INROADS ÄeaZ Analysis Exchange Vol. 3 (1977-78) Jan Marik, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

On Generalized Derivatives

Terminology and introduction. Let $R = (-\infty, \infty)$. The words measure, almost etc. refer to the Lebesgue measure in R. If $S \subset R$ and $x \in R$, we write $d(x, S) = inf \{ |y-x| : y \in S \}.$ If, moreover, S is measurable, then m S denotes its measure. The notions of the kth Peano derivative f_k and of the kth approximate Peano derivate $f_{(k)}$ of a function f are defined in the usual way (see, e.g., [1] and [3]); $f^{(k)}$ means the classical kth derivative.

 Property Z of a real function g on R is de fined as follows: If $x \in R$, $\varepsilon > 0$, $n > 0$, then there is a $\delta > 0$ such that for each interval $I \subset (x - \delta, x + \delta)$ with either $g(I) \subset [g(x), \infty)$ or $g(I) \subset (-\infty, g(x)]$ we have

$$
(1) \qquad \text{m} \{ \text{y} \in \text{I}; \ |\text{g}(\text{y}) - \text{g}(\text{x})| \geq \epsilon \} \leq \text{n} \cdot (\text{m} \text{I} + \text{d}(\text{x}, \text{I})).
$$

Property Z was introduced in $[4]$ by Weil. He proved, among other things, that if $k > 0$ and if f^k exists everywhere, then f^k has Property Z. The proof, however, is complicated. In [1], Babcock generalized this result replacing f^k by $f^k(k)$, but a part of his proof (actually a part of the proof of Lemma 6.1)

$$
87\\
$$

 consists of hints how to modify the mentioned proof in [4]. The main purpose of this note is to prove a pro position (namely the present Theorem 1) enabling us to simplify the proof of Babcock's assertion which is stated here as Theorem 2. The present Theorem 3 is a simultaneous generalization of Lemma 3.4 in [2] and (with $j=k$) of Theorem 3 in $[3]$.

 At this opportunity I would like to express my thanks to Prof. C. E. Weil for his encouragement to write this note.

 Lemma 1. Let f be a monotone differentiable function on a bounded interval I. Let $\varepsilon > 0$, $\beta > 0$ and let $m(x \in I ; |f'(x)| \ge \varepsilon) \ge \beta$. Then there is an interval $J \subset I$ such that $m J = \beta/4$ and that $|f| \ge \varepsilon \beta/4$ on J.

Proof. We may suppose that $f' \ge 0$ on I. Let (a,b) be the interior of I. There is a $c \in [a,b]$ such that $f \le 0$ on (a, c) and $f \ge 0$ on (c, b) . Set $B = \{x \in I : f'(x) \ge \varepsilon\}.$ If $m(B \cap (c,b)) \ge \beta/2$ and if $x \in (b - \beta/4, b)$, then $f(x) \geq \int_{c}^{x} f' \geq$ \geq em (B \cap (c, x)) \geq e(m(B \cap (c, b)) - (b - x)) \geq e($\beta/2-\beta/4$) = $= \varepsilon \beta/4$. If $m(B \cap (a,c)) \ge \beta/2$, then, analogously, $f \le - \varepsilon \beta/4$ on $(a, a + \beta/4)$.

 Lemma 2. Let I be a bounded interval and let j be a natural number. Let g be a function such that

88

either $g^{(j)} \ge 0$ on I or $g^{(j)} \le 0$ on I. Let $\varepsilon > 0$, $\beta > 0$ and let $m\{x \in I; |g^{(j)}(x)| \ge \varepsilon\} \ge \beta$. Then there is an interval $J \subset I$ such that $m J = \beta / 4^{j}$ and that $|g| \ge \epsilon \beta^{\frac{1}{2}}/4^{1+2+\cdots+\frac{1}{2}}$ on J.

(Follows by induction from Lemma 1.)

Theorem 1. Let k be a natural number, let $x \in R$ and let f be a function such that $f_{(k)}(x)$ exists. Define $P(y) = \sum_{i=0}^{k} (y-x)^{i} \cdot f(i)$ $(x) / i$! $(y \in R)$. Let $\varepsilon > 0$, $\eta > 0$. Then there is a $\delta > 0$ with the following properties:

a) If I is a subinterval of $(x - \delta, x + \delta)$, j an integer with $0 < j \le k$ and if either $f^{(j)} \le p^{(j)}$ on I or $f^{(j)} \geq P^{(j)}$ on I, then

(2) $m\{y \in I; |f^{(j)}(y)-P^{(j)}(y)| \ge \varepsilon |y-x|^{k-j}\} \le \eta \cdot (mI+d(x,I))$.

b) If I is any subinterval of $(x - \delta, x + \delta)$, then (2) holds with $j = 0$.

Proof. Let $g = f - P$, $\alpha = 4^{1 + 2 + \cdots + k}$. There is a measurable set A and a $\delta_1 > 0$ such that x is a point of density of A and that, for each $y \in A \cap (x - \delta_1, x + \delta_1)$, we have

(3)
$$
3^{k} \alpha |g(y)| \leq \epsilon \eta^{k} |y-x|^{k}.
$$

Further, there is a $\delta \in (0, \delta_1)$ such that, for each $h \in (0, 3\delta)$, we have

(4)
$$
3 \cdot 4^{\mathbf{j}} \operatorname{m}([x-h,x+h] \setminus A) \leq h \eta.
$$

Now let I be a subinterval of $(x - \delta, x + \delta)$ and let j be an integer, $0 \le j \le k$. Let $B = \{y \in I : |g^{(j)}(y)| \ge \varepsilon |y - x|^{k-j}\}, \beta = \frac{1}{3} m B$ $h = m I + d(x, I)$. Now (2) becomes $3\beta \le \eta h$. Thus, we may suppose that $\beta > 0$. Let $C = B \setminus (x - \beta, x + \beta)$. Now $h < 3\delta$, $I \subset [x-h,x+h]$, $|g^{(j)}| \ge \varepsilon \beta^{k-j}$ on C and $m C \ge \beta$. If $j > 0$ and if either $g^{(j)} \ge 0$ on I or $g^{(j)} \le 0$ on I, then, by Lemma 2, there is a set $S \subset I$ such that

$$
(5) \t m S \ge \beta/4^J
$$

and that

(6)
$$
\alpha |g| \ge \epsilon \beta^{k-j} \cdot \beta^j = \epsilon \beta^k
$$
 on *S*:

if $j = 0$, then these relations hold with $S = C$. If there is a $y \in S \cap A$, then, by (6) and (3), $3^{k} \epsilon \beta^{k} \leq$ $\leq 3^{k} \alpha |g(y)| \leq \epsilon \eta^{k} h^{k}$ so that $3\beta \leq \eta h$. If $S \cap A = \emptyset$, then, by (5) and (4), $3\beta/4^{\dot{J}} \leq 3\text{m} S \leq 3\text{m} ([x - h, x + h]\A) \leq$ \leq h η /4^j whence $3\beta \leq \eta h$ again.

Lemma 3. Let k be a natural number and let f be a function such that $f_{(k)} \ge 0$ on an interval I. Then $f^{(k)} = f_{(k)}$ on I. (See $[1]$, Theorem $4.1.$)

Theorem 2. Let k be a natural number and let f be a function such that $f_{(k)}$ exists everywhere. Then $f_{(k)}$ has Property Z.

Proof. Let $x \in R$, $\varepsilon > 0$, $\eta > 0$. Choose a δ according to Theorem 1. If P is as above, then, (k) obviously, $P^* = r^{\binom{k}{k}}$. Let I be a subinterval of $(x - \delta, x + \delta)$ such that either $f_{(k)} (y) \le f_{(k)} (x)$ for each $y \in I$ or $f^{\{k\}}(y) \geq f^{\{k\}}(x)$ for each $y \in I$. By Lemma 3, $f^{(k)} = f^{(k)}$ on I. Thus, (1) with $g = f_{(k)}$ is the same as (2) with $j = k$.

Lemma 4. Let j be a natural number. Let φ be a positive continuous function on an interval I. Let g be a function such that $g_{(1)}$ exists (everywhere) on I and let $|g_{(i)}| \ge \infty$ almost everywhere on I. Then $g^{\bf{(j)}}$ exists on I and either $g^{\bf{(j)}}$ $>$ 0 on I or $g^{(j)}$ < 0 on I.

Proof. Let $x \in I$. There is an $\varepsilon > 0$ and an interval J such that $x \in J \subset I$ and that $\varphi > \varepsilon$ on J. Thus, $|g_{(j)}| > \varepsilon$ almost everywhere on J. According to Corollary on p. 291 in [1] we have $|g_{(i)}| \ge \epsilon$ on J; in particular, $g_{(i)} (x) \ne 0$. It follows from Corollary on p. 290 in [1] that either $g_{(i)} > 0$ on I or $g_{(i)} < 0$ on I. Now we apply Lemma 3 .

91

Theorem 3. Let j,k be integers, $0 \le j \le k$, $k > 0$. Let $x \in R$ and let f be a function such that $f (k)$ (x) exists. Define P(y) = $\sum_{i=1}^{K} (y-x)^{i} \cdot f (t)$ (x)/i ! i=0 $(y \in R)$. Let $\varepsilon > 0$, $\eta > 0$. Then there is a $\delta > 0$ with the following property: If L is a subinterval of $(x - \delta, x + \delta)$ such that $f_{(i)}$ exists on L and that $|f_{(i)} (y) - P^{(j)} (y) | \ge \epsilon |y - x|^{k-j}$ for almost all $y \in L$, then $m L \leq \eta d(x, L)$.

Proof. Let δ be chosen according to Theorem 1, where η is replaced by $\eta_1 = \eta / (1 + \eta)$. Now let L be as above. If $L \cap (x, \infty) \neq \emptyset$, set $I = L \cap (x, \infty)$; otherwise set $I = L \cap (-\infty, x)$. If $j > 0$, then it follows easily from Lemma 4 that either $f^{(j)} > P^{(j)}$ on I or $f^{(j)} < p^{(j)}$ on I. According to Theorem 1 we have $m I \leq \eta_1(m I + d(x,I))$ whence $m I \leq \eta d(x,I)$. In particular, $d(x, I) > 0$ so that $I = L$.

References

- [1] B.S. Babcock, On properties of the approximate Peano derivatives, Trans. Amer. Math. Soc. 212 (1975), 279-294.
- [2] R.J. O'Malley and C.E. Weil, The oscillatory behavior of certain derivatives, Trans. Amer. Math. Soc. 234,2 (1977), 467-481.
- [3] C.E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376.
- [4] , A property for certain derivatives,
Indiana Univ. Math: J. 23 (1973), 527-536.

Received April 4, 1978