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 The Distance Set of Certain Cantor Sets

 Let A be a subset of Euclidean n-space. The distance set

 of A is the set D(A) = {|p-q|: P,Q 6 A}, where ļ P- Q | denotes

 the Euclidean distance between P and Q. In 1917, Hugo Steinhaus

 [8] proved that the distance set of the Cantor ternary set ^/3
 is the interval [0,1]. Three years later, he [9] demonstrated

 that the distance set of any set with positive Lebesgue measure

 contains a non-degenerate interval with left endpoint zero. In

 light of these results, we make the following definitions: the

 set A is called a Steinhaus set (S-set) if D (A) contains a non-

 degenerate interval with left endpoint zero; furthermore, if this

 interval has length equal to the diameter of A, then A is

 called a complete Steinhaus set (CS-set) .

 For 0 < X < 1, the Cantor "middle X-th" set is constructed

 as follows: From the closed unit interval delete the open middle

 X-th segment ((l-X)/2, (l+X)/2) leaving the two closed intervals

 A^ = [0,(l-X)/2] and A^ = t(l+^)/2,l] each of length s., »

 (l-X)/2. From A^ and A^ delete the open middle segments of
 2

 length Xs^ leaving 2 closed intervals each of length S2 =
 2

 £ (1- X) /2] . Denote these closed intervals, from left to right,

 by ^21, A?2> ^23' anc* ^24* Continue this process inductively.

 The n-th stage of the construction consists of deleting the open

 middle X-th segment of length ^sn_j from each of the 2n ^

 closed intervals that result from the (ri--l)-th stage to obtain 2n

 closed intervals A . , A A „n each of length 0 s = [(l-X)/21n. ' J ni . , n2 n2n „n 0 n ' J
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 2n
 For each index n, set A » UA .. Then

 n i-i 1,1

 co

 C. - OA
 A . il

 n=i_

 In this note, we give an account of the results which led to

 the determination of the set of values X for which the sets

 and X are CS-sets.

 §2. The set Cy
 In 1955, S. C. Bose Majuader and H. M. Sen Gupta [1] proved

 that is a CS-set for X «* 1/ (2n+l) [n=l,2,...]; in 1962,

 T. Sãlát [7] verified that is not even an S-set for X > 1/3.

 We prove the following result.

 THEOREM I . The set is. £ CS-set for each X S l/3.

 Proof. Choose X £ 1/3, and set D_ = D(A_). Since {A } ,

 is a monotone decreasing sequence of compact sets, it follows

 (see [3]) that

 OO • CO

 D(C ) = D(nA ) = r'D .
 A - n «xi

 n=l - n=l

 In order to verify that is a CS-set, it suffices to show that

 Dn = [0,1] for each index 11. This will be accomplished by math-

 ematical induction* Since X < 1/3, we have

 ^ = [0, (1-A) /2] U[ A ,1] = [0,1] .

 Now assume that D _ = [0,1], and let d be an arbitrary ele-
 n- 1

 ment of [0,1]. We now show that d € D .
 n

 From the pairs of points in ^ whose difference, is d,

 we select a pair of points x and y such that one of them, say

 x, is the left endpoint of seme closed interval Thus,
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 X is in A . If y is also in A , then clearly d € D . Sup- r n n , n . r

 pose that y ķ A^. Then, for some index k, the point y lies
 between A , and A „ ,.N. Since the distance between A , and nk , n(k+l) „ ,.N. nk ,

 A /, . , ' equals n Xs , which is less than or equal ^ to s , it n(k+l) /, . , ' n n-1 , ^ n

 follows that y J + Xs , and x + Xs , are in A ; hence J n-1 , n-1 , n

 d € D . B
 n

 §3. The set Ty

 In 1955, Bose Majumder and Sea Gupta [1] verified that T^

 is a CS-set for X = l/(2n+l) [n=l,2,...]; however, as a corol-

 lary to Theorem I, we have that T^ is a CS-set for X ¿ 1/3.

 In 1961, Bose Majumder [2] proved that T^ is not even an S-set

 for X > /2 - 1. Recently, the authors [4] filled the gap by

 proving the following result.

 THEOREM II. The set Tx ±s_ a CS-set for 1/3 < X ^ ¿2 - 1.

 Remark. . N. C. Bose Majumder [3] presented the following

 theorem: If A,,Art,...,A are n symmetric sets in [0,1], then
 - . 12 n

 the set x A2 x • • • x jls a_ CS-set if, and only if, each A^
 (i=l,2, . . . ,n) is a CS-set, This implies that is a CS-set

 if, and only if, X < 1/3, which in view of our theorem is clearly

 false. The invalidity of Bose Majumder 's result can be seen by a

 more elementary example: for n=2, take A^ = [0,1/4] U[3/4,l]

 and A^ = [0,1] •
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