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ON THE SPACE BSV{a,b]

The statement that f has bounded slope variation

with respect to m over [a,b] means that f is a func-

tion whose domain includes [a,b], m 18 a real-valued
increasing function on [a,b], and there exists a non-
negative number B such that if {xi 2;0 is a subdivi-
sion of {a,b] with n > 1, then

n-1
1) :EE: f(xl+]) - £(xy) _.f(fi) - f(x;_]) £ 3.
— m(xg,y) - m(xy) m(xg) - m(xy_4)

The least such number B is called the slope veriation
of £ with respect to m over [a,b] and is denoted by

vo(af/am). ([Note: Vv2(df/dm) = 0.] BSV{a,b] is the
space to which f belongs if and only if f has bounded

slope variation with respect to m over [a,Db].

In case m is continuous on [a,b], then BSV®[a,b]
is the space to which F belongs if and only if there
is a function f in BV[a,b] such that, for each x in
[a,b], P(x) = ]z f dm + F(a), where the integral is
the Stieltjes integral ([2), Theorem 3). No such
characterization has been obtained for the case when

m is not continuous on [a,b].

Theorem 2 of [3] shows that BSV®[a,b] is a subset
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of BV[a,b]. However, BSVWa,b) with the BV-norm [£]l,
= V::(f) + |1‘(a)| is not complete.

THEOREM 1. B3SV™[a,b] with norm |lfu‘,§,‘v = vg(dr/am) .
+ 'D;f(b)l + |f(a)| is a Banach space, where D f(b) de-

notes the left-hand derivative of f with respect tom

at b.

If m is an increasing function on [a,b], an m-
polygonal function on [a,b] is a generalization of a
polygonal function obtained by replacing straight line
segments with arcs of the curve y = m(x). Every m-

polygonal function on [a,b] belongs to BSV®[a,b].

THEOREM 2. . If £ is in. BSV™[a,b], there exists an

infinite sequence {6,} of m-polygonal functions on

[a,b] which converges tof 9_1_1: (a,b] (If £ is continu-

ous on [a,b], the convergence is uniform.) and such

that as n — oo, the infinite sequences {vg(den/m)},
b b b
{va(en)}, {la (den)a/dm} and ’Uagn dm} converge re-
spectively to Vb(df/dm), Vb(f), j (df)z/dm and
*
f £ dm, where ] (a£)%/dm is the Hellinger integral
and f £ dm 13 the mean Stieltjes integral.

It is a consequence of Theorem 2 of [3] that a
Cauchy sequence in BSV®[a,b] with norm "’":lv is also
a Cauchy sequence in BV[a,b] with norm "."v’ In fact,
a slight modification of the proof of Theorem 1 glves
the following result.
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THEOREM 3. BSV®[a,b] with norm |ltlly.p = vg(dr/dm)

+ V:(f) + |£(a)]| = Vg(dt/dm) + "f"v is a Banach space.

Roberts and Varberg [5] and G. F. Webb [7] have

considered the special case m(x) = x and have shown

BSV?[a,b] is a Banach space with a norm which, in each

case, differs from both lb"ﬁv and ”'lLvm'

1.

2.

3.
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N.
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