Frank N. Huggins, Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76013

ON THE SPACE BSVm[a,b]

The statement that f has bounded slope variation with respect to m over [a,b] means that f is a function whose domain includes [a,b], m is a real-valued increasing function on [a,b], and there exists a nonnegative number B such that if $\{x_i\}_{i=0}^n$ is a subdivision of [a,b] with n > 1, then

(1)
$$\sum_{i=1}^{n-1} \left| \frac{f(x_{i+1}) - f(x_i)}{m(x_{i+1}) - m(x_i)} - \frac{f(x_i) - f(x_{i-1})}{m(x_i) - m(x_{i-1})} \right| \leq B.$$

The least such number B is called the slope variation of f with respect to m over [a,b] and is denoted by $V_{\bf g}^{\bf b}({\rm df/dm})$. [Note: $V_{\bf g}^{\bf a}({\rm df/dm})=0$.] BSV^m[a,b] is the space to which f belongs if and only if f has bounded slope variation with respect to m over [a,b].

In case m is continuous on [a,b], then $BSV^m[a,b]$ is the space to which F belongs if and only if there is a function f in BV[a,b] such that, for each x in [a,b], $F(x) = \int_a^x f dm + F(a)$, where the integral is the Stieltjes integral ([2], Theorem 3). No such characterization has been obtained for the case when m is not continuous on [a,b].

Theorem 2 of [3] shows that BSV^m[a,b] is a subset

of BV[a,b]. However, BSV^m[a,b] with the BV-norm $||f||_V$ = $V_a^b(f) + |f(a)|$ is not complete.

THEOREM 1. BSV^m[a,b] with norm $||f||_{BV}^{m} = V_{a}^{b}(df/dm) + |D_{m}^{-}f(b)| + |f(a)|$ is a Banach space, where $D_{m}^{-}f(b)$ denotes the left-hand derivative of f with respect to m at b.

If m is an increasing function on [a,b], an m-polygonal function on [a,b] is a generalization of a polygonal function obtained by replacing straight line segments with arcs of the curve y = m(x). Every m-polygonal function on [a,b] belongs to $BSV^m[a,b]$.

THEOREM 2. If f is in BSV^m[a,b], there exists an infinite sequence $\{\theta_n\}$ of m-polygonal functions on [a,b] which converges to f on [a,b] (If f is continuous on [a,b], the convergence is uniform.) and such that as $n \to \infty$, the infinite sequences $\{V_a^b(d\theta_n/dm)\}$, $\{V_a^b(\theta_n)\}$, $\{\int_a^b (d\theta_n)^2/dm\}$ and $\{\int_a^b \theta_n dm\}$ converge respectively to $V_a^b(df/dm)$, $V_a^b(f)$, $\int_a^b (df)^2/dm$ and $\int_a^b f dm$, where $\int_a^b (df)^2/dm$ is the Hellinger integral and $\int_a^b f dm$ is the mean Stieltjes integral.

It is a consequence of Theorem 2 of [3] that a Cauchy sequence in $BSV^m[a,b]$ with norm $\|\cdot\|_{SV}^m$ is also a Cauchy sequence in BV[a,b] with norm $\|\cdot\|_{V}$. In fact, a slight modification of the proof of Theorem 1 gives the following result.

THEOREM 3. BSV^m[a,b] with norm $||f||_{svm} = V_a^b(df/dm) + V_a^b(f) + |f(a)| = V_a^b(df/dm) + ||f||_v$ is a Banach space.

Roberts and Varberg [5] and G. F. Webb [7] have considered the special case m(x) = x and have shown $BSV^m[a,b]$ is a Banach space with a norm which, in each case, differs from both $\|\cdot\|_{SV}^m$ and $\|\cdot\|_{SV^m}$.

BIBLIOGRAPHY

- 1. F. N. Huggins, Bounded slope variation and the Hellinger integral, Doctoral dissertation, Univ. of Texas at Austin, June 1967.
- 2. F. N. Huggins, A generalization of a theorem of F. Riesz, Pacific J. Math., 39(1971), pp. 695-701.
- 3. F. N. Huggins, Bounded slope variation, Texas J. of Science, 24(1973), pp. 431-437.
- 4. F. N. Huggins, Generalized Lipschitz conditions, Texas J. of Science, to appear.
- 5. A. W. Roberts and D. E. Varberg, Functions of bounded convexity, Bull. Amer. Math. Soc., 75(1969), pp. 568-572.
- 6. A. M. Russell, Functions of bounded second variation and Stieltjes-type integrals, J. London Math. Soc. (2), 2(1970), pp. 193-208.
- 7. G. F. Webb, Dual spaces of spaces of quasicontinuous functions, Math. Nachrichten, 55(1973), pp. 309-323.
- 8. J. R. Webb, A Hellinger integral representation for bounded linear functionals, Pacific J. Math., 20(1967), pp. 327-337.

Received March 12, 1976