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 On Generalized Derivatives

 Terminology and introduction. Let H = (-»,«).

 The words measure, almost etc. refer to the Lebesgue

 measure in R. If S c H and x ç R, we write

 d(x,S) = inf {|y-xļ;y ç S}. If, moreover, S is

 measurable, then m S denotes its measure. The notions

 of the kth Peano derivative ffc and of the kth approxi-

 mate Peano derivate f(ķ) of a function f are de-
 fined in the usual way (see, e.g., [1] and [3])j f(k)
 means the classical kth derivative.

 Property Z of a real function g on R is de-

 fined as follows: If x ç R, e > 0, n > 0, then

 there is a 6 > 0 such that for each interval

 le (x - ÔjX + ô) with either g(I) c [g(x), ®) or

 g(I) c (-»,g(x)] we have

 (1) m{y € I ; lg(y)-g(x)l ^ c} ^ n • (m I + d(x,l)).

 Property Z was introduced in [4] by Weil. Se proved,

 among other things, that if k > 0 and if f^ exists

 everywhere, then f^ has Property Z. The proof,
 however, is complicated. In [1], Babcock generalized

 this result replacing f^ by ^ut a part of his
 proof (actually a part of the proof of Lemma 6.1)
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 consists of hints how to modify the mentioned proof in

 [4]. The main purpose of this note is to prove a pro-

 position (namely the present Theorem 1) enabling us to

 simplify the proof of Babcock's assertion which is

 stated here as Theorem 2. The present Theorem 3 is a

 simultaneous generalization of Lemma 3.4 in [2] and

 (with j=k) of Theorem 3 in [3].

 At this opportunity I would like to express my

 thanks to Prof. C. E. Weil for his encouragement to

 write this note.

 Lemma 1. Let f be a monotone differentiable

 function on a bounded interval I. Let e > o, ß > 0

 and let m(x6I ; |f'(x) ļ 1 e} š ß. . Then there is an

 interval J c I such that m J = ß/4 and that

 I f I È € ß/4 on J .

 Proof. We may suppose that f ' ^ O on I . Let

 (a,b) be the interior of I. There is a c Ç [a,b]

 such that f ä o on (a,c) and f § 0 on (c,b) .

 Set B = (x€l ; f ' (x) = e} . If m(B fl (c,b) ) š ß/2
 X

 and if x € (b - ß/4 , b) , then f(x) È J t' ^
 c

 = em (B fi (c,x) ) ìè e(m(B fl (c,b) ) - (b - x) ) š e(ß/2-ß/4) =

 = e ß/4 . If m(B fi (a,c)) š ß/2 , then, analogously,

 f ^ - e ß/4 on (a, a + ß/4).

 Lemma 2. Let I be a bounded interval and let j

 be a natural number. Let g be a function such that
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 either g^ £ O on I or g'^ šO on I. Let

 e > 0, ß > 0 and let m{x 61 ; ļg ^ (x) j š e) 5 ß.

 Then there is an interval J c I such that m J =ß/4^

 and that ļg ļ = e ß-*/ 4^+'í'+ 1 ^ on J.

 (Follows by induction from Lemma 1.)

 Theorem 1. Let 'k be a natural number, let

 x € R and let f be a function such that f /V' (x) k . /V' W
 exists. Define P (y) = D (y-x) 1 • f . . .. (x) /i ! (y € R) .

 i=0

 Let e > 0, rļ > 0. Then there is a 6 > 0 with the

 following properties:

 a) If I is a subinterval of (x - ô , x + 6) , j an

 integer with 0 < j š k arid if either f ^ s p^) on
 I or f(j) a p(j) on j t then

 (2) m{y €1; |f(j) (y)-P(j) (y) | 1 ely-xjk"j} (ml+d(x,l)) .

 b) If I is any subinterval of (x - 6 , x+ 6) ,

 then (2) holds with j = 0.

 Proof. Let g = f - P , a = 4^' +k . There is

 a measurable set A and a 6-^ > O such that x is a
 point of density of A and that, for each

 y € A il (x - , x + ô^) , vie have

 (3) 3k ajg(y) | =? erļlc|y-xļk.

 Further, there is a 6 6(0,6^) such that, for each
 h € (0, 3 6) , we have
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 (4) 3*4-*m([x-h,x+h]'A) ēhrļ.

 Now let I be a sub interval of (x - 6, x+ 6) and let

 j be an integer, 0 ^ j É k . Let

 B = (y € I ; |g ( j) (y) I * e |y - x |k~j } , ß = j mB ,
 h = ml + d(x,I) . Now (2) becomes 3ß ë t) h . Thus, we

 may suppose that ß > 0. Let C = B ' (x - ß, x + ß) .

 Now h <36, I c[x-h,x+h], |g^| ž e ßk-^ on C and
 m C É ß . If j > O and if either g^* S 0 on I or
 g^ ^ O on I , then, by Lemma 2, there is a set
 SCI such that

 (5) ms ? ß/4j

 and that

 (6) ot ļg J È e ßk~^ •ß-' = s ßk on S ;

 if j = O, then these relations hold with S = C. If

 there is a y € S 0 A , then, by (6) and (3) , 3keßk ë

 ë • 3ka |g (y) | š • e h^ so that 3ß ^ t) h . If S fi A = 1Í ,
 then, by (5) and (4) , 3ß/4^ š 3m S ë 3m ( [x - h, x + h]'A) S

 ā h Tļ /4^ whence 3ß S tļ h again.

 Lemma 3 . Let k be a natural number and let f

 be a function such that f ^ & O on an interval I.
 Then f ^ = f ,, . on I .

 ,, (k) .

 (See [1], Theorem 4.1.)



 Theorem 2 . Let k be a natural number and let

 f be a function such that exists everywhere.

 Then f ^ has Property Z .

 Proof. Let x € R , e > 0, rļ > 0. Choose a 6

 according to Theorem 1. If P is as above, then,

 (k)

 obviously, Pv = f ^ (x) . Let I be a sub interval
 of (x - 6 , X + 6) such that either (y) - ^(k) ^
 for each y € I or f^ (y) ^ f ^ (x) for each
 y € I. By Lemma 3, f^ = f^ on I- Thus, (1)
 with g = is the same as (2) with j = k.

 Lemma 4. Let j be a natural number. Let cp be

 a positive continuous function on an interval I. Let

 g be a function such that exists (everywhere)

 (j) ' " ® on I and let |g  almost everywhere on I .

 Then g^ exists on I and either g^ > 0 on I
 or g ^ < O on I .

 Proof. Let x 6 I . There is an c > 0 and an

 interval J such that x € J c I and that cp > e on

 J. Thus, l^(j) I ^ e almost everywhere on J.
 According to Corollary on p. 291 in [1] we have

 ļg ( j ) J 5 e on J ; in particular, 9(j) (x) ^ 0 •
 follows from Corollary on p. 290 in [1] that either

 g(j) > O on I or g(j) < 0 on I. Now we apply
 Lemma 3 .
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 Theorem 3 . Let j,k be integers, O ñ j ^ k ,

 k > O. Let X € R and let f be a function such that
 k

 f , (x) exists. Define P(y) = 2 (y-x) *f/-' (x)/i !
 i=0

 (y € R) . Let e > O, T] > O. Then there is a 6 > O

 with the following property: If L is a subinterval of

 (x - ô , x+ 6) such that ^ (j) exists on L and that

 I f ( j ) (y) - P ^ (y) 1 ^ e ļy - x for almost all y € L ,
 then mL ā rļ d(x, L) .

 Proof. Let 6 be chosen according to Theorem 1,

 where r| is replaced by T| = r' / (1 + tj) . Now let L

 be as above. If L D (x,°°) 0 , set I = L fl (x,œ) ;

 otherwise set I = L H (- ® ,x) . If j>0, then it

 follows easily from Lemma 4 that either f^)

 on I or < p(j) on According to Theorem 1

 we have ml š iļ^(ml + d(x,I)) whence m I ^ r) d(x,I) .
 In particular, d(x,I) >0 so that I = L.
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