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 Products of Approximate Derivatives

 In (2) and (3) a characterization is given for

 the class of functions defined on CO, U who's e product with

 every derivative is a derivative, lii the present note

 characterizations of the multiplier class for approximate

 derivatives of continuous functions (ADC) and the multi-

 plier class for the approximate derivatives (AD) are

 given and their proofs are sketched.

 Por a function F(x), let W(F,I) denote its total

 variation on the interval I and let W(t) = "W(F, £0,tj).

 Theorem 1. A fonction F(x) belongs to ADC if

 and only if W(t) satisfies a Lipschitz condition at

 each point x in C0,1].

 (Stated in the form of a Stielt jes integral, this

 condition requires that | J dW(t)|^ M * )x - x I .)
 xo 0 °

 It is interesting to compare this with the notion of dis-

 X

 tant bounded variation, / J (t-x )dW(t)|^ M «Ix-x ° I ,
 *0 *° °

 which characterizes the multiplier class for ordinary
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 derivatives.

 Proof. Sufficiency is established by taking the

 approximate derivative of both sides of the integration

 by parts formula for the vide sense Den^oy Integral,

 (4f p. 246). After replacement of "limit" by "approx-

 imate limit", the argument is identical to the proof

 that the product of a continuous function of bounded

 variation with an ordinary derivative is an ordinary

 derivative, (2, p. 17*0«

 To show necessity we assume that W(t) fails to

 satisfy a Lipschitz condition at x = 0 and construct

 an approximate derivative g(x) (with continuous prim-

 itive) such that F(x)g(x) is not the approximate deri-

 vative of its wide sense Denjoy integral. This construc-

 tion uses the same techniques used in the construction

 of the counterexample for ordinary derivatives in (3)

 and the following lemmą.

 Lemma. If W(t) fails to satisfy a Lips chit z

 condition at x = 0 , then there exists a sequence xn
 tending to 0 and a sequence of intervals L tending

 to 0 such that 0 is a point of dispersion of E » Ul»n
 and W (F, Cxn+1,xnl/) E ) > n • xß .
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 Proof« We first note that if Jn= C2""n,2~"n+*hl ,

 £enJ a non~^-Ilc:rea3^nK sequence whose limit is 0 f
 and I is any subinterval of such that
 H d

 'V - ei ^ IJ^I , then 0 is a point of dispersion of

 E » U since if x belongs to Jjp

 I [0,xJ/|e l/x ^ eN2"N+1/x £ 2NeR2~N+1 » 2eN .

 Since W(t) does not satisfy a Lipschitz condition

 at x = 0 t we may choose such that W(xŁ) > 2x^ •
 - k

 Por some k , ï^e . Divide the intervals C2 - , XjJ ,

 t J^+2 5 • • • in half and begin choosing the sequence

 {I»n] by taking the half of each of these intervals on
 which the variation of 3? is greater than or equal to %

 the variation of F on the contaning interval; Then for

 some finite number m^ ,

 W(P, J1 1 ) > t • 2x, 11 - x, . i-1 1 11

 After , ... , xn_ļ and their corresponding in-

 tervals L have been selected, choose xn < a/2 ,
 where a is the infinmm of the previously chosen L

 and such that W(xn) > n XQ . Por some k ,
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 ve subdivide the intervals C2~k, , Jfc+i » ^t+2 * • • •

 into n equal parts and choose the intervals L to he

 an n-th of the containing interval J on which

 W(F,Ii) £ (l/n)-W(F,J) . Then after a sufficiently large

 (but finite) number of the L , 1? , ... f lJJ , have
 ji

 n ?
 been chosen, W(F, U LJ n ) ^ (l/n)n ? xn - nxnj

 i**l

 and the proof of the lemma is complete.

 Then if Le [l^ and le xn3 » *>7
 (3, Lemma 1) ve define g(x) to be a piecewise linear,

 continuous function on L « catb:7 such that

 (i) g(a) = g(b) - 0

 b

 (li) / g(x)âx - 0
 a

 (iii) W ( / g(t)dt , L) < l/n
 a

 b

 (iv) / F(x)g(x)dx > (l/n)«W(F,L) .
 a

 Set g(x) ■ 0 for x^E«i/Lļ# Condition (i) insures
 that g(x) is continuous on (0,lU. Conditions (ii)

 and (iii) yield the wide sense Denjoy integrability of
 X

 g(x) on CO, 13 and also, letting G(x) » (D) / g(t)dt ,
 0

 34



 then G(x) = 0 if x £ E . Since 0 is a point of dis-

 persion of E , Gļp(°) = 8 CO) = 0 . Combining (iv) and
 the Lemma, we have that

 /> F(x)g(x)dx > f» F(x)g(x)dx >y (l/n)nx -x .
 6 xn+l

 Noting that g(x)=0 on D^, 2xnU, (xn< a/2),. we have

 that for x e Dcn, 2xJp ,

 (l/x)/p(t)g(t)dt - (1/x) /1ŁP(t)g(t)dt >
 0 0

 (1/x) /n ^ (l/2xn) Z*1 P(t)g(t)dt > (1/2) .
 *n+l *¿+1

 Consequently, the set of points x at which

 (1/x) J F(t)g(t)dt ^ 1/2

 has an upper density of at least ft at x»0 • Thus,

 (/F(t)g(t)dt )• ¿ F(Q) g(0) « 0 and F(x)g(x) is not

 the approximate derivative of a continuons function.

 This completes the proof.

 Theorem 2. A function F(x) belongs to AD if and

 only if F(x) is constant on C0,1U.

 Sufficiency is obvious. Necessity can be established

 by a very tedious . process of tracking down and labeling a

 sequence of. intervals on which F(x) varies and building

 g(x) as above (the primitive is only approximately con-
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 tixraous in this case).

 However, the following example suggests that there

 should be a resonably simple proof of Theorem 2 which has

 so far eluded this author.

 Example . The identity function does not belong to

 AD.

 Proof. Let I_=ta_, bJ7 be a sequence of intervals
 " 1

 tending to 0 such that 0 is a point of dispersion of

 E =Uln* On In let G(x) be a positive, differentiable
 function such that G(an) » G(bn) » G*(an) « G* (bn) a 0
 b .

 and such that / G(x)dx = 1 . Set G(x) = 0 for x f E •
 %

 By a result proved in (1) , if G(x) were an

 approximate derivative, it would be an ordinary deriva-
 1

 tive because G(x)^ 0 . Since / G(x)dx =^00, it's
 0

 neither.

 Since G(x) « 0 for z / £, both G(x) and
 xG(x) are approximately derivable at x « O ana their

 approximate derivatives have the value 0 there • In

 particular

 rG*(x) ; x > O
 g(x) =| and (xG(x)V are

 I 0, ; 1 = 0 ap

 approximate derivatives on 1 0,117 and the relation

 (xG(x))¿p = G(x) + xg(x)
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 holds on (0,13 by the product rule and at x»0 since

 all three terms are equal to 0 . Since (xG(x)V is
 sp

 an approximate derivative and G(x) is not, xg(x) is

 not an approximate derivative and F(x) = x does not

 belong to AS •
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