Michele Foran, School of Administration, University of Missouri, Kansas City, Missouri 64110

Symmetric Functions

We say that a real function f is <u>symmetric</u> at x provided there exists ϵ_x such that $h < \epsilon_x \rightarrow f(x-h) = f(x+h)$. If f is symmetric at all x, then we say f is <u>symmetric</u>.

<u>Theorem 1.</u> If f is symmetric, and f is constant on some interval, then f is constant except on a nowhere dense countable set.

<u>Proof</u>. Suppose f(x) = A on (a,b) and suppose $\{x: f(x) \neq A\}$ is dense on some interval (c,d). Without loss of generality, let $c \ge b$. Define $x_o = \inf \{x: (x,d) \cap \{x: f(x) \neq A\}$ is dense}. Then $(x_o,d) \cap \{x: f(x) \neq A\}$ is dense. But there exists \in_{x_o} such that $h < e_{x_o} \rightarrow f(x_o - h) = f(x_o + h)$. Thus, the following set is dense: $(x_o - e_{x_o}d) \cap \{x: f(x) \neq A\}$ This contradicts the definition of x_o , so $\{x:f(x) \neq A\}$ is nowhere dense.

Now suppose $U = \{x: f(x) \neq A\}$ is uncountable. Without loss of generality, assume $U \cap (b, \infty)$ is uncountable. Let x_0 be the infimum of the set of condensation points of $U \cap (b, \infty)$. Then x_0 is a condensation point of $U \cap (b, \infty)$, and x_0 is a limit point of condensation points. Also, there exists ϵ_{X_0} such that $h < \epsilon_{X_0} \rightarrow f(x_0 - h) = f(x_0 + h)$ Thus there is a condensation point of $U \cap (b, \infty)$ in $(x_0 - \epsilon_{X_0}, x_0)$. This contradicts the definition of x_0 . Thus $\{x: f(x) \neq A\}$ is countable. <u>Theorem 2.</u> If f is symmetric, but is not constant on some interval, then f must take on at least two values, A and B, such that both f^{-1} (A) and f^{-1} (B) contain c points in every interval.

<u>Proof.</u> Define $E_n = \{x: \in_x > 1/n\}$. Since the countable union of E_n 's is the line, some E_n has c points in an interval (a,b) of length < 1/n. Let f(a) = A. Then $f^{-1}(A)$ has c points in (a, b+(b-a)) by symmetry of the c points of E_n in (a,b). That is, for every x in $E_n \cap (a,b)$, x+(x-a) is in (a, b+(b-a)), and f(x+(x-a)) = f(x-(x-a)) = f(a) = A. Suppose that $f^{-1}(A)$ has < c points in some interval (d,e). Without loss of generality, assume $f^{-1}(A)$ has c points in $(-\infty,d)$. Let x_o be the infimum of the set of x for which $(x,e) \cap f^{-1}(A)$ has < cpoints. Then (x_o,e) has < c points since $(x_o,e) \cap f^{-1}(A) =$ $\bigcup_n (x_o + 1/n, e) \cap f^{-1}(A)$ is a countable union of sets each having c points, so has < c points. Now, there exists $\in x_o$ such that $f(x_o - h) = f(x_o + h)$ for all $h < \in x_o$. Thus, $(x_o - \in_{X_o}, e)$ $\cap f^{-1}(A)$ has < c points in every interval.

If f is not constant on some interval, f must take on another value, B, in (a,b). Then $f^{-1}(B)$ has c points in (a-(b-a), b+(b-a)) and the same arguments apply as above, so that $f^{-1}(B)$ has c points in every interval.

<u>Theorem 3.</u> If f is symmetric and f is not constant on some interval, then f must take on two values, A and B, such that for every $\epsilon > 0$, f⁻¹ (A) and f⁻¹ (B) each have outer measure $\geq (b-a)(1-\epsilon)$ in some interval, (a,b). <u>Proof.</u> Given $\epsilon > 0$, define $E_n = \{x: \epsilon_x > 1/n\}$. Some E_n has positive outer measure. Thus there exists (a,b) such that (b-a) < 1/n and $m*(E_n \cap (a,b)) > (b-a)(1-\frac{\epsilon}{2})$. Let z = (a+b)/2. Then $m*(E_n \cap (az)) \ge \frac{1}{2}(b-a)(1-\frac{\epsilon}{2})$ or $m*(E_n \cap (zb)) \ge \frac{1}{2}(b-a)(1-\frac{\epsilon}{2})$. Assume the first without loss of generality. Define f(a) = A. Then $m*(f^{-1}(A) \cap (a,b)) \ge (b-a)(1-\frac{\epsilon}{2})$ because x in $E_n \cap (a,z)$ implies x + (x-a) or 2x-a is in $f^{-1}(A) \cap (a,b)$. Now choose u within $\frac{\epsilon}{4}$ (b-a) of a so that $f(u) = B \neq A$. Then

 $m*(f^{-1}(B) \cap (a,b)) \ge (b-a)(1-\frac{\epsilon}{2}) - 2 \frac{\epsilon}{4} (b-a).$ So m* $(f^{-1}(B) \cap (a,b)) \ge (b-a)(1-\epsilon)$. Thus $f^{-1}(A)$ and $f^{-1}(F)$ have outer measure $\ge (b-a)(1-\epsilon)$ in the interval (a,b).

Theorem 4. If f is measurable, and symmetric, then f is constant except on a nowhere dense countable set.

<u>Proof</u>. From Theorem 3, if f is measurable, $f^{-1}(A)$ and $f^{-1}(B)$ each have measure $\geq 3/4(b-a)$ on (a,b), which implies A = B. Thus f is constant in some interval, and Theorem 1 implies the result.

Received March 10, 1976