Real Analysis Exchange Vol. 18(1), 1992/93, pp. 249-252

Péter Komjáth, Department of Mathematics, Simon Fraser University, Burnaby, B. C. V5A 1S6, Canada

Current Address: Dept. Comp. Sci., R. Eötös University, Budapest, Múzeum krt. 6-8, 1088, Hungary

A Note on Darboux Functions

In a recent paper [2], B. Kirchheim and T. Natkaniec showed that if Martin's axiom holds, then there is a Darboux function f such that f+g is not Darboux if g is a nowhere constant, continuous function. What they proved can be reformulated as follows. If \mathcal{G} is a family of nowhere constant, continuous functions, then there is a Darboux function f such that f+g is not Darboux ($g \in \mathcal{G}$) as long as $|\mathcal{G}|$ does not exceed the size of the least partition of \mathbb{R} into nowhere dense subsets. A well-known corollary of Martin's axiom is that this latter cardinal is 2^{ω} . In this note we prove the result under the condition that $|\mathcal{G}|$ is not large in another sense, namely, there is at least one cardinal between $|\mathcal{G}|$ and the continuum.

Theorem 1 If \mathcal{G} is a family of nowhere constant, continuous functions with $|\mathcal{G}|^+ < 2^{\omega}$ then there exists a Darboux function f such that f + g is not Darboux whenever $g \in \mathcal{G}$.

Notation. We use the standard axiomatic set theory notation. Cardinals are identified with initial ordinals, 2^{ω} is the cardinal of the continuum. κ^{+} is the cardinal successor of κ .

Lemma 1 If V is a vector space over \mathbb{Q} , $|V| = \lambda > \kappa^+$, \mathcal{F} is a family of $V \to V$ functions, $|\mathcal{F}| = \kappa$, then there exists a set $X \subseteq V$ of size λ , such that no κ translates of $\{f(x): x \in X, f \in \mathcal{F}\}$ cover V.

Proof. Let $\mu < \lambda$ be either κ^+ or κ^{++} such that $cf(\lambda) \neq \mu$ hold. Let W be a subspace of V of dimension λ and co-dimension μ . V/W can be written as the increasing union of subspaces of size $< \mu$, $V/W = \bigcup \{V_{\alpha}/W : \alpha < \mu\}$. For $x \in W$, the set $\{f(x): f \in \mathcal{F}\}$ is of size at most κ , so it is contained in one of the V_{α} (as $cf(\mu) > \kappa$). Put $x \in W_{\alpha}$ if $\{f(x): f \in \mathcal{F}\} \subseteq V_{\alpha}$. This gives an increasing decomposition $W = \bigcup \{W_{\alpha}: \alpha < \mu\}$. Frome the Claim below it follows that some

Received by the editors December 4, 1991

250 P. Komjáth

 W_{α} is of size λ , and as κ many translates of V_{α}/W cannot cover V/W, we are done. Claim. If $|W| = \lambda$, $\mu < \lambda$, $\mu \neq cf(\lambda)$, W is the increasing union of the sets $\{W_{\alpha}: \alpha < \mu\}$, then $|W_{\alpha}| = \lambda$ for some $\alpha < \mu$.

Proof. Obvious, if λ is regular or at least $\mu < cf(\lambda)$. Assume that λ is singular, and $\mu > cf(\lambda)$. Let $\{\lambda_{\xi}: \xi < cf(\lambda)\}$ be a sequence of cardinals converging to λ . For each $\alpha < \mu$, let $\xi(\alpha)$ be minimal such that $|W_{\alpha}| \leq \lambda_{\xi(\alpha)}$. As $\mu > cf(\lambda)$, for a cofinal set of $\alpha < \mu$, $\xi(\alpha) = \xi$. But then, as the sequence W_{α} is increasing, $|W_{\alpha}| \leq \lambda_{\xi}$ for all $\alpha < \mu$, so $|W| \leq \mu \lambda_{\xi} < \lambda$.

Lemma 2 If $\{g_{\alpha}: \alpha < \kappa\}$ is a family of nowhere constant, continuous functions, $\kappa^+ < 2^{\omega}$, then there are real numbers c_{α} such that if I is an interval, d is a real number, then for continuum many $x \in I$, there is no $\alpha < \kappa$ such that $g_{\alpha}(x) + c_{\alpha} = d$.

Proof. Enumerate the rational intervals as $\{I_n: n < \omega\}$. Construct the functions $h_{\alpha}(x,n)$ in such a way that $h_{\alpha}(x,n) \in I_n$, $g_{\alpha}(h_{\alpha}(x,n)) \neq g_{\alpha}(x)$, and $h_{\alpha}(x,n) \neq h_{\beta}(y,n)$ unless $\alpha = \beta$ and x = y. This is possible, as by hypothesis, $g_{\alpha}(x)$ misses every value in every interval 2^{ω} times, so a straightforward diagonalization of length 2^{ω} works.

Let \mathcal{F} be the family of functions which can be written in the form $g_{\alpha}(H_1(x)) - g_{\beta}(H_2(x))$ where $H_1(x)$, $H_2(x)$ are composed from the functions $h_{\gamma}(x,n)$ ($\gamma < \kappa$, $n < \omega$). Here, as usual, $x \mapsto f_1(\dots f_n(x)\dots)$ is called the composition of the functions f_1, \dots, f_n . Clearly, $|\mathcal{F}| \le \kappa$. We can, therefore, apply 1, and get an appropriate set X. Let $Z = \{H(x): x \in X\}$ where H runs through the finite compositions of the h_{γ} 's. By the statement of 1, we can select, by transfinite induction on $\alpha < \kappa$, reals c_{α} such that

$$g_{\alpha}(h_{\alpha}(x,n)) + c_{\alpha} \neq g_{\beta}(x) + c_{\beta}, \qquad (\beta < \alpha, x \in \mathbb{Z}).$$
 (1)

To finish the proof, we must show that if I_n , d are given, there are 2^ω elements x of I_n such that $g_\alpha(x)+c_\alpha\neq d$ for $\alpha<\kappa$. The set $Y=Z\cap I_n$ is a subset of I_n of size 2^ω . If $y=y_0\in Y$, and $g_{\alpha_0}(y_0,n)+c_{\alpha_0}=d$ for some $\alpha_0<\kappa$, define $y_1=h_{\alpha_0}(y_0,n)$. If $g_{\alpha_1}(y_1)+c_{\alpha_1}=d$ for some $\alpha_1<\kappa$, then $\alpha_1\neq\alpha_0$ by the choice of h_{α_0} , and $\alpha_0<\alpha_1$ is also impossible by (1). So, $\alpha_1<\alpha_0$. Continuing, we get real numbers y_0,y_1,\ldots , and a decreasing sequence of ordinals α_0,α_1,\ldots . As there is no infinite decreasing sequence of ordinals, we eventually find an element z such that $g_\alpha(z)+c_\alpha=d$ holds for no $\alpha<\kappa$.

As the functions h_{α} were supposed to get different values at different arguments, the only possibility for getting the same value $z \in I_n$ as above from two different y's is that one of them occurs in the chain obtained from the other. By

the injectivity of the functions h_{α} the chains are disjoint and countable, so, as each of them must contain an appropriate $z \in I_n$, there are 2^{ω} of them.

Proof of 1 If $\mathcal{G}=\{g_{\alpha}:\alpha<\kappa\}$ is a family of nowhere constant, continuous functions, let $\{c_{\alpha}:\alpha<\kappa\}$ be selected according to 2. If we enumerate the pairs of reals and natural numbers as $\{(r_{\alpha},n_{\alpha}):\alpha<2^{\omega}\}$, and select by transfinite induction on $\alpha<2^{\omega}$ an s_{α} such that $s_{\alpha}\in I_{n_{\alpha}}, s_{\alpha}\neq s_{\beta}$ $(\beta<\alpha)$, and that for no $\gamma<\kappa$ does $g_{\gamma}(s_{\alpha})+c_{\gamma}=r_{\alpha}$ hold, then by defining $f(s_{\alpha})=r_{\alpha}$, f will take every value on every interval. On the places x, where f is undefined, let f(x) be any value different from $g_{\alpha}(x)+c_{\alpha}$ $(\alpha<\kappa)$. Clearly, the range of $f-g_{\alpha}$ will be everywhere dense, but will exclude c_{α} .

With the method applied here one can prove other translation results, like the following one.

Theorem 2 One can assign a real number c(g) to every continuous, nowhere linear function g such that the union of the graphs of the functions g(x) + c(g) does not contain a straight segment.

Proof. Enumerate those functions as $\{g_{\alpha}: \alpha < 2^{\omega}\}$, the rational intervals as $\{I_n: n < \omega\}$, and the real numbers as $\{r_{\alpha}: \alpha < 2^{\omega}\}$.

By transfinite induction on $\alpha < 2^{\omega}$ we select $c_{\alpha} \in \mathbb{R}$, $b(\alpha, n) \in I_n$, and $h_{\beta,\alpha}(x_1, x_2, n) \in I_n \cap \mathbb{Q}$ for $x_1 \neq x_2 \in \mathbb{Q}$, $n < \omega$, $\beta \leq \alpha$. Assume that all these objects have been selected for the ordinals smaller than α .

Select c_{α} so that

$$c_{\alpha} + g_{\alpha}(r_{\beta}) \neq b(\beta, n) \qquad (\beta < \alpha, n < \omega)$$
 (2)

and

$$g_{\alpha}(z) + c_{\alpha} \neq y_1 + (z - x_1) \frac{y_2 - y_1}{x_2 - x_1}$$
 (3)

for $\beta_1, \beta_2 < \alpha, x_1 \neq x_2 \in \mathbb{Q}, n < \omega$, where $y_i = g_{\beta_i}(x_i) + c_{\beta_i}, z = h_{\beta_1,\beta_2}(x_1, x_2, n)$. This selection is possible, as (2-3) exclude only $< 2^{\omega}$ values of c_{α} . Next, select $b(\alpha, n) \in I_n$ so that

$$b(\alpha, n) \neq c_{\beta} + g_{\beta}(r_{\alpha}) \qquad (\beta \leq \alpha, n < \omega).$$
 (4)

This is, again, possible, for the same reason.

Finally, let $z = h_{\beta,\alpha}(x_1, x_2, n) \in I_n \cap \mathbb{Q}$ be such that $z \neq x_1, x_2$ and $g_{\beta}(z) + c_{\beta}$, $g_{\alpha}(z) + c_{\alpha}$ are not on the segment determined by $(x_1, g_{\beta}(x_1) + c_{\beta})$ and $(x_2, g_{\alpha}(x_2) + c_{\alpha})$. This can be done, as our functions are nowhere linear, continuous.

We claim that the union of the graphs of the translated functions $g_{\alpha}(x) + c_{\alpha}$ does not contain a straight segment.

252 P. Komjáth

Assume that we are given the vertical segment $\{r\} \times I$. If $I = I_n$ and $r = r_\alpha$, the point $(r_\alpha, b(\alpha, n))$ is missed by (2) and (4).

If the segment is nonvertical, let $\alpha_1 \leq \alpha_2$ be the first two ordinals, such that for some different rational $x_1 \neq x_2$, the points $(x_1, g_{\alpha_1}(x_1) + c_{\alpha_1}), (x_2, g_{\alpha}(x_2) + c_{\alpha_2})$ are on the segment, let I_n be the projection of the segment on the x axis. Put $y_1 = g_{\alpha_1}(x_1) + c_{\alpha_1}, y_2 = g_{\alpha_2}(x_2) + c_{\alpha_2}$,

$$z = h_{\alpha_1,\alpha_2}(x_1,x_2,n), \qquad u = y_1 + (z-x_1)\frac{y_2-y_1}{x_2-x_1}.$$

We claim that (z, u) is an uncovered point on the segment. Notice that $z \in I_n \cap \mathbb{Q}$. If $g_{\alpha}(z) + c_{\alpha} = u$ for some α , then $\alpha > \alpha_2$ is impossible by (3). $\alpha = \alpha_1$ or α_2 is impossible by the choice of z, and $\alpha_1 < \alpha < \alpha_2$ or $\alpha < \alpha_1$ contradict the minimality of α_2 , α_1 , resp.

But this is probably old stuff.

References

- [1] A. Bruckner, J. Ceder, On the sums of Darboux functions, Proceedings of the American Mathematical Society, 51 (1975), 97-102.
- [2] B. Kirchheim, T. Natkaniec, On universally bad Darboux functions, Real Analysis Exchange, 16 (1990-1991), 481-486.
- [3] T. Radakovič, Über Darbouxsche und stetige Funktionen, Monatschefte Math. Phys., 38 (1931), 117-122.