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Symmetric Functions

We say that a real function f is symmetric at x orovided
there exists ex such that h < ex — f(x-h) = f(x+h). If f is
symmetric at all x, then we say f is symmetric.

Theorem 1. If f is symmetric, and f is constant on some

interval, then f is constant exceot on a nowhere dense countable

set.

Proof. Suppose f(x) = A on (a,b) and sunpose {x: f(x) # A}
is dense on some interval (c,d). Without loss of gemerality,
let ¢ 2 b, Define x, = inf {,x: (x,d) N {x: £(x) # A} is dense}.
Then (x,,d) N {x: £(x) # A}. is dense. But there exists ex_, such
that h<ex, * f(x, - h) = f(x, + h). Thus, the following set
is dense: (xo-exgd) N {x: fi{x) # A} This contradicts the
definition of x5 , so {x’:f(x) # A} is nowhere dense,

Now supoose U = 3 x: £(x) # A} is uncountable. Without
loss of generality, assume U () (b, ) is uncountable. Let Xo
be the infimum of the set of condensation points of U () (b, ),
Then X, is a condensation point of UN (b, ® ) , and x, is a
limit point of condensation points. Also, there exists e€x, such
that h<ex, = f(x, - h) = f(xo + h ) Thus there is a conden-
sation point of UMl (b, ™ ) in (xo - €x, , X,). This contradicts

the definition of x,. Thus {x: f(x) # A} is countable.
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Theorem 2. If f is symmetric, but is not constant on some

interval, then f must take on at least two values, A and B, such

that both £~ (A) and f ' (B) contain < points in every interval

Proof. Define Eq = {x: €x> 'l/n} . Since the countable
union of Eq's is the line, some En has £ points in an interval
(a,b) of length < 1/n. Let f(a) = A. Then f '(A) has < points
in (a, b+(b-a) ) by symmetry of the < points of E, in (a,b).
That is, for every x in Eq 0 (a,b), x+(x-a) is in (a, b+(b-a) ),
and f(x+(x-a) ) = £f(x-(x-a) ) = f(a) = A, Supoose that £7'(a)
has< < points in some interval (d,e). Without loss of gener-
ality, assume £~ (A) has ¢ points in (-e,d). Let x, be the
infimum of the set of x for which (x,e) N £~ (A) has< <
points. Then (x,,e) has < ¢ points since (x,,e) N £~ (1) =
Ln) '(x,, +1/n, e YA £~'(A) is a countable union cf sets each
having < points s So has < © points. Now, there exists €x, such
that f(x, - h) = £f(x, + h) for all h< €x,. Thus, (x, - €x,, €)
n f;‘ (A) has<<c points, contradicting the definition of x, .
Thus, f—‘(A) has © points in every interval.

If f is not constant on some 'interval, f must take on
another value, B, in (a,b). Then f ~'(B) has < voints in
(a-(b-a) , b+(b-a) ) anvd the same arguments aoply as above, so
that £ (B) has c points in every interval..

Theorem 3. If f is symmetric and f is not constant on some

interval,. then f must take on two values, A and B, such that for

every e > 0, £7' (A) and £' (B) each have outer messure

2 (b-a)(1-€) in some interval, (a,b).
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Proof. Given €>0, define En = {Xx: &x> 1/n% . Some E, has
positive outer measure. Thus there exists (a,b) such that
(b-a)< 1/n and m#(E, N (a,b) ) > (b-a)(1-5). Let z = (a+b)/2 .
Then m#(Ea N (az) ) > %(b-a)(1-5) or m*(Ea N (zb) 2 3(b-a)(1-S).
Assume the first without loss of generality. Define f(a) = A.
Then m¢(f™" (A) N (a,b) ):A(b—a)(l-i-) because x in Eq N (a,z)
implies x +(x-a) or 2x-a is in £7'(a) f\(a,b) . Now choose u
within %’(b-a) of a so that f(u) =B #A. Then

mt(£™'(B) A (a,b) ) = (b-a)(1-%) -2 § (v-a).

So m* (£ (B)0(a,b) ) > (b-a)(1-€). Thus £ ' (A) and £~'(R)
have outer measure = (b-a)(1-€) in the interval (a,b).

Theorem L. If f is measurable, and symmetric, then f is

constant exceot on a nowhere dense countable set,

Proof. From Theorem 3, if f is measurable, £~'(A) and
£-' (B) each have measure = 3/k(b-a) on (a,b), which imlies
A =B, Thus f is constant in some interval, and Theorem 1

implies the result.
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