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 Metric Space of Metrics Defined on a Given Set

 1. Introduction

 Let X be a non- void set. Denote by M = M( X) the set of all metrics on X.
 We can introduce a metric d* on M as follows:

 If d,ď £ M then

 d*(d,ď) = min {1, sup 'd{x, y) - ď(x, y)|}.
 x,y€X

 First of all recall some basic definitions and notations.

 The symbol tQ(a > 0) stands for a trivial metric on X i.e. ťa(x,x) = 0
 for every x G X and tQ(x,y) = a for x ^ y, x, y G X. Furthermore if d G M
 and e > 0, denote by K(d, e) = {d' G M : d*(d,ď) < e) (a ball in M ) and
 K(d, e) = {d' e M : d* (d, d') < e] (a closed ball in M).

 Denote by 'B' the cardinality of the set B and by V(B) the power set of B.
 If 'X' = 1, then obviously 'M(X)' = 1. Therefore in the following we shall

 always assume that 'X' > 2.
 Denote by No and c the cardinality of the set of all positive integers N and

 the set of all real numbers IR, respectively.
 If M' C M , then M' is considered as a metric space with the metric

 (a metric subspace of M).

 2. Lemmas

 In our further considerations some lemmas will take an important place. It
 is easy to check, that the space is not complete. For example, the
 sequence {/ of elements of M is fundamental, nevertheless has no limit in
 M. In connection with this we mention some subspaces of A4, which are already
 complete. Suppose a > 0 and put
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 fío, = {d e M : V d(x, y) > a}
 x*y

 x,y£X

 Lemma 1 The subspace Tia of Ai is a complete metric space.

 Proof. Let {dn}£Li a fundamental sequence of elements of Tia. Then by
 the definition of the metric d* for every x, y G X we have 'dm(x) y)-dn(xi y)| - ► 0
 (n, m - ► oo). Therefore there exists d(x , y) = limn_,oo dn(x, y). This function d
 is a metric on X , since dn ( n G N) are metrics and d(x,y) = lim cřn(x,y) >

 n-* oo

 a > 0 for x ^ y . It is now obvious that d G Tía and d*(dni d) - ► 0 as n - ► oo.

 Remark 1 // can be seen similarly to the proof of Lemma 1 that the sets Tia
 (a > 0) are closed in M . □

 Notice that Tia» C TiQi if 0 < a < a' thus putting H = (J Tia we get
 a>0

 oo

 H = (J ^1- According to Remark 1 the set H is an Fa- set in AA. This
 Jb = l F

 observation will be strengthened in the following lemma.

 Lemma 2 The set H is an open and dense subset of A4.

 Proof. Suppose that d € H. We prove that d is an inner point of Tí. Since
 oo

 H = (J Wi there exists an integer m > 1 such that d £ H . We prove that
 *=i F

 A'(cř, C H. If d' G A'(d, ^), then for every x, y we have 'd'(x , y) - d(x , y)| <
 jŁj. Hence for x ^ j, we obtain <*'(*, y) > d(«,y) -J?r>-L-5i-=5i->0,
 thus d' £ Ti ^ i. C W.

 The density of can be shown as follows. Let d E M and 0 < e < 1. It
 is sufficient to prove that the ball K(d> e) contains an element from Tí. Assume
 that 0 < a < e an choose ga = d + ta. Then obviously ga G Tí and d* (d, ga) =
 min{l, sup{a}} = a < e, so Ti PI K(d, e) ^ 0. □

 Remark 2 Evidently A4 = TL U (A4 ' Tí) and according to Lemma 2 the set
 A4'Ti is closed and nowhere dense in A4. Hence the "substantial part " of the
 space Ai is the set Tí.

 3. Main Results

 We derive the main results which describe the basic properties of the metric
 space (A4,d*). First, the cardinality of the space ( A4, d *) will be investigated.
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 Theorem 1 (i) If X is a finite set, 'X' > 2, then |A4(X)| = c.

 (ii) If X is an infinite set , then 'M(X)' = 2'*L

 Proof, (i) Let 'X' = n be a finite cardinal (n > 2), then c < 'M(X)'> since c
 is the cardinality of the set of all trivial metrics ta (a > 0) on X. On the other
 hand M(X) C XxXR1 so 'M(X)' < cn n = c, thus 'M(X)' = c.

 (ii) Suppose that X is an infinite set and put 'X' = a. For every A C X
 define the function g a : X x X - » R as follows. If x / y, then

 'l, for x,y £ A
 qa(x , y) = gA(y , x) = 2, for x, y G X ' A

 0, for x G A, y G X ' A, where 1 < 0 < 2

 and naturally qa(x , x) = 0 for all x £ X. It is easy to verify that qa G A4, so

 'M(X)' > V(X) = 2'*' (1)

 as / tfyi' for vl ^ A', A , yť c X.
 Conversely we have A4(X) C XxXM so

 I^WI < cûr a = Ca = (2*°)* = 2N°a = 2" = 21*' (l')

 From (1),(1') we get by the Cantor-Bernstein theorem that 'M(X)' = 2'XL
 □

 Theorem 2 The space (A 4,d*) is dense in itself, moreover each point d G M
 is a point of condensation.

 Proof. Let d £ Ai and 0 < e < 1. For 0 < a < e, define ga(x , y) = d(x , y) + a,
 if x ^ y, x,y E X and ga(xix) = 0 (x G X). Then obviously ga G M and
 d* (d, ga) = a < e. Thus ga G K{d} e) for every a G (0, e). □

 Let us mention that a topological (metric) space X is said to be a Baire
 space, if every non-empty open subset is of the second category in X (see [1]).
 As we had already said, the space ( M,d *) is not complete, so there remains a
 question whether M is a set of the 2nd category in ( M , d *). The answer to this
 question follows.

 Theorem 3 The metric space (A 4,d*) is a Daire space.
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 Proof. Let U ^ 0 be an open set in M. We shall show that U is a set of the
 second category in M.

 According to Lemma 2 we have U fi Tí 0 and so there is an c*o > 0 such
 that U DUq o ^ 0. Notice that if ot' < c*o then intTťai ^ Wao and consequently
 Uo = U fi intWai ^ 0. Choose d G Uo. Then there is a 6 > 0 such that
 K(d,S) = {d' G M]d*(d,ď) < <5} C Uq. Hence the ball K{d,6) (in M) is an
 open subset of Hai and according to Lemma 1 it is a set of the 2nd category in
 HQļ . From this it can be easily deduced that K(d , 6) is of the 2nd category also
 in M.

 Now it suffices to observe that U D K(d,S). □
 There is a natural question, whether the space (M,d*) is separable. The

 answer depends on the cardinality of the set X, as it is proved in the following
 theorem.

 Theorem 4 The metric space (M,d*) is separable if and only if the set X is
 finite.

 Proof. If X is finite, let X = {a?i, x2, . . . , xn} ( n > 2) and p = (^). For
 u = (tii, ii2, ... f up) e v = (vi, v2l . . . , Vp) G Mp put

 g(u} v) = min{l, max 'u¡ - v,-|} (2)
 »=1,2, ...,p

 The function g : x - ► M defined above is a metric equivalent with
 the Euclidean metric on Mp. Therefore the metric space (Mp, g) has the same
 topological properties as the metric space Rp with the Euclidean metric. Define
 the mapping / : ( M , d *) - ► (KP, g) as follows:

 f(d) - (cř(x i , X2), d{^x 1 , #3), . . . , d(xi) x j ),..., cř(a!n_ 1, ïn)) (3)

 where d £ M and 1 < i < j < n. Since the set X is finite, then

 d*(d)d') = g(f(d)J(d')) (4)

 for every cř, d' G M- According to (4) the function / is an isometric mapping of
 M onto the range H(f) of /, and H(f) as a subspace of (Mp, g) is a separable
 space. The separability of M follows now from the fact that M is a continuous
 image (under the mapping f~l) of the separable space H(f).

 Conversely, let 'X' > Ko. Choose an infinite subset Xq of X with Xq =
 {zi, x2, . . . , xn, . . . }. Arrange all ordered pairs [x¿, xj] with i < j , ¿, j G N into
 one-to-one sequence {AjfcĻļ. Denote by 5 the set of all sequences s = {sk}^=ì
 of I's and Vs. Then, as is well-known, |5| = c.
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 For s G S let gs be a real function defined on X x X as follows: gs(x , x) = 0
 for each x G X, gs(Pk ) = gs(xi,xj) = gs(xjixi) = sk if Pk = ( i < j).
 Further gs(xì y) = | provided that x or y belongs to X ' Xq.

 It is easy to check that gs G M(X). Denote by Mo = Mo(X) the set of all
 Q s (s G S). Since gs ^ gs> for s ^ s' we see that | A^řo | = c and d*(gs}gst) = |
 for s ^ s' . Hence A4o is a subset of the power of the continuum of Ať consisting
 of isolated points. The non-separability of Ať follows. □

 Theorem 5 The space (A i,d*) is connected if and only if the set X is finite.

 Proof. Let X be a finite set, X = {a?i, x2, . . . , xn } ( n > 2) and put p- (^).
 Let / be the mapping from (3). It is easy to check that the range H(f) of
 the function / is a convex subset of the space (Mp, g) (see (3)) and therefore is
 connected. Then the space (A4, g*) is connected as well, since /_1 is continuous
 (according to (4)) and evidently M = f~1(H(f)).

 Let X be an infinite set. Denote by A the set of all unbounded metrics on
 X. Obviously A / Ať (because t' G M ' A). We prove that A ^ 0.

 Let xn G X (n = 1,2,...), ^ Xj ( i ^ j) and denote by Xo the set
 {#i, X2, . . . , xn, ...}. Define the mapping d : X x X - ► M as follows:

 d(xni xm) = 'n - m', for n, m = 1,2,...
 d(x , xn) = d(xni x) = n, for x £ Xq

 d(x, y) = <%, x) = 1, for x, y £ X0ì x^y
 d(x , x) = 0, for x G X

 It can be easily verified that d G A so A ^ 0.
 Suppose now that d G *4 and d' (fc A . Then d' is a bounded metric on X so

 necessarily ď*(</, d') = 1, thus 7'(<f, 1) C A. This implies that the set A is open
 in Aí.

 Furthermore if dn G A (n G N) and d*(dnid) -> 0 (n - ► oo) then d E A.
 Indeed, supposing d £ A we obtain that d*(dn,d) = 1 (n G N), which contradicts
 the convergence of the sequence {dn}^Ļļ . Thus the set A is simultaneously open
 and closed in Aí. Further, 0 ^ A / A4. This means that the space (Ať,cř*) is
 not connected. □
 We know, that the space (Aí, d*) is not complete, so is neither compact. For
 this reason it is a natural question whether the space (Ái, d*) is locally compact.

 Theorem 6 The space (A i,d*) is locally compact if and only if the set X is
 finite.
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 Proof. Let X be a finite set, X = {^í, X2> . . . , xn} (n > 2) and put p = (£).
 We prove a stronger statement, namely that the space (M, d*) has the property

 oo

 (z), i.e. M = (J G*?, where Gk are open sets in M such that (Tk are compact

 and Gk C Cjfe+i ( k G N) (see [2] p. 158 Theorem 8.1).
 Let / be the function from (3). Denote by

 G'm = {(ui,ti2,...tip) G H (/) : < Uj < m, j = l,2,...,p}

 and Gm = /"1(GJn) (m G N), where H{f) is the range of /. The set G'm is open
 in H(f ), so from the continuity of / (see (2), (4)) it follows that the set Gm is
 open in M (m G N).

 We have

 ČĶ= {(uuu2,...up) e H(f) : - < Uj <m, j=l,2,...,p}
 771-1-1

 Then the set G'm is a closed and bounded subset of and therefore it is compact.
 Since the mapping / is isometric (see (4)) then for every positive integer m
 we have Gm = f"1(G,m). Thus Gm is a compact subset of M . Furthermore

 obviously Gm C Gm+i (to e N) and X = (J Gm.
 m- 1

 Suppose now that the set X is infinite and xni yn G X (n G N) be one-to-one
 sequences such that X{ ^ yj (i, j = 1,2,...)

 Let 0 < e < 1. For every positive integer k define the mapping d^ as follows

 d[€'x, x) = 0, for every x G X

 Ą€'xn,Vk) = Ąe'yk,xn) = -, for n = 1,2, ...
 n

 Ąe'x„,xm)~ - - - , for n,m = 1,2, . . .
 n m

 dfc'x, y ) = x) = £, if at least one of x, y does not equal
 to yk orxfl (n = 1,2,...)

 It is easy to show that £ Ai and

 0 <d[c)(x,y)<e (5)
 for every x, y G X (k = 1, 2, . . . , 0 < e < 1).
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 Let d be an arbitrary metric on X. Then put g^ = d + d^ for ¿=1,2,....
 According to (5) we have g G K (cř, e) (k G N). Let us prove that

 d*(e{e'e'c)) = S (6)
 for all positive integer k / /. From (5) it follows for every x, y G X , that

 leř^Cíc, y) - 4e)(a;,y)| < e, i.e. d*(dļr'd{e)) < e.
 Further we have

 _ <Ą''yk,Xn) = ^ £ ->£(n->oo)

 what implies (6) at once.
 According to (6) none of the subsequences of ls convergent, so the

 sets containing the sequence (where 0 < e < 1) are not compact. Since
 0 < e < 1 was arbitrary, then it follows that d £ Ai has no open neighbourhood
 with compact closure. This completes the proof. □
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