Johnny M. Brown and Ken W. Lee, Department of Mathematics, Western Illinois University, Macomb, Illinois 61455

The Distance Set of Certain Cantor Sets

Let A be a subset of Euclidean n-space. The distance set of A is the set $D(A) = \{|P-Q|: P, Q \in A\}$, where |P-Q| denotes the Euclidean distance between P and Q. In 1917, Hugo Steinhaus [8] proved that the distance set of the Cantor ternary set $C_{1/3}$ is the interval [0,1]. Three years later, he [9] demonstrated that the distance set of any set with positive Lebesgue measure contains a non-degenerate interval with left endpoint zero. In light of these results, we make the following definitions: the set A is called a <u>Steinhaus set</u> (S-set) if D(A) contains a nondegenerate interval with left endpoint zero; furthermore, if this interval has length equal to the diameter of A, then A is called a <u>complete Steinhaus set</u> (CS-set).

For $0 < \lambda < 1$, the Cantor "middle λ -th" set is constructed as follows: From the closed unit interval delete the open middle λ -th segment $((1-\lambda)/2, (1+\lambda)/2)$ leaving the two closed intervals $A_{11} = [0, (1-\lambda)/2]$ and $A_{12} = [(1+\lambda)/2, 1]$ each of length $s_1 =$ $(1-\lambda)/2$. From A_{11} and A_{12} delete the open middle segments of length λs_1 leaving 2^2 closed intervals each of length $s_2 =$ $[(1-\lambda)/2]^2$. Denote these closed intervals, from left to right, by A_{21}, A_{22}, A_{23} , and A_{24} . Continue this process inductively. The n-th stage of the construction consists of deleting the open middle λ -th segment of length λs_{n-1} from each of the 2^{n-1} closed intervals that result from the (n-1)-th stage to obtain 2^n For each index n, set $A_n = \bigcup_{i=1}^{2^n} A_{ni}$. Then

$$C_{\lambda} = \bigcap_{n=1}^{\infty} A_n$$

In this note, we give an account of the results which led to the determination of the set of values λ for which the sets C_{λ} and $T_{\lambda} \equiv C_{\lambda} \times C_{\lambda}$ are CS-sets.

In 1955, N. C. Bose Majumder and H. M. Sen Gupta [1] proved that C_{λ} is a CS-set for $\lambda = 1/(2n+1)$ [n=1,2,...]; in 1962, T. Sălát [7] verified that C_{λ} is not even an S-set for $\lambda > 1/3$. We prove the following result.

THEOREM I. The set C_{λ} is a CS-set for each $\lambda \leq 1/3$.

<u>Proof.</u> Choose $\lambda \le 1/3$, and set $D_n = D(A_n)$. Since $\{A_n\}_{n=1}^{\infty}$ is a monotone decreasing sequence of compact sets, it follows (see [3]) that

$$D(C_{\lambda}) = D(\bigcap_{n=1}^{\infty} A_n) = \bigcap_{n=1}^{\infty} D_n$$

In order to verify that C_{λ} is a CS-set, it suffices to show that $D_n = [0,1]$ for each index n. This will be accomplished by mathematical induction. Since $\lambda \le 1/3$, we have

$$D_{1} = [0, (1-\lambda)/2] \cup [\lambda, 1] = [0, 1]$$

Now assume that $D_{n-1} = [0,1]$, and let d be an arbitrary element of [0,1]. We now show that $d \in D_n$.

From the pairs of points in A_{n-1} whose difference is d, we select a pair of points x and y such that one of them, say x, is the left endpoint of some closed interval $A_{(n-1)i}$. Thus, x is in A_n . If y is also in A_n , then clearly $d \in D_n$. Suppose that $y \notin A_n$. Then, for some index k, the point y lies between A_{nk} and $A_{n(k+1)}$. Since the distance between A_{nk} and $A_{n(k+1)}$ equals λs_{n-1} which is less than or equal to s_n , it follows that $y + \lambda s_{n-1}$ and $x + \lambda s_{n-1}$ are in A_n ; hence $d \in D_n$.

§3. The set T_{1} .

In 1955, Bose Majumder and Sen Gupta [1] verified that T_{λ} is a CS-set for $\lambda = 1/(2n+1)$ [n=1,2,...]; however, as a corollary to Theorem I, we have that T_{λ} is a CS-set for $\lambda \leq 1/3$. In 1961, Bose Majumder [2] proved that T_{λ} is not even an S-set for $\lambda > \sqrt{2} - 1$. Recently, the authors [4] filled the gap by proving the following result.

THEOREM II. The set T_{λ} is a CS-set for $1/3 < \lambda \le \sqrt{2} - 1$.

<u>Remark.</u> N. C. Bose Majumder [3] presented the following theorem: If A_1, A_2, \ldots, A_n are n symmetric sets in [0,1], then <u>the set</u> $A_1 \times A_2 \times \cdots \times A_n$ is a CS-<u>set if</u>, and only if, each A_i (i=1,2,...,n) is a CS-<u>set</u>. This implies that T_{λ} is a CS-set if, and only if, $\lambda \leq 1/3$, which in view of our theorem is clearly false. The invalidity of Bose Majumder's result can be seen by a more elementary example: for n=2, take $A_1 = [0,1/4] \cup [3/4,1]$ and $A_2 = [0,1]$.

REFERENCES

- 1. N.C. Bose Majumder and H.M. Sen Gupta, <u>A note on certain plane</u> sets of points, Bull. Calcutta Math. Soc. 47(1955), 199-201.
- 2. N.C. Bose Majumder, <u>On the distance set of a set of Cantor type</u>, Proc. Nat. Inst. Sci. India, Part A, 27(1961), 289-294.
- 3. <u>A study of certain properties of the Cantor</u> <u>set and of an SD-set</u>, Bull. Calcutta Math. Soc. 54(1962), 8-20.
- 4. J.M. Brown and K.W. Lee, <u>The distance set of</u> $C_{\lambda} \times C_{\lambda}$. (submitted)
- 5. K.W. Lee, S-<u>sets</u> and CS-<u>sets</u>, Doctor of Arts dissertation, University of Northern Colorado, Greeley, Colorado, 1976.
- 6. S. Piccard, <u>Sur les ensembles des distances des points d'une</u> <u>espace Euclidean</u>, Neuchatel, 1939.
- 7. T. Sălát, Über die mengen der entfernungen der linearen diskontinuen, I, Čas. pěst. mat. 87(1962), 4-16.
- H. Steinhaus, <u>Nowa vlasnośe mnogosci G. Cantora</u>, Wektor (1917), 105-107.
- 9. <u>Sur les distances des points des ensembles de</u> <u>mesure positive</u>, Fund. Math. 1(1920), 93-104.

Received October 11, 1976