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 Henstock's Condition for Convergence Theorems
 and Equi-integrability

 A sufficient condition for a sequence of Henstock-Kurzweil integrable func-
 tions to tend to an integrable limit and for the integrals of the members of the
 sequence to tend to the integral of the limit function can be derived using the
 concept of equi-integrability of a sequence of functions (see Theorem 4). From
 the practical point of view it is not easy to check that a given sequence of in-
 tegrable functions is equi-integrable. This forces us to use another condition
 instead of equi-integrability and leads to the main result given in Theorem 8
 which is motivated by the results of R. Henstock given in [1].

 Given a = (ai, . . . , a„), b = (6i,...,6n) G Mn with aj < bj, j = 1 ,...,n
 define an interval I (sometimes written as [a, b]) in Rn which is the set of all
 points X = (xi, . . . , xn) G Mn with a,- < Xj < bj, j = 1, . . . , n.

 Int(I) is the interior of /, i.e. Int(I) is the set of all x G Mn with aj < Xj <
 b j , j = 1 , . . . ) ti .

 The set of all points x G I where Xj = aj or Xj = bj for exactly one j =
 1, . . . , n is called a face of I.

 The boundary dl of I is described by those points x G I for which Xj = aj
 or xj = bj for at least one j = 1, . . . , n. Any point r G dl belongs to at least one
 face of the interval 7. For every face of I there is a hyperplane in Mn to which the
 face belongs. This hyperplane is parallel to one of the coordinate hyperplanes
 in Mn and splits Mn into two (closed) subspaces, one of them containing the
 interval I. For example if the face of I is given by all points x G I with Xj = aj ,
 then {x G Mn; Xj > aj} is the halfspace in Mn containing I and if the face of I
 is defined by Xj = 6j, then {x G Mn; Xj < bj} is the halfspace containing I.

 Assume that I = [a, b] is an interval in Rn and r G Mn is a given point.
 Define the extension Er{I) of I with respect to the point r as follows.

 a) Ifr £/, then ET(I) = 0
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 a) If r ^ /, then ET(I) = 0

 b) If T G 7nź(7), then #r(/) =

 c) If r G dl , then £r(/) is the intersection of all halfspaces containing I
 where the hyperplanes defining these halfspaces are given by all the faces
 to which the point r belongs.

 Let an interval I = [a, b] C Mn be given. A pair (r, J) of a point r G Mn and a
 compact interval J C Mn is called a tagged intervaly r is the tag of J.

 A finite collection A = {(r¿, Jj), j = 1, . . . , k} of tagged intervals is called
 a system in I if Tj £ Jj C I for every j = 1 and the intervals Jj are
 nonoverlapping, i.e. Int(Ji) fl Int(Jj) = 0 for i / j.

 A system A = {(r¿, Jj), j = 1, . . . , fc} is called a partition of I if

 k

 {JJj = L
 j = 1

 Given a positive function 6 : Z - ► (0, + oo) called a gauge on J, a tagged interval
 (r, J) with t G [a, 6] is said to be 6- fine if

 J C B(r, *(r)) = {* G Rn; ||z - r|| < S(r)}.

 A system (in particular, a partition ) A = {(r¿, «/;), j = 1, . . .,fc} is ¿-fine if
 the point-interval pair (r¿, Jj) is ¿-fine for every j = 1, . . . , ib .

 Definition 1 Zeť /i(r, J) be a finite real-valued function of point-interval pairs
 with t G /, J C /. TTie function h is called integrable over I if there is an H G M
 sttcA Z/ia/ given € > 0, there is a gauge 6 on I such that

 k

 Y,h{ThJj)-H <e
 J' 1

 for every 6-fine partition A = {(Tj, Jj), j = l,...,Ar} o/ /. The number H is
 called the integral of the function h over I and it is denoted fjdh. We denote
 by /C(7) = /C([a,ò]) the set of all functions h which are integrable over I = [a, 6].

 This is the definition of the Henstock-Kurzweil integral (generalized Riemann
 integral) that can be found in a still growing series of books on integration (see
 e.g. [1], [2], [3], [4], [5], [6], [7]) where this idea of integration is explained from
 various aspects.
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 For the Riemann sum 52j=i Mrj> Jj) which corresponds to the function h
 and to a given partition A of I let us denote

 k

 S(h,A) = ^h(rj,Jj).
 j = 1

 Clearly Definition 1 is viable only if for a given gauge S on I there exists at
 least one ¿-fine partition D of I. This fundamental question has an affirmative
 answer given by the following statement.

 Lemma 1 (Cousin) Given a gauge S on I. there is a 6 -fine partition A =
 {(ri.^). J = 1» •••.*} °fL

 For the proof of this lemma see e.g.[l, Theorem 4.1].
 The following statement provides an operative tool in the theory of general-

 ized Perron integral. Its original version belongs to S. Saks and it was formulated
 for generalized integrals using Riemann-like sums by R. Henstock.

 Lemma 2 (Saks-Henstock) Let h : I - ► M be integrable over the interval I C
 Mn. Given e > 0 assume that the gauge 6 on I is such that

 k r
 dh < e

 i J*

 for every 6-fine partition A = {(r¿, J¿), j = 1, . . . , k} of I. If D is a 6-fine
 system {«,•,£,), j= 1

 tj e Lj C B{ij , j = 1, . . . , m,

 then

 * Í
 (1) dh < e

 j= i L Jl> J

 See e.g. [1], Theorem 5.3.

 Theorem 3 Let real valued point-interval functions h , /im, m = 1, 2, . . . be given
 where hm 6 IC(I) for m = 1,2, - Assume that there is a gauge u> on I such
 that for every w-fine pair (r, J), (r £ I) we have

 (2) lim hm(rì J ) = h(r1 J).label2
 m-* oo

 Assume further that
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 for every 17 > 0 there is a gauge 6 on I such that

 (S) 'S(hm, D) - dhm' < i?

 for every 6-fine partition D of I and every m = 1,2,

 Then h € K(I) and

 (4) lim [dhm= [ dh. m-°° J i J i

 Proof. Let e > 0 be given. By (3) there is a gauge 6 on /, 6(r) < w(r), r € I
 such that for every 6-fine partition D = {(r^, Jj)> j = 1, . . . , Jb} of I we have

 'S(hm,D)~ j^dhm'<í

 for m = 1,2, - By (2) for every fixed partition D of I there exists a positive
 integer mo such that for m > mo the inequality

 k

 I S(hm,D) - S(h , D)' = I £ [ftmfo, ';) - Afo. 'i)] I < ?
 j= 1

 holds and this means that

 lim S(hmìD) = S(h,D).
 m-+ 00

 Therefore for any 6-fine partition D of I there is a positive integer mo such that
 for m > mo we have

 (5) I S(h,D)~ ļdhm'<£.
 First we get from (5) that for all positive integers m, / > mo the inequality

 |y dhm - J dA/ļ < 2e

 holds. This means that (fj dhm)^=1 is a Cauchy sequence in M and it has
 therefore a limit

 (6) lim f dhm = II € R.
 m-°° J/

 The second consequence of (5) is the inequality

 |5(/i, D) - H'<
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 'S(h, D) - J dhm' + I J dhm - H' < e + I J dhm - H'.
 By (6) we obtain immediately from this inequality that for every 6-fine partition

 D of I we have |5(A, D) - H' < e and this means that the integral fjdh exists
 and that (4) is satisfied.

 Definition 2 A sequence of real valued point-interval functions hm , m = 1,2...
 which are integrable over I (hm G £(!)) is called equi-integrable if condition (3)
 of Theorem 4 is satisfied .

 Remark 1 Theorem 4 gives a sufficient condition for a sequence of integrable
 functions to tend to an integrable limit and for the integrals of the members of
 the sequence to tend to the integral of the limit function. The convergence of
 the functions hm to h is given by (2) and the sufficient condition is the equi-
 integrability (3) of the sequence ( hm ).

 The fundamental idea of the proof of Theorem 4 lies in understanding the
 concept of the integral as a certain limiting process and in the fact that two
 limits are interchangeable provided one of them is uniform with respect to the
 limiting variable of the second. In our situation equi-integrability stands for
 this uniformity. (See also [6] and [9].) In this sense Theorem 4 is a transparent
 mathematical fact. Nevertheless from the practical point of view it is not easy
 to check that a given sequence of integrable functions is equi-integrable.

 This forces us to use another condition instead of equi-integrability and mo-
 tivates the results given in the sequel. The forthcoming Theorem 8 is motivated
 by the results given in Theorem 9.1 in [1].

 Definition 3 A real valued function h of point-interval pairs is called interval
 additive if /i(r, J) = A(r, J{) + /i(r, J 2) provided J, Ji, J2 are intervals such that
 J = Jx U J2 and Int(Ji) fl /nť(«/2) = 0 and t G J' PI

 For example the real valued point-interval function h defined by

 n

 h(T,J) = v(J) = IlK-c;)
 i= 1

 for an interval J = [c, d ] with c, d G Mn, Cj < dj, j = 1, . . . , n and an arbitrary
 t G is interval additive.

 Theorem 4 Let real valued interval additive point-interval functions
 hi hmi m = 1, 2, . . . be given where /im G fC(I) for m = 1,2,
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 Assume that there is a gauge w on I such thai for every e > 0 there exist
 a p : I - ► N ( N denotes the set of positive integers.) and a positive
 superadditive interval function $ defined for closed intervals J C I with
 $(/) < e such that for every r G I we have

 (V IM^)-A(^)I< *(j)

 provided m > p(r) and (r, J) is an u-fine tagged interval with r G J C I.

 Let us assume further that the sequence ( hm ) satisfies the following condition.

 There exist a gauge 0 on I and real constants B < C such that for all
 choices of functions m defined on I taking positive integer values (m : I - ►
 N) the inequalities

 k

 (8) B < } ^ hm(Tj)(Tj } Jj) ^ C
 i= 1

 hold provided D = {(r^, Jj), j = 1,2,..., Ar} is an arbitrary 6-fine partition
 of I.

 Then the sequence ( hm ) is equi-integrable; i.e. (3) holds.

 Let us first give the following definition.

 Definition 4 Let real valued interval additive point-interval functions A, hmf
 m = 1,2,..., hm € IC(I) for m = 1, 2, . . . be given such that the conditions (7)
 and (8) of Theorem 8 are satisfied.

 For a given p G N let Sp be the family of all real valued point-interval func-
 tions v such that there is a finite system of nonoverlapping intervals Lj,j =
 1, . . . , / in I with U-=i Lj = I such that for a tagged interval (r, J), r G J C I
 we have

 m

 (9) v(r, J) = £ hmi(r, J n Er(Lj))
 i= 1

 where G N with rrij > p, j = 1, 2, . . . , /.

 Looking at the definition of the extension Er(Lj) of the interval Lj with
 respect to the point r we see immediately that in (9) v(r, J) = ^ ^
 Er(Lj)) = hmi{ry J H ET(Lj)) = hmj{T,J) if r G Int(Lj) for some j. If r £
 (Jj Int(Lj)> then r belongs to the boundaries of some intervals Lj and v(r, J)
 is the sum of values of all point-interval functions J H Er(Lj)) for which
 the point r belongs to Lj and the interval J O Er(Lj) is the portion of J which
 belongs to the extension ET(Lj).

 Now we give a series of statements concerning the families Sp given by Defi-
 nition 9.
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 Lemma 5 a) For every p G N we have hp G Sp.

 t>) IfPi,P2 e N, pi > p2, then SPl C SP2.

 c) Ifv G Si, then v G IC(I).

 Proof, a) If we set Li = /, then clearly hp is of the form (9).
 b) is clear by the definition of Sp.
 c) Given v G Sp it is easy to check by (9) that for every partition D * of Lj

 we have

 S{v,Di) = S(hmjiDl)

 for the corresponding integral sums. Since hmj is integrable over J, it is also
 integrable over Lj and (10) yields the integrability of v over Lj. This holds for
 every j = 1, . . . , / and therefore we get v G IC(I).

 Lemma 6 Ifv G Si, then

 k

 (10) B<Y, v(tj , Jj) = S(v, D) <C
 i=i

 for an arbitrary 0-fine partition D = {(r¿, Jj), j = 1, 2, . . . , k} of I.

 Proof. Let {Li, . . . , Lm} be the finite sequence of intervals used for the definition
 of v in (9). It is easy to see that if D = {(rj,Jj), j = 1, 2, ...,£} is an arbitrary
 0-fine partition of J, then {(r¿, Jj fl ETj(Li)), j = 1, . . . , Ar, i = 1, . . . , /} is also a
 0-fine partition of I and therefore (11) follows immediately from (8).

 Lemma 7 //(r, J) is an w-fine tagged interval, r G J C I, p> p(t), then

 (11) Kr,J)-Ä(r,J)|<*(J)

 for every v G Sp.

 Proof. If t > € Sp, then by Definition 9 there is a finite system of nonoverlapping

 intervals Lj%j = 1,...,/ in J, |J¿=i Lj = I such that for the c^-fine tagged
 interval (r, J), r G J C I we have v(r, J) = H £,-(£7)) with
 raj G N, ra¿ > p, for ¿ = 1,2,...,/. Since r G J fl #r(£;) when J O #r(¿¿) # 0,
 the tagged intervals (r, J fl Er(Lj )) are c^-fine for every j and |J¿ (J H Er ( Lj ) = J
 we have by the interval additivity of h and by (7)

 m

 'v(t, J) - h(r , J)l = I Y, [h™ÂT> J n Er(Lj)) - h(r, J D Er(Lj))] ' <
 J = 1
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 m

 < 'h™ÁT> 3 n ErVi)) - h(r, J n Er(Lj)) I <
 j = 1

 m

 < nEr(Lj)) < $(J)
 j = 1

 because <$ is a superadditive interval function.

 Lemma 8 Assume that e > 0. Then to every p G N there exist vp)vp G Sp such
 that

 (12) J dvp- ^ < inf j y dv; v G Ą,| < sup dv; v G 5P| < J dvp +

 Proof. By Lemma 1 1 the supremum and infimum exist and

 B < inf dv; v G 5pļ < sup Í^J dv; v G Ą>1 < C.

 The existence of vpì vp satisfying (13) follows immediately from the definition of
 the infimum and supremum.

 Lemma 9 Assume that v G Sp. Let Ij, j = l,...,s be an arbitrary finite
 sequence of closed nonoverlapping intervals in I. Then for a given e > 0 we
 have

 è 'JI3 I . dvp " h - ¿ 1JIJ I dv - jzzlJl3 è I dvP + h j = 'JI3 . j = 1JIJ jzzlJl3

 where vpivp G Sp are the functions corresponding to e by Lemma 13.

 Proof. Assume for example that the second inequality in (14) is not satisfied.

 Then there is a v* G Sp such that /7 dvp -f ^ < Ylj=i h dy* - For
 the system of intervals {/j, j = 1, . . .,s} there exists a finite system {Lit, k =
 1, . . . , r} of closed intervals in I such that both systems together form a system

 of nonoverlapping intervals with [jj Ij U [jk Lk = I. Set
 s r

 Mr, = v *(r> 3 n E^i)) + Y. V"(T> 3 n Er(Lk)).
 j= 1 *=1

 It is not difficult to check that vq € Sp and we have the inequality

 f dv o = yZ [ dv* + V* / dvp >
 Jl j=i J'i k=i Jl"
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 > ý* í dv" + ý" [ dvp + i- = Ji f dv" + ļ UJl> dv" + tJíx dvp + 2P = Ji dv" + 2p

 which contradicts Lemma 13 and therefore proves the second inequality in (14).
 The first inequality in (14) holds by a similar argument.

 Proof of Theorem 8 Let e > 0 be given. By (7) and Lemma ?? for every
 r G I there is a p(r) E N such that for all ra G N, ra > p(r) we have

 /io' 'vp(T)(tÌ J) - Äm(r, J)| <
 [ } K(r)(r, J) - /i(r, J)' + I Mr)(r, J) - h(r, J)| < 2®( J)

 and similarly also

 (14) K(r)0-.<7)-Mr,J)|<2<ïKJ)
 if (r, J) is an u;-fine tagged pair with t £ J C I where $ is a positive superad-
 ditive interval function with $(/) < e.

 For a given p G N the functions hpivpi vp are integrable and therefore there
 is a gauge 6p on 7 such that

 I S{hp,D)~ J dhp'<Ļ

 (15) 'S(vp,D)-ļdvp'<±
 I S{v',D)~ Jdv*'<Ļ

 for any 6p- fine partition D of 7. For r G 7 let us choose S(r) > 0 such that

 S(t) < min(u;(r), 6X (r), <$2(r), . . . , 6p(r)(r))

 {u is the gauge from (7) and (15), p : 7 - ► N is given in Lemma 12 and the
 gauges ¿1,(^2, .. . come from (17)).

 Assume that D = {(r¿, J,), i = 1, . . . , &} is a ¿-fine partition of 7 and that
 m G N is arbitrary. Then

 k k

 (16) S(hm,D)= hm(Ti,Ji)+ ^2 hm(Ti,Ji).
 i -I 1=1
 m<p(Ti ) m>p(Ti )

 The first term is the sum of those Am(r,-, J,) for which ra < p(r,) and similarly
 for the second term. We show that S(hm, D) > ff dhm - 4e.
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 If m > pin), then by (16) -2 <ř(J) < Am(r¡, J<) - vP(T''r¡,J¡) < 2 <ř(J).
 Therefore /im (n, Ji) > t;P(T')(r¿, J,*) - 2$(J) and for the second sum in (18) we
 have

 k k

 E hm(Ti,Ji)> ¿ [»**>(7*, JO" 2*(./)]-
 i = 1 2 - 1
 m>P(r») m>P(r«)

 Hence

 ib A; ib

 S(hm,D)> E Mn,J,)+ E fp(riVń^)-2 E *(J) =
 1=1 i = 1 i = 1
 m<p(r¿) m>P(r») m>p(r¿)

 A: A: m- 1 k

 = -2 E *(J) + E Mn.jo+E E
 i=l ¿=1 /=1 i = 1
 m>p(r¿) ™<p(r¿) P(^)=í

 From (17) and from the Saks-Henstock Lemma 3 we obtain

 ^m(n)Ji)- ^ dhm < -
 i = 1 i = 1 1
 m<p(r¿) "*<p(r¿)

 and

 E v'(n-.j,)- E / * <Ļ- i = 1 1 = 1 *
 p(r»)=' p(tì)=/

 That is,

 hm(Ti} Ji) > ^ / d/im - 2^"
 i=l i = 1
 m<p(r») ™<p(^0

 and

 E »'(*», E jjdv'~T Ji i - ' i - l Ji
 p(r¿)=/ P(r¿)='
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 Thus
 A? k r

 S(hm,D)>- 2 £ *(J)+ £ j^dhm-Ļ+ r
 i = 1 2 - 1
 *n>p(r») ™<P(ï"i)

 m- 1 ib - m- 1

 + £ E //»'-£? JJi - Izz /=1 ; - i JJi Izz l
 P(r0=i

 Since Am E Smì we have by b) of Lemma 10 that hm £ Sp for all p = 1,2,..., m-
 1 and by Lemma 14 we therefore get

 ¿ Ldv'- ¿ l,dhm~¥
 i = i i = i
 p(rO=/ P(r»)='

 i.e.
 m- 1 A; - m- 1 À; - m- 1

 m- EEÍ'^EE - /■"»-££ Jj' - = 1=1 I _ 1 /=i v _ 1 Jj' 1=1
 p(Ti)=i p(n)=l

 k p m- 1

 = ¿ ^ J p dhm - m- ^ 2f i = 1 ^
 m>P(r¿)

 and
 A; m- 1 m- 1

 S(hm,D) > -2 £
 f = 1 '=1 '=1
 m>p(rt)

 h f * f
 + Y] dhm+ Y* dh™>
 i=lJji i= 1J*
 m>p(Ti ) m<p(r¿)

 m- 1 .

 >-2*(/)-¿-2£Í + jdh„>

 /1 d/»m - e(2 + - + 2 1 ^7) i > Jj r /1 d/»m - e(2 + - + 2 ^7) > Jj dhm - 4e.
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 In a completely analogous way we can use vp instead of vp to show that

 S(hmiD)< J dhm + 4e

 i.e.

 'S(hm, D) - J dhm I < 4e
 and the sequence ( hm ) is equi-integrable with the gauge 6 being independent of
 m.

 Corollary 10 If conditions (7) and (S) of Theorem 8 are satisfied for the func-
 tions hmi h.m = 1,2,..., then h G £(/) and

 lim / dhm = / dh.
 m-*°° J i J i

 Proof. The result follows immediately from Theorems 8 and 4.

 Lemma 11 Assume that /im, m = 1,2, . . . are point-interval functions defined
 for tagged intervals (r, J), r G J C /. Let v) w G £(/) be point-interval functions
 such that

 (W v(t, J) < hm(r , J) < w(t, J)

 for every tagged interval (r, J) and m G N. Then the sequence ( hm ) satisfies
 condition (8) of Theorem 8.

 Proof. Since v,w G £(I), there is a gauge 0 on I such that

 (18) 'S(v, D) - J dv' < 1
 and

 (19) 'S(w,D)-J dv' < 1
 provided D = {(r¿, J¿), j = 1, . . . , k} is a 0-fine partition of I.

 Let m : I - ► N be arbitrary. Then by (19) v(tj , Jj) < <
 w(Tj>Jj) for every tagged interval (rj} Jj) belonging to a 0-fine partition D of I
 and

 k

 S(v, D)<J2 < S(w, D ).
 j= 1

 By (20) and (21) we have B = fjdv- 1 < S(v, D) and S(w , D) < dw + 1 = C
 and therefore (8) of Theorem 8 is satisfied.
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 Corollary 12 (The dominated convergence theorem) Let real valued interval
 additive point-interval functions A, hmi m = 1,2, .. . be given where hm G fC(I)
 for m = 1,2,....

 Assume that there is a gauge u on I such that for every e > 0 there exist
 a p : I - ► N and a positive superadditive interval function $ defined for
 closed intervals J C I with $(/) < e such that for every t £ I we have

 (7) 'hm(r , J) - h{rì J) | < $(J)

 provided m > p(r) and (r, J) is an u-fine tagged interval with t £ J C I.

 Let us assume further that the sequence ( hm ) satisfies the following condition.

 There exist v, w G £( J) point-interval functions such that

 (19) v(t , J) < /im(r, J) < w(t , J)
 /or every tagged interval (r, J), (r G «7 C /) and every m G N.

 Then the sequence (hm) is equi-integrable, h is integrable over I and

 lim / dhm = / dh.
 m->°° J i J i

 Proof. The result follows from Lemma 16 and Corollary 15.
 If an interval I C Mn is given and / : I - ► M is a point function, then we set

 /i(r, J) = /(r).v(J) for tagged intervals (r, J), (r G J C /), where v(J) is the
 volume (Lebesgue measure) of the interval J and we write

 J fdv = J dh
 provided the integral on the right hand side exists. This is the Henstock-
 Kurzweil integral of a point function which is equivalent to the classical Perron
 integral in the case n = 1. From the results given above for this special case the
 following theorem can be deduced.

 Corollary 13 Let real valued point functions f}fm : I - ► M, m = 1,2,... be
 given where the integrals fmdv exist for m = 1,2,

 (22) lim /m(r) = /(r)
 ra- »-oo

 for every r G I and that there is a gauge 0 on I and real constants B < C such
 that for all choices of functions m : I - ► N the inequalities

 k

 m B < < c
 j= i
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 hold provided D = {(rj, J¿), j = 1, . . . , k} is an arbitrary 6-fine partition of I.
 Then the sequence of point-interval functions /im(r, J) = fm(T).v(J) is equi-
 integrable , the integral fj fdv exists and

 lim / fmdv - / fdv.
 m-+°° J i J i

 Proof. Let us set /i(r, J) = f(r).v(J). Then

 I hm(r, J) - h(T, J) I = I [/m(r) - /(r)] .«( J)| < |/m(r) - f(r)'.v(J).

 By (22) for every e > 0 there is a p : I - ► H such that for every r £ I we have

 i/mM - /(r) I <

 provided m > p(r). Hence

 I Mr, - A(r, J)| < ^ýjTJ^Í-7)
 and condition (7) of Theorem 8 is satisfied in this case with the additive interval

 function $(J) = for which $(/) = -^^.«(7) < e.
 Theorem 8 yields the equi-integrability of the sequence hm and the conver-

 gence result comes from Corollary 15.

 Remark 2 Condition (23) in Corollary 18 is the condition given by R. Henstock
 in [1, Theorem 9.1]. The same can also be said about condition (8) in Theorem
 8.

 See [3, 5.4. Lemma] for a result that is similar to Theorem 8. There the
 following condition is introduced.

 There is a constant K > 0 such that for every fìnite system of nonover-
 lapping intervals Lj,j= 1 ,...,/ in I with Uļ*=1 Lj = I and every fìnite
 sequence mi, . . . , m¡ G N the inequality

 E J*<i / dh mi < K j = 1 J*<i

 holds.

 It is shown in [3] that this condition together with (7) also implies the equi-
 integrability of the sequence ( hm ). It is worth mentioning that the idea of
 conditions of this type as well as the method of proving a theorem like our
 Theorem 8 goes back to the mimeographed notes [8] written in 1979. These
 notes form a draft version of a chapter on integration of a textbook on calculus
 which was not published.
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 Example 1 The following simple example shows that equi-integrability of a se-
 quence does not imply Henstock's condition (e.g. condition (23) in Corollary
 18).

 Assume that I C Mn is an interval and that g : I - ► M is such that g E /C(J)

 and I0I £ £(/). Define fm{T") = b?{T) f°r r € I- We evidently have fm G
 £(/), /m(7") - * 0 and fj fmdv = ± J f gdv - ► 0 for m - ► 00. Suppose that there
 is a gauge 0 on I and real constants B < C such that for all choices of functions
 m : I - ► N the inequalities

 k

 (23) B<Y,fmļTi){TMJj)<C
 j= 1

 hold provided D = {(r¿, J¿), j = 1, . . . , fc} is an arbitrary 0-fine partition of I.
 For m(r) = 1 for r E / we have

 k

 (24) B<¿2fi{Tj)vVj)<C
 i=i

 for every 0-fine partition D of /. Putting m(r) = m when <7(7-) > 0 and m(r) = 1
 otherwise we obtain

 k

 B-C<Y, - f m(Tj)(rJ )] v(Jj) <C - B
 j= 1

 and by the construction of the function m we have fi(rj) - fm(Tj)(rj) = (1 -
 ^)ff(ri) if 9(fj) > 0 and - /m(Ti)(r,) = 0 if g(Tj) = 0 i.e.

 * 1
 B-C< £ (l-~)9{rMJj)<C-B.

 3 = 1
 9(Tj)>0

 Similarly if m(r) = m when (?(r) < 0 and m(r) = 1 otherwise we obtain

 * 1
 B-C< £ (l--MriMJi)<C-5.

 i = 1

 Therefore
 * 1
 E(1--)I^)K^)<2(C-B)
 i = l
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 and we have the inequality

 i= 1

 which contradicts the fact that g is not absolutely integrable (|^| ^ The
 sequence ( fm ) does not satisfy Henstock's condition (23) (or (8)) and Theorem
 8 does not contain the convergence result which holds for this example.

 On the other hand it is easy to see that the sequence (/m) is equi-integrable
 and the convergence result is guaranteed by Theorem 4.
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