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 BOUNDED VARIATION AND FOURIER SERIES

 by

 Daniel Waterman

 The notion of bounded variation appeared quite

 early in the study of Fourier series in connection with

 the question of convergence and has continually reap-

 peared in other connections. We shall see that the

 importance of functions of bounded variation in these

 connections derives from two sources:

 (i) the oscillatory properties of the Dirichlet

 kernel,

 (ii) the correspondence of these functions to

 signed Lebesgue-Stieltjes measures.

 When we examine the relationship of bounded

 variation to (i) we will see that it is too primitive

 a notion in that results known for this class of func-

 tions admit of generalization to larger classes. On

 the other hand (ii) leads to results in which this

 notion seems to be intrinsic and these results cannot

 be extended to larger classes of functions. However,

 for these larger classes there may be alternate results

 of a similar structure.

 We shall consider only real integrable functions

 of period 2tt on the real line or Rm , m > 1 , expanded

 as Fourier series with respect to the trigonometric

 system. Some of these results can be extended to other
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 orthonormal systems, but the introduction of these

 questions would serve only to obscure our discussion.

 1. D ir ich let- Jordan Theorem.

 Dirichlet was probably the first to make a rig-

 orous study of the convergence of Fourier series. The

 basic result associated with him is the following:

 If f is continuous on [0 , 2-rr] except for a finite

 number of points at which it has ordinary discontinu-

 ities and [0,2tt] is the union of finitely many inter-

 vals on each of which f is monotone, then the Fourier

 series of f converges to f(x) at each point x of

 continuity and to -^[f (x+0) + f (x-0) ] at points of dis-
 continuity.

 Dirichlet actually extended these results to cer-

 tain types of unbounded functions [1] , but we shall not

 consider this here.

 Clearly the class of functions considered by

 Dirichlet is .a subclass of the functions of bounded

 variation (BV) and, as is well known, the result may

 be extended to them. In addition to the pointwise con-

 vergence, we also have that the Fourier series converges

 uniformly to f on any closed interval of points of

 continuity.

 Let us consider a proof of this extended result,

 usually referred to as the D ir ich let- Jordan theorem, a

 proof which is not only quite different from that
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 usually given, but which reveals more about the nature

 of the result than the usual argument and admits of

 generalization.

 Let f be a real integrable function of period 2tt

 with Fourier series

 CO

 S ( f ) = ^0 + E (a^cos kx + bj^sin kx) ,
 ~2~ 1

 where

 a^ = ^ fn f(t)cosktdt , b^ = "J*11 f(t)sinktdt .
 -TT -TT

 The partial sums of this series are given by

 n ,

 Sn(x) =Sn(x,f) = a0 + E (a^cos kx+b^sin kx) =~J*TT n f (t)Dn(x-t)dt n 2 1 n -TT n

 where the Dirichlet kernel

 1 n 11
 Dn(t) =*2 + E cos kt = sin(n+ "2)t/2 sin-j t .

 It is easy to see that for any 6 > 0

 S n (x)-f (x) =- f6 (f (x+t)+f (x-t)-2f (x) ) sin t nt dt+ o(l) n TT Jo t

 for each x and uniformly on intervals in which f is

 bounded [2, 1, p. 55].

 We shall assume that for each x , f (x) =

 ■^(f (x+0)+f (x-0) ) and, therefore, the integral above is
 the sum of

 J**(f u (x+t)-f (x+0)) slIintdt and f6 (f (x-t )-f (x-0) ) S1"ntdt. u t JQ t
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 We will confine our attention to the first of these.

 The other may be treated in an analogous manner. Let-

 ting h(t)=h (t) = f (x+t)-f (x+0) , we see that
 X

 'J /nh(t) sxnnt dtl < TT sup Ih ( t) I = o(l)
 0 < t < TT /n

 for each x and uniformly on closed intervals of points

 of continuity. This expression is also uniformly

 bounded if f is bounded. Then

 f6 h(t) ,/.v ' ,/.v h(t)

 ^n/n c lJkn/n ^ J(N+l)n/n

 - IjL + ï2
 n 6

 where N+l= [- ] . Clearly l2 = o(l) uniformly in x
 as n-»«° on intervals in which f is bounded. Consider

 the sum

 ïi-f 1^0 C*h(Wc (-1)kïfr^ dt 1^0

 = r'āļīiķīļļ.Dk |ÌL£ t+kTT at. J0 1 n t+kTT

 We shall show that, under appropriate conditions on f ,

 this last integrand is bounded, o(l) for each x, and

 uniformly o(l) on closed intervals of points of con-

 tinuity of f .

 If N is even, the integrand may be written as

 + rh/^łkn» 1 h< , ,t+(k+l)TT. 1 ļ
 k=l + rh/^łkn» tīī^ h< , n t+ (k+l)n ļ -

 suppressing sin t, since it is bounded and of constant sign.
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 Here * indicates that k takes only odd values. If N

 is odd, then

 (N+l)n/n sinnt
 V h (t)

 -Nn/n

 just as I2 did, and, by removing this term, we can
 reduce the problem to one in which the sum has an even

 number of terms. Thus we may assume N to be even with-

 out loss of generality.

 The general term of the sum under consideration

 equals

 ri_,t+krrx / 1+ (k+ 1 ) tt ^ -i 1 , ,t+ (k+l)rr ,r 1 1 ,
 [h(- ri_,t+krrx -) -h( / 1+ 'n (k+ ) tt ^ -i , 'n 't-^-tł(kłl);,] ,r , .

 00 2
 Given e >0 and choosing Nn so that E * 1/k <e , we

 No+1
 have

 l^1* 1 1lft+(k-H)TT h( _1_ 1 , ,
 1 I 1lft+(k-H)TT h( n t+kn t+ (k+l)n

 N-i 9 N0 N-l
 < E* If (x+t+ '*+)) - f (x+0) I /k 9 = E* + E*
 1 1 N0 + 1

 and the second sum is bounded by 2 e sup If (x) I . The
 [0, 2n]

 first sum is bounded by

 "o 2
 sup I f (x+u)-f (x+0) I • E * 1/k = o(l)

 0<u< (NQ+2)Tr/n 1
 as n -» « for each x , is o(l) uniformly for x in a

 closed interval of points of continuity, and its integral

 is bounded uniformly in n and x on any interval of

 boundedness of f .
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 The most interesting part of this argument is the

 consideration of the remaining portion of the integrand.

 Now

 (* ) I V*[h <^i - h (itüaÜÄ) ] ^ I
 jC - -L

 < NEŁ*lh ^^11) - h (t+Hs+ilHj ļ 1 m
 ki =i n n je ki =i

 _ ,f(t) on (x,x+ô]
 Let f(t) = , A, .

 i. I 'X+Uy# , A, t

 f € BV we see that the sum (*) is dominated by the varia-

 tion of f on [x,x+ô] and this may be made less than e

 by choosing 6 sufficiently small, since f is continuous

 on the right at x . If f is continuous at every point

 of a closed interval I , the variation of f in [x,x+s] ,

 xÊ I , is o(l) uniformly on I as <5 -» 0 .

 This argument establishes the Dirichlet-Jordan

 theorem, but is clear from the form of (*) that the

 hypothesis f € BV is much too strong.

 A function f on an interval I is said to be of

 harmonic bounded variation (HBV) if

 ? If (aj-f Xl (b Xl ) l/n < „ ļ Xl Xl

 for every sequence of non-overlapping intervals (an'^n)
 in I . This is equivalent to requiring that such sums

 over finite collections of intervals be uniformly

 bounded. The supremum of such sums is called the (total)

 harmonic variation of f on I .
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 We observe that the sum (*) is bounded by the har-

 monic variation of f on [x,x+&] and that the remarks

 made for the ordinary variation over this interval apply

 with equal force to the harmonic variation.

 This proof that a theorem of Dirichlet-Jordan type

 holds for functions of class HBV is new. The original

 argument [3] showed somewhat more in one sense, that

 functions in. HBV satisfy the Lebesgue convergence test,

 but it did not show as clearly how intimately this notion

 is related to the structure of the Dirichlet kernel, nor

 did it show, as this argument does, that { Sn ( f ) } is
 uniformly bounded for f € HBV .

 By considering sums of the form

 Eif<V-f(V'An

 where A = {'nj is a nondecreasing sequence of real num-
 bers with £ l/' =°<» ' we ma^ define "the class of functions

 of A-bounded variation (ABV). For a full discussion of

 the properties of functions of HBV and ABV see our

 papers [3,4,5].

 Suppose $>0 is a convex function, $ (x) =o(x) as

 x-»0+,$(x)/x-»~ as x-»® and $ (0) =0 . Let f (x) =

 sup{xy-§ (y) |y ž 0 J . Then we have

 xyś } (x) + Y(y) ,

 which is Young's inequality.
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 The notion of $ -bounded variation ($-BV) was

 introduced by L. C. Young [6] . Salem showed that the

 Fourier series of functions of § -bounded variation con-

 vergé uniformly if E Y(l/n) < ® [7]. L. C. Young had

 shown this for various particular functions $ and

 Wiener [8] had done this for $ (x) = x^ , p > 1 .

 We could easily show that Salem's conditions can

 be applied to the sum (*) to obtain a theorem of

 Dir ich let- Jordan type. However it is obvious that

 f-BVcHBV if E Y (l/n) < » since

 E If (an)-f (bn) l/n < E $ ( If (an)-f (bn) I) + E y (l/n)

 by Young ' s inequality.

 Another form of generalized bounded variation was

 considered by Garsia and Sawyer [9] . The Banach indica-

 trix n(y) of a continuous function f(x) is defined to

 be the cardinality of f ^"(y) if this set is finite and
 + ® otherwise. It is classical that the total variation

 of f is fn(y)dy. Garsia and Sawyer showed that the

 Fourier series of functions for which J log+n (y)dy < «>
 converge uniformly. Here log+ (x) denotes the positive

 part of log x .

 The notion of Banach indicatrix can be generalized

 to regulated functions, i.e., those with right and left

 limits at each point and it can be shown that a theorem

 of Dir ichlet- Jordan type holds for the functions with

 P log+n(y)dy< 00 [3], This is best shown by observing
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 that these functions are in HBV, which is a consequence

 of the following lemma of Goff man [10] :

 LEMMA. Let (E^} be a sequence of ^-measurable sets

 of a measure space and let Sœ=limE£ and Sn ,
 n = l,2,3,..., be the set of points belonging to exactly

 n of the sets E^ . If is a decreasing sequence of
 non-negative real numbers, then

 00 co n oo

 £ a. p, (E . ) < E MS) (E a.) + E a.n(S ) .
 1 ^ 1 1 °°

 From this lemma one obtains the following immediate

 corollary by selecting a^ = l/i:
 00

 COROLLARY. If p, {%) < « , then E 'i (E . ) /i = 00 implies that
 1 X

 H (S ) ^ 0 or E p. (S ) log n = » .
 oo ļ n

 Given a regulated function f , adjoin to its graph

 the line segment connecting (x, limf(t)) and
 t -» x

 (x, limf(t)) for each point x at which f is discon-
 t -» x

 tinuous, assuming, for simplicity, that at such points

 f(x) is between f(x+0) and f(x-O) . Let G denote

 the union of the graph and these segments. Let n(y)

 be the cardinality of (x|(x,y) € Gj if this is finite

 and + o» otherwise. It is easy to see that if f is

 defined on [a,b] , a<x^<x^=b and ((x^y^) and

 (x^y^) are in G , then for each y between y^ and y^

 there is an x€ [Xq,x^] such that (x,y) 6 G .
 If f ^HBV, but is regulated on [a,b] , there is

 a sequence of non-overlapping intervals fan'knl such
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 00

 that Z if (a )-f(b ) I ' /n = ® . Let E be the interval with
 2 n . n ' n

 endpoints f(a ) and f(b ) . If y <E S, , then n(y) sk. n n K

 Thus if 1= [inf f,supf] , then

 00 1

 P_logn(y)dy ^ S m (S )logn+E - m (S ) = » ,
 JI i n n œ

 since Em(En)/n= » and m(l) <œ. Hence f does not
 satisfy the Garsia-Sawyer condition.

 We have now seen that the class of functions of

 bounded variation in the Dirichlet-Jordan theorem can

 be replaced by the classes HBV, $-BV (with e Y(l/n) < ») ,

 and functions for which f log+n(y)dy < «>. We have also

 seen that HBV contains the other classes and that its

 definition is closely related to the oscillatory nature

 and the magnitude of the Dirichlet kernel. It may also

 be shown that a theorem of Dirichlet-Jordan type does

 not hold for ABV if ABV is not a sílbelas s of HBV [3] .

 2. Magnitude of the Fourier coefficients.

 If f 0 is non-decreasing, we have, for some

 e € (0,2tt)

 <2tt ?
 n a. = ( f(t)cosktdt = f(2n) Ç ? cos ktdt

 by the second mean-value theorem. Thus

 I a^ I < 2f (2tt) /Tīk

 and, writing f = p-n , where p and n are the positive

 and negative variations of f , we see that and,
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 in much the same way, |b^ I do not exceed

 2(p(2TT)+n(2n))/nk = ^ V.-

 Here V denotes the total variation of f on [0,2tt] .

 Alternatively, one may consider the Fourier-

 Stieltjes series S(df) whose coefficients are given by

 i i ->2tt
 a, = - ' cosktdf(t) and b, = - ' sinktdf(t) .
 K nJ0 K " JO

 The result above is seen to be equivalent to the state-

 ment: the coefficients of S(df) are bounded-
 00

 Since Esinkx/k is the Fourier series of a func-
 1

 tion of bounded variation, we see that this estimate

 cannot be improved. Even if the function is required

 to be continuous, it may be shown that the coefficients

 need not be o(l/n) [2, 1, p. 136].

 It is interesting to note that this estimate leads

 to another proof of the Dirichlet-Jordan theorem. A
 00

 theorem of Hardy asserts that if E un is (C,l) summable

 (the method of the first arithmetic mean) and un = 0(l/n) ,
 00

 then Eun converges. Fe j ér 's theorem asserts that if
 1 1 i
 f€L then it is (C,l) summable to ^ [f (x+0)+f (x-0) ] at
 each point where f(x+0) exist and uniformly summable

 on closed intervals of points of continuity. Our esti-

 mate of a, and b, with these results yields the
 K K

 Dirichlet-Jordan theorem.

 We have seen that the estimation of the magnitude

 of the coefficients of S(f) for f £ BV is an immediate
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 consequence of the Jordan decomposition. Since this

 decomposition is the distinguishing feature of the class

 BV, the argument affords no insight into the question

 of such estimates for other classes. However for one

 class of functions of generalized variation an estimate

 is available from another source.

 3+1
 Consider the class ABV with A= {n J , -1< 3< 0 .

 We have shown that the Cesaro means of S (f ) of order ß
 a . i

 are bounded if f € {n" J - BV [4] . It is known that if •

 the means are bounded/ then the general term of the
 Q

 series is 0(nH) .

 The result may be improved if a certain continuity

 condition is imposed. Let f 6 ABV and let A = { ' , 1 ,
 m n+m ,

 m = 1, 2, ... . We say that f is continuous in A-variation

 if the A -variation of f tends to 0 as m->» . If we
 m

 q . 1
 assume that f is continuous in {n*" )-variation,

 -1 < ß < 0 , then S(f) is Cesaro summable of order ß ,

 which implies that the Fourier coefficients are o(n^) .

 If we assume f € ABV , then by a method indepen-

 dent of summability considerations we can obtain

 O (' /n) as an estimate of the Fourier coefficients,
 n'

 8+ 1
 which includes the estimates given for BV and (n J-BV .

 Vie will consider b . We have
 n

 Tīb = PTr f(t)sinntdt = fn...+ P^ ••• .
 n « j

 -Tí 0 -TT

 We will estimate only the first integral; the second

 may be treated analogously. Now
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 f (t)sinntdt = Ei-l)* ^ ^ f (t+kn/n) sin ntdt
 0 °0-

 = -E (-l)k Pn f (^±^)sin tdt .
 n *' Q n

 If this sum has an even number of terms it may be written

 as

 1 pn£*[f 1 (ËLÛSlillI) v ' « f (£±JS2)]sin v ' 1 tdt ,
 n.Q 1 v n ' v n ' 1

 where * again denotes summation over odd indices. if

 the sum has an odd number of terms , then the integral

 of the term with largest k tends to zero as n-»~ and,

 without loss of generality, we may consider the sum with

 this term deleted. Now

 -I Me*-..] sin ntdt i < - r" e* if (^k"1)TT) - f (tļOcTTj |dt
 n^Q n o q n n

 Applying Abels transformation, we see that this expres-

 sion is 0(Xn/n) .
 It is natural to ask if it is possible to deter-

 mine that a function f is of bounded variation from

 the magnitude of its Fourier coefficients. In this con-

 nection we have the following theorem of Lorentz [11,

 p. 211] :

 A function f is of bounded variation if

 (i) for l<p<2, (Ê la, K |p+|bvlp)1/p K = 0(l/n) n K K
 or

 (ii) for 2< pś « , (E | a^ |P+ |bR lP) 1/P = 0 ( ,
 where l/p+ l/q= 1 .
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 We do not know of any such results for functions of

 generalized bounded variation.

 3. Absolute Convergence

 A theorem of Denjoy and Lusin [2, I, p. 232] asserts

 that if S(f) converges absolutely on a set of positive

 measure, then E I a^ I f |b^ I converges. The convergence
 of this series implies that S(f) converges absolutely

 everywhere as well as uniformly.

 We see then that if we seek a condition which

 implies absolute convergence, it must imply continuity.

 It is natural, therefore, that such conditions generally

 include restrictions on œ (§) =uj^(ô) , the modulus of
 continuity of f . For example, we have the following

 theorem of Zygmund [2, I, p. 241]:

 If f is of bounded variation and u)(ô) =0(6OÍ) for

 some a > 0 , then S (f ) converges absolutely.

 Zygmund notes that the condition on cu is not superfluous t

 for even if f is absolutely continuous, S(f) need not

 converge absolutely.

 Hirschman [12, lemma D] has shown that BV in

 Zygmund' s theorem can be replaced by bounded Wiener

 p-variation if 1 < p < 2 .

 For ABV we have shown the following [3] :

 If f € ABV , then S ( f ) converges uniformly if

 E n""'" ( TT /n ) is a convergent monotone series.
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 If f € HBV , then S(f) converges absolutely if

 £ n (u/n) converges.

 Note that ABV = BV if ' = 1 , and if u)(ô}=0(ôQí) ,

 or > 0 , then ' = 1 implies

 1/2 ' -1 1/2. ' . . nf - (1+ar) ') . K ' n w ' (ir/n) . . = nf 0(n ') .

 and e Zygmund' s theorem is a consequence of ours.

 interesting analysis of the connections between

 these results and related results using the integrated

 modulus of continuity has been done by wik [13] . A

 discussion of various related counterexamples is to be

 found in a paper of Onneweer, [14] .

 4. Continuity

 Vie have mentioned that, although the Fourier

 coefficients of a function of bounded variation are

 O (1/n). i-?>qv>iz ir*g that the function is also continuous

 will not imply IJtOv the coefficients are o (1/n) . It

 is possible, however, to give conditions on the coefficients

 which imply the continuity of the function.
 2 2 2

 Let p, = a, + b, . Consider the conditions;
 k k k

 n 2 2 '
 (I) £ k p ' = o (n)

 1 K
 n

 (II) E k o = o (n)
 1 K
 n

 (III) E pv K = o(log n)
 1 pv K

 (IV) E P I = o (1/n) .
 1 k
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 Let W denote the class of regulated functions without

 external saltus, i.e., f €w if and only if f(x+0) and

 f(x-O) exist and

 min(f (x+0) , f (x-0) ) < f(x) < max (f (x+0) , f (x-0) )

 for each x . Let V denote the class of functions of
 P

 bounded Wiener p-variation.

 Wiener has shown that (II) is a necessary and suf-'

 ficient condition for functions in WflBV to be con-

 tinuous [8] .

 Golubov has shown that for functions in WnV 1 , 1 P

 l<p<2 , each of the conditions (I)- (IV) is necessary

 and sufficient for continuity, while for functions in W

 or functions in WfiV with p % 2 , these conditions are

 sufficient for continuity, but no condition on can

 be necessary [15] . He also observed that these condi-

 tions have the following relation, (IV) => (I) => (II) =>

 (III).

 E. Cohen has generalized the results of Wiener

 and Golubov to functions of Ý-BV [16] . The class of

 functions which she considers is somewhat different from

 ours. She nlakes the additional assumption that $

 is strictly increasing. V& is the class of functions
 of $ -bounded variation and V* is the class of functions

 $

 f such that kf € v for some k 4 0 .
 $
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 2
 She has shown that if x =o(ř(x)) as x-»0, then

 each of the conditions (I)- (IV) is necessary and suf-

 ficient for the functions of WpjV* to be continuous,
 2

 but if lim u /§ (u) ý 0 , then no condition on can be

 necessary.

 5. Approximating functions by Sn(f)
 The theorem of Salem on §-BV may be viewed as a

 result on the degree of approximation of a function

 f €c , the continuous functions, by the partial sums,

 Sn(f) , of its Fourier series:

 If f ÇC (ļi -BV and E Y ( l/n ) < » , then

 ||f-Sn(f)||c = o(l) .

 E. Cohen [16] has extended this to functions whose

 r-th fractional derivatives are in C flV* , with

 £ Y (1/n) < «> and 0<r< <». She has shown that

 ||f-Sn(f)|ic = °<n~r) .

 She has found such estimates for functions with discon-

 tinuous r-th derivative and also obtained estimates in

 Orlicz space norms.

 This work generalizes results of this type of

 Golubov [17], who estimated the norm of f-Sn(f)
 when the r-th derivative of f is in . V and q > p .

 P
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 6. Parseval's formula.

 2
 If f and g are in L , the classical Parseval

 formula is

 fgdx = łaoaó+f (akak + bkbk) -

 the a^ and being the Fourier coefficients of g .
 Two classes of functions are called complementary if,

 whenever f is in one and g is in the other, the series

 above is summable by some method.

 Pairs of complementary classes are, for example,

 (LP,Lq) with p>l and -^+-=1, (L log L, L ) and (L,BV).
 p q »

 In each of these examples the series converges [2,1,

 pp.159 & 267] .

 We shall show that (L,HBV) is a pair of comple-

 mentary classes and that the series above converges.

 Let ô denote the difference between the integral

 and the n-th partial sum of the series above. Then

 'V = ig-sn(g)Mfidx.

 In §1 we showed that S (g) not only converges to g ,
 lì »

 but that it is uniformly bounded. Hence Ig-S (g)llfl

 is bounded by an integrable function and tends to zero

 almost everywhere. Thus •

 We know no results for classes ABV which are not

 contained in HBV. Since a function g 6 ABV is bounded,

 fg € L for f 6 L . It appears to be a reasonable con-

 jecture that (L, ABV) is a complementary class with an
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 appropriate regular summability method which depends

 on A .

 7. The F. and M. Riesz theorem

 The conjugate Fourier series of f is

 Š(f) = £ (a^sin kx-b^ cos kx) .

 The summation problem for this series leads to the expres-

 sion

 _ 2 " f (x+t)-f (x-t)
 TT J 2 tan t /2

 The limit of this as e -*+0 is denoted by f(x) and the

 function f is said to be conjugate to f . It is well

 known that for f€L, f(x) exists almost everywhere.

 The Abel mean of a series 2 u^ is z u^r ,
 Ay

 0^r<l. Denoting the Abel means of S(f) and S (f )
 rv Í y

 by S(f,r) and S(f,r) and letting z = re , we see that

 S(f,r) + iS(f,r) = -|a0+ E(ak-ibk)zk

 is a function analytic in the unit circle.

 A necessary and sufficient condition for the con-

 vergence of S(f) at a point is the existence of f .

 It is also known that if f (x+0)-f (x-0) =1=0, then S ( f )

 diverges at x. Thus if f is regulated and S(f) con-

 verges everywhere, we see that f is continuous. If

 we assume that f is regulated and S(f) converges

 everywhere, we have that ï is continuous.
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 lì ix

 Suppose now that F (z) = E c^z with z = re is. a
 power series converging for Iz I <1 and its real and

 imaginary parts for r = 1 are Fourier series of fune-
 ix ix

 tions in HBV. Then F(e ) = lim F (re ) is contin-
 r 1-0

 uous.

 The theorem of F. and M. Riesz asserts that if the

 real and imaginary parts of F for r = 1 are Fourier
 ix

 series of functions m BV, then F(e ) is absolutely

 continuous .

 The proof of this result is rather deep and would

 lead us too far afield. For interesting discussions of

 this result and its ramifications see [2, I, pp. 285-288]

 and [18, pp. 88-91],

 The result given above for HBV is much less deep

 than the F. and M. Riesz theorem, which leads us to

 conjecture that it may be refined, that the HBV hypo-
 ix

 thesis may imply that F(e ) satisfies a generalized

 absolute continuity condition.

 8. Multiple Fourier Series

 The Riemann localization principle fc functions

 of one variable asserts that if f Ç L and j: >.: ) =0 for

 x€ (a,b), then Sn(f)->0 uniformly on compact subsets
 of (a,b) . For functions of several variables, no such

 result can be obtained without additional assumptions.

 If S = S is the n-th partial sum of S(f) ,
 n n. , . . . , n

 * Iti

 the Fourier series of an integrable function on [-tt,tt] ,

 m>l, and convergence means existence of limSn as
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 minn^-* » , then even for a continuous function, local-
 ization may fail.

 There are various types of additional assumptions

 one might make, for example,

 1. require f = 0 on a larger set,

 2. make additional global requirements on f ,

 3. replace convergence by other limiting pro-

 cedures,

 4. replace rectangular partial sums by other par-

 tial sums,

 and various combinations of these [2, II, Chap, 17],

 Tonell [19, Chap. 9] introduced a notion of

 bounded variation which yielded a pointwise convergence

 theorem for functions of two variables. This implies a

 pointwise localization principle: f = 0 on G open

 implies Sn(f) -» 0 at each point of G . The usual local-
 ization was obtained only with additional (but unneces-

 sary) hypotheses. Cesari [20] improved on Tonelli' s

 results with his introduction of generalized bounded

 variation which guarantees localization and almost

 everywhere convergence and which has had many other

 applications. This notion of Cesari may be expressed

 as follows:

 f is measurable and, corresponding to each

 coordinate direction, there is an equivalent function

 which is of bounded variation on almost every line in

 that direction, and whose total variation on those lines
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 is an integrable function of the remaining (m-1)

 variables.

 With Goffman, we have recently extended these

 results by replacing bounded variation on the lines in

 the coordinate directions by ABV [21,22], We have
 2

 shown that, in R , replacing BV by HBV yields the

 localization principle for convergence of rectangular

 partial sums, we have also shown that if ABV is not

 contained in HBV, then ABV contains a function for

 which the localization principle fails even for square

 partial sums (S with n, =n0) .
 n / n 2 Jl <2ê
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