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Derivatives, Continuous Functions and Bounded
Lebesgue Functions

It is well-known that the product of a derivative with, say, a continuous
function need not be a derivative. This fact leads naturally to the following
problem: Let Q be a class of derivatives. Characterize the multipliers of €,
i.e. the functions f such that fg is a derivative for each g € Q. This problem
has been solved for various classes Q. (See [F1], [F2], [M1], ... , [M4].) In
this note we describe the multipliers, first, of continuous functions (theorem 7)
and, second, of bounded Lebesgue functions (theorem 12); these multipliers play
an important role in theorem 5.11 in [MW]. It is well-known that the class of
bounded Lebesgue functions is identical with the class of bounded approximately
continuous functions. (The multipliers of all Lebesgue functions are just the
bounded derivatives; see theorem 4.2 in [M4].)

1. Notation. We write, as usual, R = (—00,00). The word function means a
mapping to R. Further we set Rt = (0,00), I = [0,1). The symbol D stands
for the system of all finite derivatives on I. The words measure and measurable
refer to Lebesgue measure in R; the measure of a measurable set S C R will be
denoted by |S|. If z € R and if S is a measurable subset of R, then d(S, z) is
defined as lim(|S N (z — h,z + h)|/2h) (h — 0+) provided that the limit exists.

Symbols like | : f or [ f mean the corresponding Perron or Lebesgue inte-
grals; “integrable” means “Perron integrable”. (We need an integral that inte-
grates every derivative.) If a > b, then, as usual, we set [ : f=—/; f provided
that the last integral exists.

If J is an open interval in R, then C;(J) denotes the class of all functions
with a continuous derivative on J; C; means C;(R).

2. Lemma. Leta,b € R, a < b, J = [a,b]. Let f be integrable on J and let
€ € R*. Then there is a g € Cy such thatg=0 on R\ J,0< g<1 on J and

lf]f—fjfgl<€‘

Proof. There is a § € (0,]J]/2) such that | [¥ f| < &/2, whenever a < z <
y<bandy-z<é Seta=a+6, B=05b—6. Thereisa g € C; such that g=0
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onR\J, ¢ =1o0n(a,pB), g is monotone on (a,a) and on (3,b). By the Second
Mean Value Theorem (see, e.g., [S], p. 246, Theorem (2.6)) there are £ € [a, ]
and 7 € [B,b] such that [* f(1 —g) = ff f fpb fl—-g) = f: f. We see that g

satisfies our requirements.

3. Lemma. Let a,b,J, f be as before and let Q be a number less than fJ |fl-
Then there is a g € Cy such that g=0 on R\ J, |g| <1 on J and [, fg > Q.

Proof. Let V be the variation of an indefinite integral of f on J. Then
f;1fl = V. (This is well-known, if [, |f| or V is finite; hence it holds even if
f,_, |f| = 00.) It follows that there is an € € R* and zo,...,z, € J such that
a=29< T < - < zy, = b and that, setting Ji = [zx—1, 2] and Ax = fh f,
we have Y P _, |Ax| > Q + €. By 2 there are functions g; € C; such that g =0
on R\ Ji, 0 < gr <1onJ; and |Ag — fh for| < €/n. It is easy to see that the
function g = Y ;_, gk sgn Ay satisfies our requirements.

4. Convention. Symbols like limsup f(z), f(z) — 0 etc. will refer to the case
z — 0+, unless something else is obvious from the context.

5. Lemma. Let f be a function such that 1 [ fg — 0 for each g € C1(R¥)
with g(0+) = 0. Then

T
limsup%/o |f] < o0. (1)

Proof. It is easy to see that f is measurable on (0,6) for some § € R¥.
Now suppose that (1) does not hold. Then there are z,,y, € R such that
0< zy < Yn < Tn-1, Yn — 0 and that, setting J, = [z, yn], we have fJ” |f] >
nyn, (n=1,2,...). By 3 there are g, € Cy such that g, =0 on R\ Jy,, |gn| <1
on J, nad f_,” fgn > nyn. Set g =Y oo, gn/n on R¥. Then g € C;(R¥) and
9(0+) = 0. By assumption 1 [ fg — 0. It follows that there are ap,f, € R
such that |an|+ |Ba] = 0 (n — 00), [ f9 = anzn, [J" f9 = Bnyn. Then

[5. £9 < yn(lenl + |Bul). However, f; fg= %[, fgn > yn for each n which is
a contradiction.

6. Proposition. Let f be a measurable function on I. Then the following three
conditions are equivalent:

(i) L J5 fg — 0 for each g € C1(R¥) with g(0+) = 0;
(ii) limsup L [7|f] < oo;

iii) L [T fg — 0 for each measurable function g on I with g(0+) = 0.
z JO
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Proof. The implication (i) = (ii) was proved in 5. The proof of the implica-
tion (ii) = (iii) is left to the reader. The implication (iii) = (i) is obvious.

7. Theorem. Let f € D. Then the following two conditions are equivalent:
(1) fg € D for each function g continuous on I;
(ii) limsup -ii—xf: |fl <oo(y—z,y€l) for eachz € I.

(This follows easily from 6.)

Remark. It follows from 7 that the product of a nonnegative derivative with
a continuous function is always a derivative. However, it is easy to prove this
simple result directly.

On the other hand it is worth mentioning that the product of a Lebesgue
integrable derivative with a continuous function need not be a derivative. (A
Lebesgue integrable derivative need not be the difference of two nonnegative
derivatives.) To see this it suffices to take f(z) = z~!/2sin(1/z), g(z) =
z!/%sin(1/z) (z € (0,1], £(0) = g(0) = 0.

8. Lemma. Let §,A € Rt. Let f be a nonnegative measurable function on
(0,6) such that f: f > 6A. Then there is an z € (0,6/2)] such that f:zf > zA.

Proof. We may choose z = §/2" for some n € {1,2,...}.

9. Lemma. Let f be a measurable function on I. Suppose that

s g ©)
T Jsn(o,z)
for each measurable set S C I with d(S,0) =0. Then
1
s o ®
Sn(0,z)
for every such S and
z
limsupl/ |f] < oo. 4
z Jo

Proof. Let S be as above. Set ¢ = fVO0, T = SN {f > 0}. Since
d(T,0) =0, fSn(O,z) g= fTﬁ(O,x) f and |f| =2g — f, we have (3).

Now suppose that (4) does not hold. Using 8 we find z,, € I such that 0 <
Zp < Zp-1/2 and ff:" |[fl > nz, (n=1,2,..). Set px = (14 k/n), Joi =
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[zn,k-1, Znk]. For each n there isa k € {1,...,n} such that fJ |fl > zn. Let
Lp=Jnk, S= U . It is easy to see that d(S,0) = 0. For z = 2z, we have
fSn(O ) Ifl2 [, |f| > z,, = z/2 so that (3) does not hold. This contradiction

proves (4).

10. Lemma. Let e, 6 € (0,1) and let f be as in 9. Suppose, moreover, that

f06 |fl < 00. For eachc € R and each z € (0,1) set M(c,z) = {t € (0,z);|f(?)| 2
c}. Then there is a c € R such that fM(c’z) |f| < ex for each z € (0,$).

Proof. Suppose that such a ¢ does not exist. By 9 there isa K € R+ such that
JS1fl < Kz for each = € (0,6). Set co = 0, zo = §. We construct by induction
numbers Z,, yn, ¢, as follows: Let z,_; € (0,6] and let ¢,—; € [0,00). There is
a cp € (cn—1+1,00) such that fM(c,.,&) |fl < exn—-1/2. By assumption there is a
Yn € (0,8) such that fM(c,.,y,.) |f] > eyn. Clearly y, < e~! fM(c,.,&) |fl < zn-1/2.
Now we find an z, € (0,y,) such that fs |f| > eyn, where S, = M(cn,8) N
(Zn,Yn). Set S =Un; Sn. Let £, < z < z,_1. Since SN (0,z) C Upw,, Sk and
|fl 2 cx 2 k on Sk, we have |SN (0, :c)l < S 1fl/n < Kz/n. Thus d(S,0) = 0.
However, fSn(o o 12 [s |f] > eyn which contradicts (3).

11. Proposition. Let f be a measurable function on I. Then the following
four conditions are equivalent:

(i) L[5 fg — 0 for each function g bounded and continuous on (0,1)] with
lim ap g(z) = 0;

(i1) %fSn(O,z) f — 0 for each measurable set S C I with d(S,0) = 0;

(iii) there is @ monotone function ¢ on [0,00) such that p(0) = 0, ¢(t)/t —
00 (t — 00) and limsup L [ po|f]| < oo;

(iv) %f: fg — 0 for each function g bounded and measurable on I with
lim ap g(z) = 0.

Proof. Suppose that (i) holds and let S be as in (ii). It follows from 5 that

fo |f] < oo for some § € (0,1). Let h be the characteristic function of S. It is
easy to construct a function g continuous on (0, 1] such that 0 < g < 1 and that

[ asimla-n—o. %)

Since L [Fh — 0, we have also L f*g — 0 whence lim ap g(z) = 0. By
assumption L [F fg — 0 so that, by (5), L [7 fh — 0. This proves (ii).
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Suppose that (ii) holds. By 9 there is a § € (0,1) such that f06 |fl < oo.
Choose numbers ¢, € (0,1) such that Y ;> nen, < 1.

Set co = 0. According to 10 there are ¢, € R such that ¢, > ¢,—1+1 and that
St (cn ) |f] S €nz for each z € (0,6) (n =1,2,...). Fort € [cn, cny1) set (t) =
nt (n =0,1,...). Nowlet z € (0,6). Define A, = {t € (0,z); cn < |f()] <
cn+1}. Clearly A, C M(cn,z), po|f| = n|f| on Ap and (0,z) = Unrq An.
Hence [ po|f| <3 ol, nfM(c,.,z') |fl < 23 oo, nen < z. This proves (iii).

Suppose that (iii) holds and let g be as in (iv). There is a § € (0,1) and
A, B € R¥ such that |g| < A on I and that [ o |f| < Bz for each z € (0, §).
Let ¢ € Rt and let @ = AB/e. There is a K € Rt such that ¢(v) > Qv for
each v € (K,00). If |f(t)] > K, then |f(t)] < (If(1)])/Q. Thus | [5 fgl <
K [ lgl+ %f; @ o |f| whence limsup|L [ fg| < AB/Q = e. This proves (iv).

It is obvious that (i) follows from (iv). This completes the proof.

12. Theorem. Let f € D. Then the following three conditions are equivalent:

(i) For each z € I and each measurable set S C I with d(S,z) = 0 we have
Ilesn(z-h,z+h) f—=0(h—0+);

(ii) for each z € I there is a monotone function ¢ on [0,00) such that p(0) =
0, ¢(t)/t — oo(t — o0) and

lim sup

1 /”
olf|] <oo(y—z,yel)
y—z,“’ |f] ( )

(i) fg € D for each bounded Lebesgue function g.

(This follows easily from 11.)

13. Remark. Theorem 12 characterizes multipliers of bounded Lebesgue func-
tions. Now we would like to get an idea about the “size” of this system; let us
denote it by M. It is easy to prove that the product of a Lebesgue function with
a bounded derivative is always a derivative; thus all Lebesgue functions are in
M. From 12 we see that M contains, for example, every derivative f such that
limsup y_Lz [ f? < oo (y — z,y € I) for each z € I. Proposition 5.8 in [MW]
says that an approximately continuous function is in M if and only if it is a
Lebesgue function.

Now let E be the vector space generated by nonnegative derivatives. (It is
easy to see that a derivative f is in E if and only if |f| < g for some g € D.)
It has already been mentioned that each nonnegative derivative (and so each
element of E) is a multiplier of continuous functions. It may interest the reader
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that we have neither E C M nor M C E. To show that E ¢ M it suffices
to construct functions f and g such that f 2 0and 0 < g < 1lon I, f and
g are continuous on (0,1], f € D, f(0) = 1, ¢(0) = 0 = lim ap g(z) and
that f(z) = 0, whenever z € (0,1] and g(z) < 1. Then fg = f on (0, 1] while
(f9)(0) = 0 so that fg ¢ D, f € E\ M. To show that M ¢ E is not so easy.
We shall construct an f € M \ E in 15. First we prove a simple lemma.

14. Lemma. Let f,g be measurable functions on I, |f| < g. Let Q €
R, L [F9g—Q. Letc € (1,00). Then

limsup 1 111 < Q.

Proof. Set G(z) = [; g. Then L [**|f| < L(G(cz) — G(z)) — (c - 1)Q.

15. Example. There is a function f € D\ E such that f is continuous on (0, 1]
and limsup L [* 2 < oo (hence f € M).

Proof. Let F be a function continuous and decreasing on (0, 1] such that
F(0+) = 00, F(1) =1 and fol F? < 00. Set A = fol F. Let n be a positive
even number. Let z; be numbers such that 0 = 29 < 2; < -+ < 2, =
1, f::-; F = A/n. Let yi, z; be numbers such that f::_l F = f;" F =1/n%
Since A > 1 and n 2 2, we have % < 4 so that 241 < g < 2z < k.
Let gr be a function continuous on [zx_1,zx] such that 0 < g < F there,
gk(zk-1 = gr(zx) = 0, ge = Fon [yx, z), [2F gx = [* gx = 1/2n% Now we
define a function F, on I setting F,, = gx(—1)¥~! on [z;_;, z] (k=1,...,n). It
is easy to see that F, is continuous on I, |F,| < F, f::_z Fo=0(k=2,...,n)
and 0 < [ Fn < A/n for each z € I. Let V,, = {z € I;|Fp(z)| < F(2)}, Wan =
Ur=1((zk-1,y&) U (2x, z&)). Since V,, C W, we have an F<2n~2.n=2/n.

Now set 2z, = 2=F (k = 1,2,...). Define a function f on I setting f(0) = 0
and f(z) = Far((z—2x)/zk) for z € (zi, 22). Forany such 2z we have 0 < f:‘ f<
21 A/2k. Clearly fi’" f2<z [, F?and fi‘" f =0. Hence limsup 1 [* f2 < o0
and 1 [* f — 0. Since f is continuous on (0, 1], we have, by 12, f € M.

Let B € (1,00). There is a b € (0,1) such that F(b) = B. Set vx = 2;(1+b).
(Hence vi — 2z = z¢b.) Then [*|f| = z f: |Fa|. Define Sy = (0,5) \ Vax.
Obviously |Sk| 2 b — |Vax|; since F 2 1, we have |Voi| < fv,,‘F < 1/k so
that |Si| 2 b— 1/k. Further [J|Foe| 2 fg |Fael = fs, F 2 |Se|F(b) 2 (b -
1/k)B, [* £ 2 z£(b—1/k)B = (vi — 2)(1~ (kb)~!)B, liminf 21— [1*|f| 2

Up—2x Y2

B(k — 00). It follows from 14 that there is no g € D with |f| < g. Hence f ¢ E.
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