
 Cheng-Ming Lee, Department of Mathematics , University of
 Wisconsin - Milwaukee, Milwaukee, Wisconsin 53201

 Monoton i c i ty Theorems for Approximate
 Peano Derivatives and Integrals

 1. Introduction and notations.

 In connection with Burkill's Cesaro-Perron integrals,

 certain sufficient conditions for functions to be. monotone

 are listed and discussed, and some related problems are

 also stated.

 The main notions to be involved are those of approxi-

 mate and ordinary Peano derivatives and those of generalized

 absolutely continuous functions. Some references related

 to the notions will be given later in the context. Here

 we first fix the notations.

 Let F be a (real-valued) function of a real variable.

 For a positive integer n, the n- approximate (ordinary,

 resp.) of F at a point x, if it exists, will be denoted as

 F(n)(x) (Fn(x) , resp.). The lower n - approximate Peano
 derivate of F at x, if it exists, will be denoted as lF^n^(x),
 and the upper one as uF^n^(x). The corresponding ordinary
 ones will be denoted as £Fn(x) , uFn(x) . If in the definition
 of (x) ' ^ke approximate limsup is replaced by the ordi-

 nary limsup, then an extended real number not less than

 uF^n)Cx) is defined which will be denoted as u0"^(n)^x^ (see
 £71)-

 A function F is said to be lower absolutely continuous
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 (or simply XAC) on a set S if for each e > 0 there exists

 6 > 0 such that

 EDKIk) - F(a±) > -e
 for each set {[a^, b^]} of finitely many non-overlapping

 intervals [a^, b^] with the end points a^, b^ in S and

 such that £(b^ - a^) < 6. A function is said to be
 generalized lower absolutely continuous (or simply [jŁA.CG])

 on a set if this set is a union of countably many closed

 sets on each of which the function is iAC. A function F is

 AC.([ACG], resp.) on a set if both F and -F are ¿AG ([jŁACG],

 resp.) on the set. See [10] for a more detailed discussion

 for the concept of ¿AC and [j&ACG] etc.

 2. Monotonicity theorems.

 First we list a general monotone theorem concerning

 approximate Feano derivatives.

 Theorem (l,n). Let F^n^(x) exist finitely for all x in a
 (■bounded) closed interval [a,b]. If V(n+l)(x) ^ 0 for
 almost all x and uo^(n+i) > - « for nearly all x in [a,b],
 then is monotone increasing and continuous on [a,b].

 Here, by "nearly all x" we mean "for all x except

 perhaps for those x in a countable set". The theorem,

 generalizing a result by Verblunsky in" [I5] for the ordinary

 Peano derivatives, has been proved in [7]. The proof has
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 been based on Verblunsky's theorem 1, (i), and on a result

 due to Evans [5] » which states that an approximate Peano

 derivative on a closed interval is a Baire class one function.

 Theorem (l,n) is more general than what is needed in develop-

 ing certain integral theories. For convenience of later

 discussions, we single out the following special case.

 Theorem (2,n,A). Let F(n)(x) exist finitely for all x in
 [a,b]. If ^(^1) Cx) > 0 for almost all x and £F(n+i)(x) > - 00
 for nearly all x in Ca,b], then is monotone increasing

 on [a,b].

 The even weaker result, obtained by replacing in Theorem

 (2,n,A) all the approximate Peano derivatives and derivates

 by the ordinary ones, will be denoted as Theorem (2,n,$).

 How, for convenience, the existence of a finite F(n)(x)
 (Fn(x) , resp.) for n = 0 will simply mean that the function

 P itself, also denoted as P(q) or Ïq' is approximately
 (ordinarily, resp.) continuous at x. With this convention,

 it is clear that theorem (l,n) does not hold for n = 0.

 However, theorem (2,n,A) as well as (2,n,(5-) remains true

 for n = 0. In fact, theorem (2,0, A) follows as a corollary

 of the following interesting result due to Lee in [10]-

 Theorem 3- Let P be a function defined on [a,b]. Then P

 is monotone increasing on [a,b] if and only if
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 (i) F is [£ACG] on [a,b]j

 (ii) F is monotone increasing on the closed interval [c,d]

 whenever it is so on the open interval (c,d) c= [a,b]j

 (iii) the upper derivate of F is non-negative almost every-

 where in [a,b].

 To indicate how Theorem (2,0, A) follows from Theorem

 3, we state the following result, which will receive futher

 discussion in the next section. A proof of this result is

 straightforward and easy, noting an argument given on page

 239-240 in Saks [12] (cf. [9]).

 Theorem (4-,0,A). Let F be approximately continuous on

 [a,b]. If £F^(x) > - 00 for nearly all x in [a,b], then
 F is [XACG] on [a,b].

 3. Integrals and problems.

 Extending the Perron integral, Burkill [4] has defined

 a scale of Cesàro-Perron integrals which have been denoted

 ás CnP-integral for n = 1,2,3» •••• The original definition

 for the CnP-integral has been given in terms of the Cn-con-

 tinuity and the Cn-derivate which are concepts defined by

 means of the Cn_^P-integral , the C0P-integral being the
 Perron integral. "However, using the Peano derivatives and

 deri vates, the CnP-integral can be equival ently defined

 without first defining the Cn_ļP-integral. The fact seems
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 to "be implicitly included in Burkill ' s original work and

 has been explicitly used by Verblunsky on page 320 in [I5].

 A complete proof for the fact can be found in Bergin's

 thesis [2] (cf. also [8]).. For convenience, we give the

 definition of major functions for the cyP-integral below,
 using the Peano derivative and derivate.

 Let f be a function defined on [a,b]. A function

 M is said to be a Cn-major function for f on [a,b] if there
 exists a function F such that

 (1) Fn(x) exists finitely and is equal to M(x) for all
 X in [a,b]j

 (2) M(a) = 0 j

 (3) " for all x in [a,b];

 (4-) > f(x) for all x in [a,b].

 Using the Cn-ma;jor functions defined above the theory

 of the CnP-integral is fundamentally based on the following
 monotonicity theorem.

 Theorem (2',n,ß). Let ^(x) exist finitely for all x in
 [a,b] and J® ^(x) > 0 f°r all x in [a,b]. Then Fn is mono-
 tone increasing on [a,b].

 As having pointed out in [2] and [14], Burkill' s

 original proof for this fundamental theorem is defective,

 but the theorem is correct. In fact, stronger results hold

 as we have listed in the previous section (cf. Theorem (2,n,A) #
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 and (2,11,00).

 If in the definition of the Cn~ma j or function the

 inequality in (3) is only required to hold for "nearly all
 x" and that in "(4-) for "almost all x", then a modified

 Cn-major function is defined. Using modified Cn-major

 functions and Theorem (2,n,0), ą modified CnP-integral is
 obtained. Xt is a known and interesting result (see page

 162 in [3]) that the CnP-integral and the modified one are
 equivalent.

 Now, we come to approximate extensions of the CnP-

 integral. In the definition of the Cn~ma¿j or function,
 replacing the ordinary Peano derivatives and derivates by

 the corresponding approximate ones, an approximate Cn-ma j or
 function is defined. Then using Theorem (2,n,A) an approxi-

 mate CnP-integral is defined, which will be denoted as

 A^P-integral. Similarly, a modified AnP-intesral is defined.
 It is clear that the modified A^F-integral is more general

 than the A^P-integral. But whether or not these two inte-
 grals are equivalent is an open question. We list it as

 a problem below. We remark that the modified A^P-integral
 has been discussed in better detail in [7].

 Problem 1. Are there functions Which are modified A P-
 n

 integrable but not A^P-integrable?

 To state another problem, let us note that the CnP-
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 integral is equivalent to the CnD-integral which was
 beautifully developed by Sargent "in [133- The main con-

 cept involved in the CnD-integral is that of a generalized

 absolutely continuous (in Cásense) function. Such a
 function as defined by "Sargent [133 will be simply termed

 as an ACnG* function. It may be helpful to note that an

 ACnG* function may also be equivalently defined by using

 the Peano derivatives instead of the Cn_-^P-int egral . It

 is easier to think that an ACnG* function is just a natural
 n- - Peano analogue of an ACG* function as given in Saks [123 j

 which is essential for a descriptive definition of the Den-

 jo y integral in the restricted sense. The equivalence of

 the C^P- and CnD-int egral is just a natural extension ofthat of
 the Perron integral and the Deiijoy integral in the restricted

 sense. We write the equivalence relation in the "if and only if"

 form, noting that a complete proof for the "only if" part has

 been just produced recently by Verblunsky in [143.

 Theorem (5,n,$). A function f defined on [a,b3 is CnP-
 integrable over [a,b3 if and only if there exists a function

 i.V.

 F such that the n- Peano derivative, Fn, of F is ACnG* on

 [a,b3 and such that F n+^ (x) exists finitely and is equal
 to f(x) for almost all x in [a,b3- In this case, 3?n is an

 indefinite CnP-integral of f on [a,b3-
 Now it is natural to ask whether or not a similar

 58



 result for the A^P-int e gral or even for the modified Av-
 ilit e gral can be obtained. ¥e list it as a problem below.

 Problem (5>n,A). Can a suitable notion similar to that

 of an AC 'G* function be defined so that a result for the
 n

 A^P-integral similar to Theorem holds?
 To attack the problem, further investigation about

 the CP- and CnD-integral might be useful. Note first

 that an AC^G* function is [ACGJ. Therefore, it follows

 from Theorem (5}nJ$") that an indefinite C^P-integral is
 [ACG]„ Then, using Theorem (2,n,Q-) and the definition of

 Cn~ma j or functions, one proves easily that a Cn-ma j or

 function of a CnP-integrable function is [¿ACG] . However,
 whether or not the following problem has an affirmative

 answer is an open question for n > 2.

 Problem (4,n,$-). Is it true that if ^(x) exists finitely
 for all X in [a,b] and if ^n+i(x) > - 00 for nearly all x
 in Ca»b], then Fn is [XACG] on [a,b]?

 Of course, replacing the ordinary Peano derivative and

 derivate by the approximate ones, one has a more general

 problem, which is being denoted as Problem (4,n,A).

 For n = 0, the answer to problem (4-,n,A) (and hence

 also the problem (^,n,^)) is in the affirmative due to

 Theorem (4,0, A). A closer study of the interesting paper
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 by Jeff ery [6] also shows that problem (4,1,0) has an

 affirmative answer. This we list as Theorem (4,1,0)

 below.

 Theorem (4,1,0-) • If F is a function on [a,b] such that

 īļ exists finitely on [a,b] and such that 11 ^ (x) > - 00
 for nearly all x in [a,b], then is [¿ACG] on [a,b].

 With Theorem (4,1,0) at hand, it is noted that

 Theorem (2,1,0"), similar to Theorem (2,0, A), is Just a

 special case of Theorem 3- The same would be true for

 Theorem (2,n,0) for n > 2 ((2,n,A) for n > 1) should the

 answer to problem (4,n,ö")((r,n,A)) be in the affirmative.

 Bypassing the problems (4,n,A) and (5»n,A), people

 have directly used [iACG] functions to define more general

 integrals. Many integrals so defined are extensions of

 the Denjoy integral in the wide sense. It is interesting

 to note that for these integrals,, results similar to the

 theorem of Hake-Alexandrcff-Looman have been established.

 In fact, based on Theorem 3 listed in the previous section,

 ãn abstract integral of Perron type and one of Den«joy type

 have been defined and proved to be equivalent in [10]. Some

 concrete integrals, old and new, have been also given there

 as examples of the abstract theory. It is noted that the

 equivalen-1: relation proved in [10] could be used to supply

 another proof of -the "only if" part of- Theorem (5>n,^) should
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 the answer to problem (4,n, 0) be in the affirmative.

 We conclude this note by mentioning that Evans [5],

 Babcock [1], O'Malley and Weil [11] and many others have

 obtained many interesting properties for the approximate

 or ordinary Peano derivatives. Their results might be

 useful in attacking the problems stated here.

 References

 [1] Babcock, B. S., On properties of approximate Peano
 derivatives, Trans. Amer. Math. Soc. 212 (1975)»
 279-294.

 [2] Bergin, J. A., A new characterization of Cesaro-
 Perron integrals using Peano derivatives, Ph.D.
 dissertation, Mich. State Univ. , East Lansing, Mich.
 (1972).

 [3] Bosanquet, L. S., A property of Cesaro-Perron integrals,
 Proc. Edinburg Math. Soc. '6 (1940), 160-165-

 [43 Burkill, J. C., The Cesaro-Perron scale of integration,
 Proc. London Math. Soc. 39 (1935) > 541-552.

 [5] Evans, M. J., Lp derivatives and approximate Peano
 derivatives, Trans. Amer. Math. Soc. I65 (1972),
 381-388.

 [6] Jeff ery, R. L. , Non-absolutely convergent integrals,
 Proc. Second Canad. Math. Congress, Vancouver, Canada
 (1949).

 [7] Lee, C.-M., On approximate Peano derivatives, to appear
 in Jour. London Math. Soc.

 [8]
 Perron

 Sinica, Taiwan.

 61



 C93
 Peano derivatives, _ to appear in Proc. Amer. Math. Soc.

 [IO]-"

 Älexandr

 [113 O' Mall ey, R.~J. and C» E. Weil, The oscillatory
 "behavior of certain derivatives, Notices, Amer. Math.
 Soc. Vol 22, No. 5 (1975) j P. A-552.

 [123 Saks, S., Theory of the Integral, Warsaw (1937)-

 [133 Sargent, W. L. C., A descriptive definition of Cesàro-
 Perron integrals, Proc. London Math. Soc. 47 (194-1) j
 212-247.

 [143 Yerblunsky, S. , On a descriptive definition of Cesàro-
 Perron integrals, Jour. London Math. Soc. (2) 3 (1971) i
 326-333.

 [153 i On Peano derivatives, Proc. London
 hath. Soc. (3) 33 (1971)» 313-324.

 Received March 153 1976

 62


	Contents
	p. 52
	p. 53
	p. 54
	p. 55
	p. 56
	p. 57
	p. 58
	p. 59
	p. 60
	p. 61
	p. 62

	Issue Table of Contents
	Real Analysis Exchange, Vol. 1, No. 1 (1976) pp. 1-63
	Front Matter
	EDITORIAL MESSAGES [pp. 3-4]
	TOPICAL SURVEY
	CLUSTER SETS OF ARBITRARY REAL FUNCTIONS: A PARTIAL SURVEY [pp. 7-20]

	INROADS
	Some Uniform Pathology for Borel Measures [pp. 21-23]
	A Problem of Marcus [pp. 24-26]
	Directional Cluster Sets [pp. 27-30]
	Products of Approximate Derivatives [pp. 31-37]
	Symmetric Functions [pp. 38-40]
	ON THE SPACE BSVm[a,b] [pp. 41-43]
	Nowhere Monotone Functions [pp. 44-49]
	Selective Derivates [pp. 50-51]
	Monotonicity Theorems for Approximate Peano Derivatives and Integrals [pp. 52-62]

	QUERIES [pp. 63-63]



