
 Clifford E. Weil,  Department of Mathematics, Michigan State University,

 East Lansing, Michigan 48824

 The Darboux and Den j oy Properties for Directional

 Derivatives and Gradients

 The purpose of this article is to inform readers of

 The Exchange of some results concerning directional .deriva-

 tives and gradients that have never been published. Some

 are due to the author while others appear in the Ph.D. thesis

 of Raymond Peter Goedert which was written under the author's

 direction. They deal with extensions of the Darboux and

 Denjoy properties of derivatives of real valued functions of

 a real variable to functions of several . variables . The def ig-

 nition of the latter property for such functions is immediate.

 In fact, if the domain of f is a measure space and the

 range -, a topological space, then f has the Denjoy property

 if for each open set U, f~^"(U) either is empty or has

 positive measure. The Darboux property has no one natural

 extension to functions of several va'riable. Consequently,

 early research in the area centered on finding a Darboux -type

 property that would be possessed by a predetermined class of

 functions. For example, Neugebauer (see [2]) define Darboux

 sets and then proved that a partial derivative of a linearly

 continuous function maps Darboux sets to connected sets. The

 Bruckners (see [1]) noticed the common feature of these

 concepts and defined the notion of Darboux ( B ) where B is

 52



 a basis of connected sets for the topology of the domain

 by insisting that the image of each element of B be a

 connected set. Thus, the problem became one of determining

 conditions on a basis B so that a particular class of

 functions is Darboux [B) .

 One such problem was motivated by Neugebauer (see

 [3]) who proved that f: Eļ -» E^ is a Darboux function of
 Baire class one if and only if for each a , {x: f (x) _> a}

 and {x: f (x) a) are sets which contain the endpoints

 of any interval they contain. This last condition on the

 sets must be defined in an arbitrary topological space

 relative to a basis B .

 Definition: A set S is B closed if for each O € B ,

 U c S implies CÍÜ c S .

 Next the conditions on B are given under which a version

 of Neugebauer's Theorem can be proved.

 Definition; A basis B of a metric space satisfies

 condition (1) if for each open ball B and each x € Bd B,

 there is a U € B such that U c B and x € Bd U . Also

 B satisfies condition (2) if for each ü € B and x € CAU ,

 there is a V € B such that Ci V - fx) c U .

 Theorem (Goedert) : Let f: -♦ Y where Y is a separable

 metric space, be a function of Baire class one and let B be

 a basis of En satisfying (1) and (2) with each u € B
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 connected. Then f is Darboux (B) if and only if for

 each closed set Key, f ^ (K) is B closed.

 In [1] there is established another characterization

 of functions of Baire class one which are Darboux (B)

 which was inspired by a theorem due to Zahorski. He proved

 that a function f: E^ -♦ E^ is of Bąire class one having
 the Darboux property if and only if for each open set U,

 f - (U) is a dense-in-itself F set. As before dense-
 o

 in~itself must be defined.

 Definition: Let B be a basis for a topological space.

 A set S is dense-in-itself (/?) if for each x € S and

 U € B with X € CÃ U, S HU contains a point other than x.

 Theorem (Goedert) : Let Y be a separable metric space

 and f: E -»Y be of Baire class one. Let B be a basis
 n

 of En satisfying (1) and (2) . Then f is Darboux {B)
 if and only if for each open set U , f^fu) is dense-in-
 itself (i 8) .

 In [1] this theorem is proved under conditions on B which

 are similar. to (1) and (2) but neither imply nor are implied

 by them.

 The main problem Goedert dealt with in his thesis was

 to find a condition on B so that the gradient of every

 dif ferentiable function is Darboux (#) . It is first observed

 that no such condition is possible if it is not assumed that

 f is dif ferentiable. For example let
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 f 9 9 _1 /9
 2xy(x + y ) if (x,y) ¿ (0,0)

 f(x,y) = {

 0 if (x,y) = (0,0) .
 '

 00

 It. is easily shown that f 6 C (E^-ftOiO)}) and hence
 dif ferentiable on - {'(0,0)}. But f is not

 differentiable at (0,0) even though grad f(0,0) = (0,0).

 In addition ļgrad f(x,y) ļ > 1 for (x,y) (O, O) ; so
 grad f maps any neighborhood of (0,0) onto a subset of

 having (0,0) as an isolated point and consequently

 cannot possibly be connected.

 Definition: Let S c: E . A point x Ç C£ S is called

 accessible from S if there is an a > O and a sequence

 [C } with C € S - fx} 1 for each n and lim _ C = x n n 1 n-*» _ n

 such that for each n the open ball with center Cn and
 radius alx-C I is contained in S. The set S has an

 1 n 1

 accessible boundary if each x in its boundary is accessible

 from S .

 Roughly speaking, a set S has an accessible boundary if

 it does not come to a cusp on its boundary.

 Theorem (Goedert) : Let B be a basis of connected sets

 for En , each element of which has an accessible boundary.

 If f: Er -» E^ is differentiable at x for each x € ,
 then grad f is Darboux (B) .
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 Two assertions follow easily from the above theorem. Each

 was obtained for the ball basis of E by the author.
 n

 Corollary (Goedert) ; Let B and f be as in the previous

 theorem and let v 6 E , Ivi = 1. The directional derivative
 n 1 1

 of f in the direction v is Darboux ( B ) . Also ļgrad f ļ
 is Darboux (B) .

 In his thesis Goedert did not show that the accessible

 boundary condition was necessary but he did give an example

 of a set, S , with (0,0) as a nonaccessible boundary

 point and a differentiable function f with grad f(0,0) =

 (0,0) while ö f(x,y) = 1 for each (x,y) € S . Thus
 A

 grad f(C/Š) is not connected.

 With no restrictions on the function, the existence of

 the directional derivative, d^f , of f in the direction

 v need not imply that ö^f has the Den joy property. For
 example let

 Íx O if if y y / = O O O if y / O .

 Then c f(x,0) = 1 while örf(x,y) =0 if y ^ 0 . So
 X

 (õxf)~^(0,2) is the x-axis which has measure 0. The next
 two theorems state conditions on f sufficient to imply

 that directional derivatives have the Den joy property.
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 Theorem: Let f: E -*2, and let v € E„ , ļv| 1 = 1 ,

 and suppose that 3^f(x) exists for each x € E^ . For

 each X € En write x = (x^,x^) where x^ is the component

 of x in the direction v , x^ € En-1 an(^ x = x^V+x^ .
 If (x^: f (x^x^'l is continuous in x^) is dense in E^ ,
 then 5^f has the Den joy property.

 Theorem; Let f and v be as above. If f is linearly

 continuous, then ô^f has the Den joy property.

 Concerning the gradient, an example has already been

 given of a continuous function which is dif ferentiable every-

 where except at (0,0) where both partial derivatives exist

 and are 0 , but whose gradient has length at least 1

 except at (0,0) . This gradient does not have the Den joy

 property. The major unsolved problem in this area of research

 is whether or not the gradient of a dif ferentiable function

 has the Den joy property.
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