling us to simplify the proof of Babcock's assertion which is stated here as Theorem 2. The present Theorem 3 is a simultaneous generalization of Lemma 3.4 in [2] and (with j = k) of Theorem 3 in [3].

At this opportunity I would like to express my thanks to Prof. C. E. Weil for his encouragement to write this note.

Lemma 1. Let f be a monotone differentiable function on a bounded interval I. Let $\varepsilon > 0$, $\beta > 0$ and let $m\{x \in I ; |f'(x)| \ge \varepsilon\} \ge \beta$. Then there is an interval $J \subset I$ such that $mJ = \beta/4$ and that $|f| \ge \varepsilon \beta/4$ on J.

<u>Proof</u>. We may suppose that $f' \ge 0$ on I. Let (a,b) be the interior of I. There is a $c \in [a,b]$ such that $f \le 0$ on (a,c) and $f \ge 0$ on (c,b). Set $B = \{x \in I ; f'(x) \ge \epsilon\}$. If $m(B \cap (c,b)) \ge \beta/2$ and if $x \in (b - \beta/4, b)$, then $f(x) \ge \int_{c}^{x} f' \ge$ $\ge \epsilon m (B \cap (c,x)) \ge \epsilon (m(B \cap (c,b)) - (b-x)) \ge \epsilon (\beta/2 - \beta/4) =$ $= \epsilon \beta/4$. If $m(B \cap (a,c)) \ge \beta/2$, then, analogously, $f \le - \epsilon \beta/4$ on $(a,a + \beta/4)$.

Lemma 2. Let I be a bounded interval and let j be a natural number. Let g be a function such that

88

either $g^{(j)} \ge 0$ on I or $g^{(j)} \le 0$ on I. Let $\varepsilon > 0, \beta > 0$ and let $m\{x \in I; |g^{(j)}(x)| \ge \varepsilon\} \ge \beta$. Then there is an interval $J \subset I$ such that $mJ = \beta/4^{j}$ and that $|g| \ge \varepsilon \beta^{j}/4^{1+2+\cdots+j}$ on J.

(Follows by induction from Lemma 1.)

<u>Theorem 1</u>. Let k be a natural number, let $x \in R$ and let f be a function such that $f_{(k)}(x)$ exists. Define $P(y) = \sum_{i=0}^{k} (y-x)^{i} \cdot f_{(i)}(x)/i!$ ($y \in R$). Let $\varepsilon > 0$, $\eta > 0$. Then there is a $\delta > 0$ with the following properties:

a) If I is a subinterval of $(x - \delta, x + \delta)$, j an integer with $0 < j \le k$ and if either $f^{(j)} \le P^{(j)}$ on I or $f^{(j)} \ge P^{(j)}$ on I, then

(2) $m\{y \in I; |f^{(j)}(y) - P^{(j)}(y)| \ge \varepsilon |y-x|^{k-j}\} \le \eta \cdot (mI + d(x, I)).$

b) If I is any subinterval of $(x - \delta, x + \delta)$, then (2) holds with j = 0.

<u>Proof</u>. Let g = f - P, $\alpha = 4^{1+2+\cdots+k}$. There is a measurable set A and a $\delta_1 > 0$ such that x is a point of density of A and that, for each $y \in A \cap (x - \delta_1, x + \delta_1)$, we have

(3)
$$3^k \alpha |g(y)| \leq \epsilon \eta^k |y-x|^k$$
.

Further, there is a $\delta \in (0, \delta_1)$ such that, for each $h \in (0, 3\delta)$, we have

(4)
$$3 \cdot 4^{j} m([x-h,x+h] \setminus A) \leq h \eta$$
.

Now let I be a subinterval of $(x - \delta, x + \delta)$ and let j be an integer, $0 \le j \le k$. Let $B = \{y \in I; |g^{(j)}(y)| \ge \varepsilon |y - x|^{k-j}\}, \beta = \frac{1}{3} m B$, h = mI + d(x,I). Now (2) becomes $3\beta \le \eta h$. Thus, we may suppose that $\beta > 0$. Let $C = B \setminus (x - \beta, x + \beta)$. Now $h < 3\delta, I \subset [x - h, x + h], |g^{(j)}| \ge \varepsilon \beta^{k-j}$ on C and $mC \ge \beta$. If j > 0 and if either $g^{(j)} \ge 0$ on I or $g^{(j)} \le 0$ on I, then, by Lemma 2, there is a set $S \subset I$ such that

(5)
$$mS \ge \beta/4^{\mathsf{J}}$$

and that

(6)
$$\alpha |g| \ge \epsilon \beta^{k-j} \cdot \beta^{j} = \epsilon \beta^{k}$$
 on S;

if j = 0, then these relations hold with S = C. If there is a $y \in S \cap A$, then, by (6) and (3), $3^k \epsilon \beta^k \leq 3^k \alpha |g(y)| \leq \epsilon \eta^k h^k$ so that $3\beta \leq \eta h$. If $S \cap A = \emptyset$, then, by (5) and (4), $3\beta/4^j \leq 3m S \leq 3m([x-h,x+h]\setminus A) \leq h \eta/4^j$ whence $3\beta \leq \eta h$ again.

Lemma 3. Let k be a natural number and let f be a function such that $f_{(k)} \ge 0$ on an interval I. Then $f^{(k)} = f_{(k)}$ on I. (See [1], Theorem 4.1.) <u>Theorem 2</u>. Let k be a natural number and let f be a function such that $f_{(k)}$ exists everywhere. Then $f_{(k)}$ has Property Z.

<u>Proof</u>. Let $x \in \mathbb{R}$, $\varepsilon > 0$, $\eta > 0$. Choose a δ according to Theorem 1. If P is as above, then, obviously, $P^{(k)} = f_{(k)}(x)$. Let I be a subinterval of $(x - \delta, x + \delta)$ such that either $f_{(k)}(y) \leq f_{(k)}(x)$ for each $y \in I$ or $f_{(k)}(y) \geq f_{(k)}(x)$ for each $y \in I$. By Lemma 3, $f^{(k)} = f_{(k)}$ on I. Thus, (1) with $g = f_{(k)}$ is the same as (2) with j = k.

Lemma 4. Let j be a natural number. Let φ be a positive continuous function on an interval I. Let g be a function such that $g_{(j)}$ exists (everywhere) on I and let $|g_{(j)}| \ge \varphi$ almost everywhere on I. Then $g^{(j)}$ exists on I and either $g^{(j)} > 0$ on I or $g^{(j)} < 0$ on I.

<u>Proof</u>. Let $x \in I$. There is an $\varepsilon > 0$ and an interval J such that $x \in J \subset I$ and that $\varphi > \varepsilon$ on J. Thus, $|g_{(j)}| > \varepsilon$ almost everywhere on J. According to Corollary on p. 291 in [1] we have $|g_{(j)}| \ge \varepsilon$ on J; in particular, $g_{(j)}(x) \ne 0$. It follows from Corollary on p. 290 in [1] that either $g_{(j)} > 0$ on I or $g_{(j)} < 0$ on I. Now we apply Lemma 3.

91

<u>Theorem 3</u>. Let j,k be integers, $0 \le j \le k$, k > 0. Let x \in R and let f be a function such that $f_{(k)}(x)$ exists. Define $P(y) = \sum_{i=0}^{k} (y-x)^{i} \cdot f_{(i)}(x)/i!$ $(y \in R)$. Let $\varepsilon > 0$, $\eta > 0$. Then there is a $\delta > 0$ with the following property: If L is a subinterval of $(x - \delta, x + \delta)$ such that $f_{(j)}$ exists on L and that $|f_{(j)}(y) - P^{(j)}(y)| \ge \varepsilon |y - x|^{k-j}$ for almost all $y \in L$, then mL $\le \eta d(x, L)$.

<u>Proof.</u> Let δ be chosen according to Theorem 1, where η is replaced by $\eta_1 = \eta / (1 + \eta)$. Now let L be as above. If $L \cap (x, \infty) \neq \emptyset$, set $I = L \cap (x, \infty)$; otherwise set $I = L \cap (-\infty, x)$. If j > 0, then it follows easily from Lemma 4 that either $f^{(j)} > P^{(j)}$ on I or $f^{(j)} < P^{(j)}$ on I. According to Theorem 1 we have $mI \leq \eta_1 (mI + d(x, I))$ whence $mI \leq \eta d(x, I)$. In particular, d(x, I) > 0 so that I = L.

References

- B.S. Babcock, On properties of the approximate Peano derivatives, Trans. Amer. Math. Soc. 212 (1975), 279-294.
- [2] R.J. O'Malley and C.E. Weil, The oscillatory behavior of certain derivatives, Trans. Amer. Math. Soc. 234,2 (1977), 467-481.
- [3] C.E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376.
- [4] , A property for certain derivatives, Indiana Univ. Math: J. 23 (1973), 527-536.

Received April 4, 1978