Michele Foran, School of Administration, University of Missouri, Kansas City, Missouri 64110

Symmetric Functions

We say that a real function f is symmetric at x provided there exists ϵ_x such that $h \leq \epsilon_x \rightarrow f(x-h) = f(x+h)$. If f is symmetric at all x , then we say f is symmetric.

Theorem 1. If f is symmetric, and f is constant on some interval, then f is constant except on a nowhere dense countable set.

Proof. Suppose $f(x) = A$ on (a,b) and suppose $\{x: f(x) \neq A\}$ is dense on some interval (c,d) . Without loss of generality, let c 2 b. Define $x_0 = \inf \{ x: (x,d) \cap \{x: f(x) \neq A\} \text{ is dense}\}.$ Then (x_0, d) \bigcap $\{x: f(x) \neq A\}$ is dense. But there exists ϵ_{x_0} such that $h < \varepsilon_{x_0} \rightarrow f(x_0 - h) = f(x_0 + h)$. Thus, the following set is dense: $(x_0 - \epsilon_{x,d})$ $\bigcap \{x: f(x) \neq A\}$ This contradicts the definition of x_0 , so $\{x:f(x) \neq A\}$ is nowhere dense.

Now suppose $U = \{ x: f(x) \neq A \}$ is uncountable. Without loss of generality, assume U \bigcap (b, ∞) is uncountable. Let x_{o} be the infimum of the set of condensation points of U \bigcap (b, ∞) . Then x_0 is a condensation point of U \bigcap (b, ∞) , and x_0 is a limit point of condensation points. Also, there exists ϵ_{x_0} such that $h < \varepsilon_{x_0} \rightarrow f(x_0 - h) = f(x_0 + h)$ Thus there is a condensation point of U \bigcap (b, ∞) in $(x_{o} - \epsilon_{x_{o}}$, $x_{o})$. This contradicts the definition of x_{\circ} . Thus $\{x: f(x) \neq A\}$ is countable.

Theorem 2. If f is symmetric, but is not constant on some interval, then f must take on at least two values, A and B, such that both f^{-1} (A) and f^{-1} (B) contain c points in every interval.

Proof. Define $E_n = \{x: \epsilon_x > 1/n\}$. Since the countable union of E_n 's is the line, some E_n has c points in an interval (a,b) of length < $1/n$. Let $f(a) = A$. Then $f^{-1}(A)$ has c points in (a, b+(b-a)) by symmetry of the c points of E_n in (a,b). That is, for every x in E_n \bigcap (a,b) , $x+(x-a)$ is in $(a, b+(b-a))$, and $f(x+(x-a)) = f(x-(x-a)) = f(a) = A$. Suppose that $f^{-1}(A)$ has \leq ϵ points in some interval (d,e). Without loss of generality, assume $f^{-1}(A)$ has c points in $(-\infty, d)$. Let x_0 be the infimum of the set of x for which (x,e) \bigcap $f^{-1}(A)$ has < ∞ points. Then (x_{a},e) has < c points since (x_{a},e) Of $f^{-1}(A) =$ U_0 $(x_0 + 1/n, e)$ \cap $f^{-1}(A)$ is a countable union of sets each having τ points, so has < τ points. Now, there exists ϵ_{x_0} such that $f(x_0 - h) = f(x_0 + h)$ for all $h < \epsilon_{x_0}$. Thus, $(x_0 - \epsilon_{x_0}, e)$ \bigcap f⁻¹(A) has < c points, contradicting the definition of x_0 . Thus, $f^{-1}(A)$ has \in points in every interval.

 If f is not constant on some interval, f must take on another value, B, in (a,b). Then $f^{-1}(B)$ has \in points in $(a-(b-a)$, $b+(b-a)$) and the same arguments apply as above, so that $f^{-1}(B)$ has c points in every interval.

Theorem 3. If f is symmetric and f is not constant on some interval, then f must take on two values, A and B, such that for every ϵ > 0, f⁻¹ (A) and f⁻¹ (E) each have outer measure $\geq (b-a)(1-\epsilon)$ in some interval, (a,b) .

Proof. Given $\epsilon > 0$, define E_n = {x: $\epsilon_x > 1/n$ }. Some E_n has positive outer measure. Thus there exists (a,b) such that $(b-a) < 1/n$ and $m*(E_n \cap (a,b)) > (b-a)(1-\frac{c}{2})$. Let $z = (a+b)/2$. Then $m*(E_n \cap (az)) \geq \frac{1}{2}(b-a)(1-\frac{\epsilon}{2})$ or $m*(E_n \cap (z_b)) \geq \frac{1}{2}(b-a)(1-\frac{\epsilon}{2})$. Assume the first without loss of generality. Define $f(a) = A$. Then $m*(f^{-1}(A) \cap (a,b)) \ge (b-a)(1-\frac{e}{2})$ because x in $E_n \cap (a,z)$ implies $x + (x-a)$ or $2x-a$ is in $f^{-1}(A) \cap (a,b)$. Now choose u within $\frac{6}{4}$ (b-a) of a so that $f(u) = B \neq A$. Then

 $m*(f^{-1}(B) \cap (a,b)) \ge (b-a)(1-\frac{c}{2}) - 2 \in (b-a).$ So $m*$ $(f^{-1}(B) \cap (a,b)) \ge (b-a)(1-e)$. Thus $f^{-1}(A)$ and $f^{-1}(B)$ have outer measure $\geq (b-a)(1-\epsilon)$ in the interval (a,b) .

Theorem 4. If f is measurable, and symmetric, then f is constant except on a nowhere dense countable set.

Proof. From Theorem 3, if f is measurable, $f^{-1}(A)$ and $f^{-1}(B)$ each have measure $\geq 3/l_1(b-a)$ on (a,b) , which implies $A = B$. Thus f is constant in some interval, and Theorem 1 implies the result.

Received March 10, 19 76