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Rather than treating this articlé as an elongated
abstract the author feels it would be more in the spirit

of the Real Analysis Exchange toc trace the development

of the paper. The discussion is deliberately informal.

The problem first originated in the study of approx-
ircate derivatives. From joint work with Clifford Weil,
[5], it became apparent that 1f an approximate deriva-
tive was squal to zero in every neighborhood where it
was a derivative then it must be identicaliy Zero.
Stated differently this implies that if f is an approx-
imotely differentiable function which is constant in
every neiginborhcod where it is differentisble then f
nust be identically a constant. Thus it is clear that
if-an approximately differertisble function is zero in
2 dense set it is alwsys zero.

Now switching to the density topology [2] there are
two interesting facts. First in this topology every set
of measure zero is clesed. Secord given any density
clecsed set X and Euclidean closed zet Y, with X N Y = ¢,
there is an approximately continuqus function g wif;
0<g<l, g{X) =0 and g{Y) = 1. Thus given any count-

able dense set X, such as the ratiorals, and a point



Xg: not in X, there is an approximately continuous func-
tion separating thém. However the discussion above sheows
there is not an approximately differentiable function
doing the same Jjob.

Now the density topoiogy was generated to have
exactly as many open sets as were necessary to make
approximately continuous functions continuous. The
above seemed to the suthor to point out that the approx-
imately differentiable functions did not require as many
seﬁs be added to the FEuclidean topology. Thus the
question‘became "Is the density topology the cbarsest
topology for which the approximately differentiable
functions are continuous?".

Assuming the answer was no the authbr had to decide
what open sets to drop out. Alternately this leads to
the consideration of how the structure of approximately
differentiable functions differs from that of approxi-
mately continuous functions. Further the gquestion caume
up to the effect that "If the density topology is the
wrong one can it be expected that, as with the deqsity
topology; the correct topology, r, will have the pfo-
perty that f is r-continuous if and only if f is approxi-
mately differentiable?"

This last question is answerable even before the
others. Obviously every ordinary continucus function
would still be continuous in the new topology and, since

these functions are not all approximately differentiable ,
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the answer is no. Therefore if there is a different
topology tc be found it would need a new subclass of
approximately continucus functions properly containing
the approximately differentiable.

One property that had been uéeful in studying -
approximately differentiable functions suggested itself
naturalily as perhaps the device needed to form this new
subclass. Namely in [6] Tolstoff shows fbat if £ is
approximately differentiable then every perfect set
contains a portion on which f is continuous. The author
took this preoperty and called functions having it Baire *1.
Ther the question becowmes, "Is the density topology the
coarsest topology msking the approximately continuous
Baire *1 functions continuous?".

In turn this led the author to study Baire *1 Dar-
boux functions f [14]. They were found to have the
interesting property, NEI, that for every a {x: f£(x) > a}
ard {x: £f(x) < a} have nonempty Euclidean interior.
Theretore returning to approximately continuous Baire
#] functions the author looked at A = {S: 2 f and a such
that S = [f > a] and f is~approximately continuous Baire
#1}., The collection A forms a subbasis for the desired
topology; it was not hard to show that A actually formed
a basis. Therefore since the NEI property would‘bevpre-
served under arbitrary unions the wain question was
answered. The density topology was nct the proper top-

ology, which the author called 1. However this in no

-
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way actually told what the r topology was. That is say-
ing that r is the torology generated by usirvg A as a
basis doesn't say much sbout r. In trying to givé
alternate characterizations to what sets were in A,
without reference to a function f, the author observed
that all the sets had to be Fo's because the functions
were of Baire class 1. However it could also be shown
that they had to be Gﬁ' Thus it was logical to study
the class of sets which were both Fb's and GG'S at the
saﬁe time. Historically it seems that these sets are
called ambiguocus of class 1, or resolvable [3], or
bivalent [1]. The author took the liberty of calling
such sets ambivalent (partly as a compromise, partly
due also to the feeling that study of these sets gener-
ates after awhile.) Functions having {x: f(x) > a} and
{x: £f(x) < a} ambivalent for every a were naturally
called ambivalent.

Finally it was shown that the r topology is the one
generated by the basis of sets B = {u: u is density cpen
and ambivalent}. Therefore it seems that the sets which
are open in the density topoldgy but not ambivalent have
to be dropped cut. However this is not exactly true.
There are r-open sets which are not ambivalent. It is
still an open question exactly which are the r-open sets.
Farther, though this is not explicitly ' done in the
paper, the r-continuous functions are notv precisely the

approximately continuous =zmbivalent functions. Thus
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exactly which are the r-continuous functions is also
an open questioh. On the positive side it is shown
that thé r-topology is "near" normal in the sense that
if X is a r~closed set and Y is a Euclidean closed set
with X NY-= ¢, then there is an épproximately differ-
entiable function g with 0 < g < 1 and g(X) = O and

g(Y) = 1.
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