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 1. Introduction

 The strict topology on the set C*(X) of all bounded continuous real- valued
 functions on a space X was introduced by Buck [1] for the case that X is a
 locally compact Ilausdorff space. Other authors have extended and studied this
 topology on C*(X) for X an arbitrary Tychonoff space (see, for example, [3],
 [4], [8], [9] and [10]). In [4], Gulick introduced the (7-compact-open topology
 on C*(X)y where convergence is uniform on all (7-compact subsets of X. This
 latter topology was independently studied in [5] where the definition was further
 extended to the set C(X) of all continuous real- valued functions on a Tychonoff
 space X. In the presence of local compactness, Buck observed in [1] that the
 compact-open topology on C*(X) can be generated by a collection of seminorms
 induced by the collection of continuous functions with compact support. The
 purpose of this present work is twofold. The first one is to extend the strict
 topology on C*(X) to C(X) and study it. The second one is to describe the
 topology of uniform convergence on (7-compact subsets in terms of seminorms
 arising from a nice subclass of bounded continuous functions. To do this, we
 introduce a new topology r (to be defined in the next section) on C(X) and
 study it extensively. The studies of the strict and the r topologies are closely
 related.

 Throughout the rest of the paper, we use the following conventions. All
 spaces are Tychonoff spaces, and whenever we deal with local compactness, we
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 mean a locally compact Hausdorff space. If X and Y are any two spaces with
 the same underlying set, then we use X = Y , X < Y and X < Y to indicate,
 respectively, that X and Y have the same topology, that the topology on Y is
 finer than or equal to the topology on X, and that the topology on Y is strictly
 finer than the topology on X. The symbols M and Ndenote the spaces of real
 numbers and natural numbers, respectively. Finally, the constant zero- function
 in C(X) is denoted by /0.

 2. Basic definitions and notations

 Let B(X) be the set of all bounded real-valued functions on X. A function / in
 B(X) is said to vanish at infinity if for every e > 0 the subset {x G X 'f(x)' > e]
 is compact. Define -fîo(X) = {/ G B(X) f vanishes at infinity} and Co(X) =
 Bo(X) fi C( X). Clearly Cm(X) = B(X) fl C(X).

 A subset A of X is called almost <r-compact if there exists a <r-compact
 subset B of A such that B is dense in A. An element / G B(X) has a com-
 pact (respectively, an almost a-compact ) support if there exists a compact (re-
 spectively, an almost <r-compact) subset K of X such that / = 0 on X -
 K. Let J3oo('Y) = {<ļ> G B(X) <f> has a compact support}, B'(X) = {<j> G
 B(X) <ļ> has an almost a-compact support}, Coo(X) = Bqq(X) fl C(X), and
 Ci(X) = Bi(X)nC(X).

 By a pseudo-seminorm on a real linear space E is meant a real- valued function
 p on E such that

 (1) KO) = 0

 (2) p{x) = p{- x) for all x G E, and

 (3) p(x + y) < p(x) + p(y) for all x, y G E.

 A pseudo-seminorm p is called a seminorm if

 (4) p(tx) = 't'p(x) for all x G E and t G M

 is also true.

 To each <t> G B(X) define the pseudo-seminorm p ¿ on C( X) by

 M/) = min{l,sup{|^(x)/(a:)|x € A'}}.

 Also for each nonempty subset A of X, define the pseudo-seminorm Pa on C(X)
 by

 P/»(/) = min{l,sup{|/(a;)| x € >1}}.

 On C*(X), however, we can use the seminorms p $ and defined by

 P4,(f) = sup{|<¿(x)/(x)| x 6 A'} and pA(f) = sup{|/(x)| x e A),



 178 Kundu , McCoy and Raha

 respectively.
 Let Ck(X) denote the space C(X) equipped with the compact-open topology

 k which is generated by the collection of seminorms { p $ <¡> G #oo(^0}.
 The strict topology (or ß-topology) on C(X) is generated by the collection of

 pseudo-seminorms { p $ <f> G £o(^0} and is denoted by Cß(X). Sentilles [9] and
 Summers [10] called this topology on C*(X) the substrict topology and denoted
 it by ßo , Gulick [4] called it the strict topology and used the notation ts. The
 notation ß is due to Buck [1].
 The uniform topology u on C(X) is generated by the complete metric p,

 where for /, g G C(X ),

 p(f,9) = Px(f ~g) = min{l,sup{|/(ic) - g(x) ' x e X}} ,

 and the corresponding topological space is denoted by CU(X). It is easy to see
 that u can also be generated by the collection of pseudo-seminorms { p $ <ļ> G
 T) where T is either B(X) or C*{X). The topology ti on C*(X) is actually
 generated by the complete supremum norm.
 Let C<rtU(X) be the space equipped with the topology of uniform convergence

 on (T-compact subsets of X. This topology, denoted by (ít, ti), is generated by
 the collection of pseudo-seminorms {p¿ A is a <7-compact subset of X}, and is
 studied in [5]. For each A C X and e > 0, let Va, e = {/ G C(X) paU) < e).
 Then the collection

 { VaìC A is a (T-compact subset of X and e > 0}

 forms a neighborhood base at fo for (cr, ix). The subspace C* U(X) was intro-
 duced in [4], where it was shown that Cß(X) < C* U(X). The following two
 facts can be found in the papers [4] and [5].

 (1) C; U(X) = C*(X) if and only if X contains a dense c-compact subset.
 This is also true if C*(X) is replaced by C(X).

 (2) Ck{X) = Ca,u(X) if and only if every (7-compact subset of X has compact
 closure.

 It may be mentioned here that in [5] a set-open topology on C(X) is intro-
 duced called the a -compact- o pen topology , and this space is denoted by Ca(X).
 In general, Ca{X) < Ca^X), and Ca(X) = CatU(X) if and only if X is pseu-
 docompact. Since Cļ(X) = Cļ U(X) is always true, the topology of uniform
 convergence on a- compact subsets C*(X) may be called the (7-compact-open
 topology, as was done in [4].

 It is not difficult to show that the topology (<j, u) on C(X) is generated by
 the collection of pseudo-seminorms { p $ <j> G #i(A')}. For the justification, see
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 Theorem 3.3 of the next section. We would like to describe it in terms of pseudo-
 seminorms arising from a subclass of bounded continuous functions. While
 probing this possibility, a new topology r on C(X) naturally crops up. The
 space C(X) equipped with the topology generated by the collection of pseudo-
 seminorms G Ci(X)} is denoted by CT(X). For each <j> G B(X) and e > 0,
 let V^e = {/ G C(X)p(f>(f) < e). Then the collection e G V, e > 0} forms
 a neighborhood base at /o for ß or r according as V = B0(X) or V = C'(X),
 respectively.

 We call a space locally almost a-compact if it is a Tychonoff space such
 that each point has an almost (7-compact neighborhood. It can be shown that
 Ck(X) < Cr(X) if and only if X is locally almost cr-compact. The property of
 local almost (7-compactness ensures the non-triviality of Ci(X), so that whenever
 needed, we assume X to be locally almost (7-compact while working with r.
 Let us observe that if X is almost (7-compact, then C'(X) = C*(X), which
 implies that CT(X) = CU(X). Thus the proper setting for the study of CT(X)
 should be on a space X which is not almost (7-compact but at the same time is
 locally almost <r-compact. Note that a locally compact space is locally almost
 (7-compact. In the next section we give an example of a space which is locally
 almost (7-compact, but is neither almost cr-compact nor locally compact.

 3. Comparison of topologies

 From the definitions it is evident that Ck(X) < Cß(X) < CU(X). The com-
 parison of the neighborhood systems at /o shows that Cß(X) < Ca)U(X) and
 Ct(A') < Catu(X). It has been observed by Giles [3], Gulick [4] and others that
 in the presence of local compactness, the strict topology ß on C*(X) can also
 be generated by the collection of seminorms G Co(X)}. Since for a locally
 compact space Co(X) C Ci(X), from the previous observation it follows that
 for such a space Cß(X) < CT(X). In this section, we determine when these
 inequalities are equalities and give examples to illustrate the differences. The
 proofs of (a), (b) and (c) of the next theorem can be found in [4],

 Theorem 3.1 The following are true.

 (a) Ck{X) = Cß(X) if and only if the closure of each a-compact subset of X
 is compact.

 (b) Cß{X) = CU(X) if and only if X is compact.

 (c) Cß(X) = C„tU(X) if and only if the closure of each a -compact subset of X
 is compact.
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 (d) If X is locally compact , then Cß(X) = CT( X) if and only if Co(X) =
 Ci(X).

 Since Ci(X) = C*(X) if and only if X is almost <r-compact, it follows that
 Ct(X) = CU(X) if and only if X is almost <r-compact. The next two results
 determine the conditions for the equality of r and (<r, tí).

 Lemma 3.2 Let A be a nonempty a-compact subset of X, let <j> G C'(X) and
 let0<e,6< 1. Then {/ 6 C(X) p+(f) < e} C {/ 6 C{X) pA(f ) < 6} if and
 only if inf{'<j>(x)' x G A} > j.

 Proof. First suppose inf{|<£(¿c)| x G j4} > y and g G {/ G C(X) p<j>(f) < £}.
 Then define e' = sup{|<^(x)^(x,)| x G A"}. Since e' < e, there exists some ó' < 6
 such that e' < inf{ |0(ar)| x G A}. For each a £ A, since <j>(a) ^ 0, we have

 Wa)l s

 Therefore Pa(q) < 6' < 6.
 Conversely, suppose {/ G C( X) p¿(/) < e) C {/ G C(X) PaU) < <*}• We

 first show that <j>{a) ^ 0 for all a G A If not, there is some xq G A- {0}).
 Then there exists an open neighborhood U of xo in X such that |<£(x)| < jķ for
 all x G U . Now choose continuous g X - ► [0, 6] such that g(x o) = 6 and g(x) = 0
 for all x G X - U. Since p(a?o) = <5, we have g £ {/ G c(x) Pa(Í) < ¿}- If
 x G U y then '<j>(x)g(x)' < while if x G X - ř/, then '<¡>{x)g(x)' = 0. Therefore
 g G {/ G C(X) p<f>{f) < £}, and we have a contradiction.
 Next suppose, again by way of contradiction, that inf{|<£(x)| x G A} < j.

 Then there exists some a E A such that ¿|<£(a)| < e. Since <1>(a) ^ 0, we may
 define g G C*(X) by

 </(*) = { if l^(*)l - l^(a)l' .

 Now g(a) = 6 , so that g £ {/ G C(X) Pa(Í) < <$}• On the other hand, for
 each x G X, '<¡>{x)g(x)' < 6'<ļ>(a)'. Hence g G {/ G C(X) p<¿(/) < £}, which is a
 contradiction. ■

 Theorem 3.3 For every space X, CT(X) = Ca,u(X) if and only if for every
 nonempty a-compact subset A of X there exists a a-compact subset B of X and
 a continuous function <j> X - ► [0, 1] such that <j> = 1 on A and <t> = 0 on X - Ī7.

 Proof. First suppose CT(X) = C<r,u(Ar), and let i be a <r-compact subset of
 X. We then have {/ G C(X) Ptp(f) < e} C {f E C( X) PA(f) < 1} for some
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 'p G C'(X) and e > 0. So there is a (7-compact subset B of X such that
 4>(X - 5) = 0. By 3.2, we have inf{|^(x)| x G A} > e. Now define continuous

 <¡> X -+[Q, 1] by = min ļl, ļ. Clearly <ļ>Ļ 4) = 1 and <1>{X - B) = 0, as
 desired.

 For the converse, suppose {/ G C(X) Pa(Í) < is a given basic neigh-
 borhood of /o in CaìU(X)ì where 0 < 6 < íš By hypothesis, there exists a
 (7-compact subset B of X and a continuous <j> X - ► [0, 1] such that <j>(A) = 1 and
 <t>(X - ~B) = 0. Since <j> G Ci (A') and inf{|<£(x)| x G A} = 1, by 3.2, we have
 {/ e C(X) p+(f) <6}c{fe C(X) pA(f) < ó }. Therefore Cr(X) = C,tU(X).
 m

 For the next two results, we need the following definition. A set S is said
 to be regularly cr-compact if S = U ^=ìKn where for each n, Kn is compact
 and Kn C IntĀ'n+i. In a locally compact space, every (7-compact subset is
 contained in a regularly cr-compact subset. Every regularly (7-compact set is an
 open Fa-set.

 Corollary 3.4 IfX is locally compact and paracompact , then CT( X) = Ca>u(X).

 Proof. If X is locally compact and paracompact, then the closure of every cr-
 compact subset is <r-compact (see [2], page 382). Let A be a (7-compact subset of
 X. Then A is also (7-compact, and there exists a regularly (7-compact subset B
 containing A. By the normality of X, we have a continuous function <ļ> X - ► [0, 1]
 such that <j> = 1 on A and <f> = 0 on X - ĪJ. ■

 In the absence of local compactness, Cß(X) and CT(X) cannot be compared.
 But for a locally compact normal space, we have the following necessary condi-
 tion for these spaces to be equal.

 Theorem 3.5 Let X be a locally compact normal space. If Cß(X) = Cr(X),
 then every closed a-compact subset of X is compact.

 Proof. The hypothesis implies that C0(A') = C'(X). Now let A be a closed
 (7-compact subset of X, so that there exists a regularly (7-compact subset S
 containing A. By the normality of X, there exists a continuous function f X - ►
 [0, 1] such that f(A) = 1 and f(X - S) = 0. For 0 < e < 1, there exists a
 compact set K such that 'f(x)' < e for all x G X - K. Hence A C K, and
 consequently A is compact. ■

 We end this section by looking at some examples.

 Example 3.6 If X is any compact space , then

 Ck(X) = Cß(X) = CT(X) = CatU(X) = CU(X).
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 Example 3.7 If X is any uncountable discrete space, then

 Ck(X) < Cß(X) < CT(X) = CatU(X) < CU(X).

 Example 3.8 If X = N or X = M, then

 Ck(X) < Cß(X) < CT(X) = C*tU(X) = CU(X).

 Example 3.9 IfX is the space [0, u;i) of countable ordinals with the order topol-
 ogy , then

 Ck{X) = Cß(X) = CT(X) = Ca>u(X) < Cu(X).

 Example 3.10 Let X be the deleted Tychonoff plank, that is, X = [0,u>i] x
 [0,a;o] - {(u>i,u;o)}. Then X is not normal but is locally compact and almost
 a-compact. The set {u>i} x [0,u>o) is a closed a-compact subset of X which is
 not compact. Therefore

 Ck(X) < Cß(X) < Cr{X) = C,tU(X) = CU(X).

 Example 3.11 Let X be the topological sum of the space of rationals with the
 usual topology and the space of irrationals with the discrete topology. Then X is
 neither locally compact nor almost a-compact, but it is locally almost a-compact.
 Note that the closure of every a-compact subset is a-compact. It is easy to see
 that given a nonempty a-compact subset A, there exist a a-compact subset B of
 X and a continuous function <f> X - ► [0, 1] such that <ķ = 1 on A and ^ = 0 on
 X - B. It now follows that

 Ck(X) < Cß(X) and Ck{ X) < CT(X) = Ca,u(X) < CU(X).

 Example 3.12 Let X be an uncountable space in which all points are isolated
 except for a distinguished point s, where a neighborhood of s is any set contain-
 ing s whose complement is countable. All compact subsets of X are finite, so
 that the compact-open topology on C(X) coincides with the topology of pointwise
 convergence. The a-compact subsets of X are countable and closed, and in fact s
 does not have an almost a-compact neighborhood ; so that X is not locally almost
 a-compact. This means that k and r on C(X) are not comparable. It is easy to
 see that C'(X) = {/ G C(X) f(s) = 0} and C'{X) is non-trivial. Also using
 Theorem 3.3, we see that

 CT(X) < Catu( X) < CU(X).

 Example 3.13 Let N* = /?N - N where /?N is the Stone-Čech compactification
 o/N. Define X = N* - {p} where p is a point of N* which is not a P-point
 (see [7]). Then X is a locally compact space which is not paracompact and does
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 not have a dense a-compact subset (since points are not G^-sets). Also since p
 is not a P-point, there is some cr-compact subset of X which has non-compact
 closure. Therefore

 Ck(X) < Cß(X) < CT(X) < Ca,u(X) < CU(X).

 Note that Cß(X) < C(rļU(X)f so that at best, only one of the two equalities
 Cß(X) = CT(X) and CT(X) = CfftU(X) can hold. We do not know of an
 example of a locally almost a-compact space for which r is strictly weaker than
 (a, u), however this example might have that property.

 4. Linear topological structure

 It is easy to show that Cß(X)i CT(X) and C<,tU(X) are topological groups under
 usual addition. Hence they are uniformizable and consequently completely reg-
 ular. Since ß and (<r, u) are finer than Ar, they are Hausdorff and consequently
 Cß(X) and Ct 7,u(X) are Tychonoff spaces. If X is a locally almost <r-compact
 space, then CT(X) is also a Ilausdorff space. But CT(X) may be a Hausdorff
 space without X being locally almost (r-compact. Example 3.12 provides an
 example of such a space. We now determine when Cß(X)i CT{X) and Ca}U{X)
 are linear topological spaces; that is, when scalar multiplication is continuous
 on these spaces.

 Theorem 4.1 For every space X, Cß(X) is a linear topological space if and
 only if X is pseudocompact.

 Proof. If X is pseudocompact, then Cß(X) = C£(X ), and the latter is a locally
 convex space. Conversely, suppose X is not pseudocompact. Then X contains
 a closed C-embedded copy A of N; say A = {xn n G N}. Define <ļ> X -+ M and
 / A -> M by 4 >(x ) = 1 for X = xn, <¡>(x) = 0 for x G X - A, and f(xn) = n 2 for
 n 6 N. Note that <f> 6 Bo(X). If F G C(X) is any continuous extension of /,
 then for all n G N, '<Kxn)$F(xn)' = 1; so that ±F £ {g G C(X) p+(g) < 1} for
 any n G N. This shows that scalar multiplication is not continuous at (0, F). ■

 If X is pseudocompact, then clearly CT(X) = Cļ(X)y which is a locally
 convex space. For the converse, we have the following result.

 Theorem 4.2. Let X be a locally almost a-compact normal space. IfCT(X)
 is a linear topological space , then X is pseudocompact.

 Proof. If A' is not pseudocompact, then choose A as in the previous theorem.
 Since X is locally almost cr-compact, there exists an almost <r-compact subset
 B of X such that A C Int B. By the normality of A, there exists a continuous
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 function <¡> X - ► [0, 1] such that <j> = 1 on ^4 and <f> = 0 on X - Int 5. Note
 that <f> G Ci(X). Define / ^4 -► M by /(xn) = n for n G N, and extend / to a
 continuous F on X. Now the arguments similar to those in the previous theorem
 show that scalar multiplication is not continuous at (0, F), m
 It follows as consequences of Theorem 1.1 in [5] that C<,)U{X) and CU{X) are

 linear topological spaces if and only if X is pseudocompact.

 5. Completeness

 If E is a topological group, a net {xa} in E is called a Cauchy net provided that
 for each neighborhood U of 0 in E there exists <*o such that xa - xat G U for
 all a, a' > ao- Then E is complete if every Cauchy net in E converges to some
 element in E.

 A Tychonoff space X is called a ka-space (respectively, kf -space) provided
 that every real- valued (respectively, bounded real- valued) function which is con-
 tinuous on each compact subspace is necessarily continuous on all of X. Obvi-
 ously, a k-space is a k^-space and a k^-space is a k/-space.

 Theorem 5.1 For every space X , Cß(X) is closed in Cß(X).

 Proof. To show that C(X) - C*(X) is open, let / G C(X) - CW(X). Then
 / is unbounded, so that we can obtain a sequence {xn n G N} in X such that
 f(xn) > 2n+1 for each n. Define <ļ> G Bq(X) by <)>{x) = if x = xn for some
 n G Ń and <j>{x) = 0 otherwise. Choose g G CĻ X) so that p^f - g) < 1. Then
 for each n, '(f(xn) - g(xn))<f>(xn) | < 1. This implies that g(xn) > 2n, so that
 g G C(X) - C*(X). Therefore C(X) - C*(.Y) is indeed a neighborhood of / in
 Cß(X). .

 Since Cß(X) is complete if and only if X is a k/-space (see [9]), we have the
 following corollary.

 Corollary 5.2 If Cß(X) is complete, then X is a kj -space.

 In order to examine the converse of Corollary 5.2, we consider the topology
 of uniform convergence extended to the set F(X) of all real-valued functions on
 X . Let

 V(f, e) = {ge F(X) ' f(x) - g(x)' < e for all x G X}

 where / G F(X) and e > 0. To generate the topology of uniform convergence
 on F(X ), take {V(/, e) e > 0} as a neighborhood base at /; and again denote
 this topology by u as in the case of C(X). It is easy to show that the topology
 u on each of F(X ), C(X) and C*(X) is complete.



 Topologies Between Compact and Uniform Convergence 185

 Theorem 5.3 If X is a Ur- space, then Cß(X) is complete.

 Proof. Let { fa } be a Cauchy net in Cß( X). Then {/<*} is also a Cauchy net

 in Ck(X), which is complete since X is a k^-space (see [6]). Therefore fa^+f
 for some / £ C(X). Now for each <f> £ Bo(X) and e > 0, there exists c*o such
 that p<j>{fa - fa') < £ for a, a' > a0; that is, {</>/<*} is u-Cauchy in F(A). So
 fifa 9 f°r some g £ F( X) and, in particular, <1>fa(x) - ► g(x) pointwise for

 each X £ X. Since fa -h ► /, fQ f pointwise, so that g(x) = <p(x)f(x) for
 each X £ X. We conclude that <¡>fQ <j>f for each £ Bq{X)ì and hence each
 P<f>(fa -/)-»• 0. Therefore fQ -> f in Cß( X). ■

 Note that the sufficient condition in the above theorem is stronger than the
 necessary condition of Corollary 5.2. So we raise the following relevant question.
 Problem Can 5.2 be strengthened by obtaining X to be a k^-space?

 The proofs of Theorems 5.1 and 5.3 can be modified to obtain the next two
 theorems.

 Theorem 5.4 For any space X , C* U(X) is closed in C0iu{ A").

 Theorem 5.5 If X is a IcR-space, then C0ļXJL{ X) is complete.

 From these two theorems, we immediately get the following result which
 improves Gulick's Theorem 4.10 in [4], in which X is assumed to be either
 locally compact or first countable.

 Corollary 5.6 If X is a kR-space, then C* U(X) is complete.

 We turn now to the completeness of CT(X). Note that whenever X is locally
 almost cr-compact, Ck(X) < CT(X ), and consequently the proof of Theorem 5.3
 can be modified to obtain the following theorem.

 Theorem 5.7 If X is a locally almost a-compact kR-space, then Cr(X) is com-
 plete.

 We point out that while a locally compact space is a k^-space, a locally
 almost (7-compact space need not be a k/^-space. Example 3.10 provides an
 example of such a space. If X is locally compact, then Buck's proof of the
 completeness of Cß(X) in [1] can be modified to show that Cļ(X) is complete,
 and as a consequence, Cļ(X) is closed in CT(X). This may not be true in the
 absence of local compactness.

 The hypothesis that X be a k/î-space is not necessary in any one of Theorem
 5.6, Corollary 5.7 and Theorem 5.8. This is because if X is almost (7-compact,
 then CT(X) = CCtu{X) = CU(X)' but both CU(X) and C„(X) are complete. On
 the other hand, Example 3.12 provides an example of a non-k/^-space for which
 neither Cß(X) nor C* u( X) is complete. Also for this space, neither CT( X) nor
 Cļ(X) is complete.
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 6. Metrizability

 The space CU(X) is of course always metrizable, and the space Ck(X) is metriz-
 able if and only if X is hemicompact (see [6], for example). As for the interme-
 diate topologies, first Gulick established in [4] that Cß(X) is metrizable if and
 only if X is compact. This immediately extends to Cß(X).

 Theorem 6.1 The following are equivalent.

 (a) X is compact.

 (b) Cp(X) is metrizable.

 (c) Cß(X) is metrizable.

 The metrizability of CT( X) is given by the next theorem.

 Theorem 6.2 Let X be a locally almost <r-compact space. Then the following
 are equivalent.

 (a) X contains a dense a-compact subset.

 (b) CT( X) is metrizable.

 (c) CT(X) is first countable.

 (d) Cļ(X) is first countable.

 (e) Cļ(X) is metrizable.

 Proof. The fact that (a) implies (b) follows from the fact that if X contains a
 dense ^-compact subset then CT(X) = CU(A'). Clearly (b) implies (c) and also
 (c) implies (d). The equivalence of (d) and (e) is because Cļ(X) is a locally
 convex Ilausdorff space.

 Finally we show that (e) implies (a). Let {V¿n>£n n E N} be a countable
 local base at /0, where V+nttn = {/ G C(X) pK(f) < en}, ļn € Ci(X) and
 0 < €n < 1 for each n £ N. Also for each n € N, let Sn be a (T-compact set
 such that <j>n(X - 3^) = 0. We claim that 'S = X, where S = U^=15n. If not,
 then there exist x0 G X - S and continuous g X - * [0, 1] such that g(x o) = 1
 and g = 0 on 'S. Now p(f>n(g) = 0 for all n, so that g 6 But

 = {/o}, which is a contradiction. ■
 Finally let us mention that the metrizability of Ca%u{X) was studied in [5],

 and the characterization of when this space is metrizable is the same as in
 Theorem 6.2 for the space CT(X).
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 7. Separability

 A space X is called submetrizable if there exist a metric space Y and a continuous
 bijection h X -> Y. We call a submetrizable space separably submetrizable if the
 metric space Y can be taken as separable. A submetrizable space X will be
 separably submetrizable whenever the density of X is less than or equal to 2K°.

 The submetrizability of X plays a crucial role in determining the separability
 of C(X) with various different topologies. For example, it is known that Ck(X),
 Cļ{X) and Cß(X) are all separable if and only if X is separably submetrizable
 (see [6], [10] or [11]). To determine the separability of Cp(X) and CT(X) we
 need the following theorem found in [5].

 Theorem 7.1 Every pseudocompact submetrizable Tychonoff space is metriz -
 able and hence compact.

 The spaces CU(X) and C*(X) are separable if and only if X is compact and
 metrizable. In the next theorem we see that is also true for Cß(X).

 Theorem 7.2 For every space X , Cß(X) is separable if and only if X is com-
 pact and metrizable.

 Proof. Because of Theorem 7.1, it suffices to show that if X is not pseudocompact
 then Cß(X) is not separable. So suppose we have A C X and <j> G Bo(X) as
 in Theorem 4.1. Then given any countable family {fn n G N} C C{X ), define

 / A - ► R by f(xn) = /n(xn) -f y There exists a continuous extension F of
 / to X. Then p<f>(F - fn) = 1 for each n, which shows that no countable subset
 of C(X) can be dense in Cß(X). ■

 To get the corresponding characterization for the separability of CT(X ), we
 must assume an additional hypothesis on X.

 Theorem 7.3 Let X be a locally almost a-compact space. Then the following
 are equivalent.

 (a) X is compact and metrizable.

 (b) X is normal and CT(X) is separable.

 (c) X is normal and Cļ(X) is separable.

 Proof. We know that (a) implies (b) and (c). To show that (b) implies (a),
 we need only show that for a normal space X , if X is not pseudocompact then
 CT(X) is not separable. So choose A C X and <f> G Ci(JV) as in Theorem 4.2.
 Then given any countable family {fn n G N} C C(X)} define / A - ► M by
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 f(xn) = fn(xn) + 1. Now the arguments similar to those in Theorem 7.2 show
 that CT(X) is not separable.
 To show that (c) implies (a), suppose X is normal and Cļ(X) is separable.

 Then Cļ(X) is separable, so that X is submetrizable. It remains to show that X
 is pseudocompact. If not, then choose A C X and <j> £ C'(X) as in Theorem 4.2.
 If i A - ► X denotes the inclusion map, then the induced map i* C*(X) - ► C*(A)
 is a surjection. It can be easily shown that í*(V^ř) C Ve where V# e = {/ 6
 C*(X) < e), ve = {f€ C*(X) ll/lloo < e}, ll/Hoo = sup{ |/(aó I x <= X}
 and 0 < e < 1. Since Cļ{A) = C*(i4), it follows that i* is continuous. So C*(^4)
 is separable, and hence A is compact. This contradiction shows that indeed X
 is pseudocompact. ■

 We can establish a variation of Theorem 7.3 where the normality assumption
 on X is dropped by taking X to be locally compact.

 Theorem 7.4 Let X be a locally compact space. Then the following are equiv-
 alent.

 (a) X is compact and metrizable .

 (b) CT( X) is separable.

 (c) Cļ{X) is separable.

 Proof. To show that (b) implies (c), suppose CT( X) is separable. Since X is
 locally compact, Cß(X) < CT(X)> so that Cß(X) is separable. Then by Theorem
 7.2, X is compact and Cļ(X) = CT( X).
 Finally to show that (c) implies (a), suppose Cļ(X) is separable. Since X

 is submetrizable, we need to show that X is pseudocompact. Suppose not, so
 there exists an unbounded / € C(Ar). Then there are sequences {xn} in X and
 {an} and {bn} in M such that for each n, n < an < f(xn) < bn < an+ļ. Since X
 is locally compact, each xn has a compact neighborhood An which is contained
 in f~l({an,bn)). For each n, let <f>n X - ► [0, 1] be continuous so that <j>n{xn) = 1
 and <t>n(X - An) = 0. Then define <¡> X - ► [0, 1] by <1>(x) = <f>n(x) if x G An
 and <t>(x) = 0 otherwise. We see that <f> £ C'(X) since { An n € N} is a discrete
 family in X. Now let i N - ► X be defined by ¿(n) = xn. Then the surjection
 i* Cļ(X) - ► C*(N) is continuous as shown in Theorem 7.3, which leads to a
 contradiction. ■

 The separability of Ca>u( X) has been studied in [5], and this characterization
 is the same as that for CT(X) in Theorem 7.4 except that the local compactness
 is not needed.



 Topologies Between Compact and Uniform Convergence 189

 References

 [1] R. Creighton Buck, Bounded continuous functions on a locally compact
 space , Michigan Math. J. 5 (1958), 95-104.

 [2] R. Engelking, General topology , Polish Scientific Publishers, Warszawa,
 Poland, 1977.

 [3] R. Giles, A generalisation of the strict topology , Trans. Amer. Math. Soc.
 161 (1971), 467-474.

 [4] D. Gulick, The a-compact-open topology and its relatives , Math. Scand. 30
 (1972), 159-176.

 [5] S. Kundu and R. A. McCoy, Topologies between compact and uniform con-
 vergence on function spaces , to appear in Internat. J. Math. & Math. Sci.

 [6] R. A. McCoy and I. Ntantu, Topological properties of spaces of continuous
 functions , Lecture Notes in Mathematics, 1315, Springer- Verlag, Berlin,
 1988.

 [7] J. van Mill, An introduction to ßu), Handbook of set-theoretic topology ,
 North-Holland, Amsterdam, 1984, 503-567.

 [8] A. C. M. van Rooij, Tight functionals and the strict topology , Kyungpook
 Math. J. 7 (1967), 41-43.

 [9] F. D. Sentilles, Bounded continuous functions on a completely regular space,
 Trans. Amer. Math. Soc. 168 (1972), 311-336.

 [10] W. II. Summers, Separablitiy in the strict and substrict topology , Proc.
 Amer. Math. Soc. 35 (1972), 507-514.

 [11] S. Warner, The topology of compact convergence on continuous function
 spaces , Duke Math. J. 25 (1958), 265-282.


	Contents
	p. 176
	p. 177
	p. 178
	p. 179
	p. 180
	p. 181
	p. 182
	p. 183
	p. 184
	p. 185
	p. 186
	p. 187
	p. 188
	p. 189

	Issue Table of Contents
	Real Analysis Exchange, Vol. 18, No. 1 (1992-93) pp. 1-291
	Front Matter
	EDITORIAL MESSAGES [pp. 2-2]
	CONFERENCE ANNOUNCEMENTS [pp. 3-5]
	CONFERENCE REPORTS
	Report on the Summer Symposium in Real Analysis XVI, Acadia University, Wolfville, Nova Scotia, August 13–15, 1992 [pp. 6-11]
	The Fractal Analysis of Products and Projections of Measures [pp. 12-12]
	Generalized Lebesgue Points [pp. 13-14]
	The Problem of Integral–Geometric Uniqueness [pp. 15-16]
	Translates of a Set Which Meet It in a Set of Positive Measure [pp. 17-17]
	Measure Spaces and Division Spaces [pp. 18-18]
	Weighted Inequalities in Function Spaces [pp. 19-20]
	Extreme points and the convexity theorem of A. A. Lyapunov [pp. 21-21]
	Constructions Which Control Dimensions [pp. 22-22]
	Totalization: Newton's Problem and Fourier's Problem [pp. 23-24]
	Stochastic Integrals of Itô and Henstock [pp. 25-25]
	Packing Measures in Different Bases and Probability Theory [pp. 26-27]
	An Introduction to Shell Porosity [pp. 28-29]
	On the Baire Class of E–Derivatives and Extreme E–Derivatives [pp. 30-31]
	On Approximate Peano Derivatives [pp. 32-33]
	More on Intersections of Continuous Functions and Smooth Functions [pp. 34-34]
	Questions Concerning the Inverse Function Theorem [pp. 35-35]
	Decreasing Sequences of σ-Fields [pp. 36-36]
	Baire Domination [pp. 37-37]
	The Mountain Climbers' Problem and the Complexity of Real Continuous Functions [pp. 38-39]
	Symmetric Behavior in Functions [pp. 40-41]
	Dense Extendable Connectivity Functions [pp. 42-42]

	RESEARCH ARTICLES
	Positive Linear Functionals on Spaces of Continuous Functions [pp. 43-51]
	Typical Approximately Continuous Functions Are Surprisingly Thick [pp. 52-62]
	Copson Type Inequalities with Weighted Means [pp. 63-69]
	On the Relative Grid Dimension of Continuous Functions [pp. 70-81]
	A Note on Absolute Nörlund Summability Factors [pp. 82-86]
	Closure of Darboux Graphs [pp. 87-94]
	Basic Convergence Principles for the Kurzweil-Henstock Integral [pp. 95-114]
	On ω-limit Sets of Triangular Maps [pp. 115-130]
	On the Darboux Property of Restricted Functions [pp. 131-138]
	A Note on Real Cliquish Functions [pp. 139-145]
	A Local Characterization of Darboux(B) Functions. The Semicontinuity of Monotone Functions [pp. 146-151]
	Algebraic Properties of ε–continuous Functions [pp. 153-168]
	Derivatives, Continuous Functions and Bounded Lebesgue Functions [pp. 169-175]
	Topologies Between Compact and Uniform Convergence on Function Spaces, II [pp. 176-189]
	Henstock's Condition for Convergence Theorems and Equi-integrability [pp. 190-205]
	On Graphs of Continuous functions [pp. 206-213]
	Quasi-Continuous and Cliquish Selections of Multifunctions on Product Spaces [pp. 214-220]
	The 𝑛-Dimensional Gradient Has the 1-Dimensional Denjoy-Clarkson Property [pp. 221-224]

	INROADS
	Metric Space of Metrics Defined on a Given Set [pp. 225-231]
	Products of Darboux Functions [pp. 232-236]
	On the Sums and Products of Darboux Baire*1 Functions [pp. 237-240]
	On Some Topologies of O'Malley's Type on the Plane [pp. 241-248]
	A Note on Darboux Functions [pp. 249-252]
	On the Descriptive Definition of the Burkill Approximately Continuous Integral [pp. 253-260]
	On the Equivalence of two Convergence Theorems for the Henstock Integral [pp. 261-266]
	On Some Questions of R. Gordon Related to Approximate and Dyadic Henstock Integrals [pp. 267-269]
	Limit of Simply Continuous Function [pp. 270-275]
	Does Every Borel Function Have a Somewhere Continuous Modification? [pp. 276-280]
	Curves, length, fractal dimension [pp. 281-291]

	Back Matter



