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 On Approximate Schwarz Derivates

 Zygmund' s characterization of montone functions

 and Dini's theorem are well-known [8], These results

 aře proved to be valid for Schwarz derivates and

 approximate derivates under suitable conditions [1, 5,

 2, 6, 4]. A natural question whether they hold for

 approximate Schwarz derivates arises. Effort was made

 in C 33 » unfortunately the proof was in doubt (MR 47

 #2010). Motivated by the fact that the concept of a

 strict maximum is often used when one works with

 Schwarz derivates (for example, [1] and [2]), we define

 the concept of an approximate maximum as follows:

 f assumes an approximate maximum at x if the set

 (í : f ("5 ) c f (x) } has x as a point of density.

 With the aid of an interesting density property proved

 by O'Malley [4], the following theprems are proved in

 [73.

 Theorem 1. Let f be a Baire-1 function with

 (*) lim sup ap f(x-h) í f(x) ^ lim sup ap f(x+h)
 ł>-»0+ h->0 +
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 for every x. If f(?)l/E contains no non-degenerated

 interval, then f is non-decreasing, where F is the set

 of points x at which the lower approximate Schwarz

 derivate (x) s o, and K is the set {o(f R : {x : f(x) =<* ap

 and f assumes an approximate maximum at x} is uncount-

 able) .

 Corollary. Let f be a Eaire-1 function with

 property (*) and. satisfy the condition , that is,

 there is a dense subset R ' of the real line R such

 that for every c € R ' the set {of e R : [x : f (x) = 0/ - ex}

 is uncountable) is of Lebesgue measure zero. If f ^*5 0

 nearly everywhere, then f is non-decreasing.

 Theorem 2. If f is approximately continuous and

 satisfies the condition T^ , then

 sup jf^p(x) : xé R } = sup f f (x) x - f (y) . x^y j x - y

 and

 inf [ : x e R ) = inf { ~ : x ¿ y j ,
 - ją '

 where f ' (x) denotes the upper approximate Schwarz
 3.p

 derivate of f at x.

 Theorem 3. If f is approximately continuous,

 satisfies the condition and the set of points where
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 the left (right) upper and lower approximate derivates

 are different is countable, then

 sup {f^p(x) :xíR) = sup {£ap(x) :x«R] = u

 and

 inf C*ap^:xeR* = inf ííap^x^:xeR^ = J^'
 where

 U-SUP [IW-f(y) ; x¿y|, |=inf( f(x)-f(y) . x/y)
 I X- y ) I x-y )

 We conclude this paper with the following remarks.

 (1) If f is measurable, it can be shown that the

 set E= fx : f assumes an approximate maximum at x} is

 of measure zero. A question whether the image. f(E) is

 a set of measure zero in case f is approximately con-

 tinuous remains open. If the answer is affirmative,

 then the condition in the above results can be

 removed.

 (2) O'Malley posed a question:

 Let AC(Xļ , Xg ) be nonempty such that A has left
 density 1 at every xeA but is not necessarily an

 set. Does there exist an xQ £ [x^ , Xg ) - A which is a

 right point of density of A?

 If the answer is yes, then the hypothesis about the

 condition can be omitted too.
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 Editor's note: The question asked in remark (1) of this paper
 has recently been answered in the negative by James Foran in his paper
 On the density maxima of a function, which is to appear in Colloq. Math.
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