Jan Marík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.

Derivatives, Continuous Functions and Bounded Lebesgue Functions

It is well-known that the product of a derivative with, say, a continuous function need not be a derivative. This fact leads naturally to the following problem: Let Ω be a class of derivatives. Characterize the multipliers of Ω, i.e. the functions f such that $f g$ is a derivative for each $g \in \Omega$. This problem has been solved for various classes Ω. (See [F1], [F2], [M1], ... , [M4].) In this note we describe the multipliers, first, of continuous functions (theorem 7) and, second, of bounded Lebesgue functions (theorem 12); these multipliers play an important role in theorem 5.11 in [MW]. It is well-known that the class of bounded Lebesgue functions is identical with the class of bounded approximately continuous functions. (The multipliers of all Lebesgue functions are just the bounded derivatives; see theorem 4.2 in [M4].)

1. Notation. We write, as usual, $\mathbb{R}=(-\infty, \infty)$. The word function means a mapping to \mathbb{R}. Further we set $\mathbb{R}^{+}=(0, \infty), I=[0,1]$. The symbol D stands for the system of all finite derivatives on I. The words measure and measurable refer to Lebesgue measure in \mathbb{R}; the measure of a measurable set $S \subset \mathbb{R}$ will be denoted by $|S|$. If $x \in \mathbb{R}$ and if S is a measurable subset of \mathbb{R}, then $d(S, x)$ is defined as $\lim (|S \cap(x-h, x+h)| / 2 h)(h \rightarrow 0+)$ provided that the limit exists.

Symbols like $\int_{a}^{b} f$ or $\int_{S} f$ mean the corresponding Perron or Lebesgue integrals; "integrable" means "Perron integrable". (We need an integral that integrates every derivative.) If $a>b$, then, as usual, we set $\int_{a}^{b} f=-\int_{b}^{a} f$ provided that the last integral exists.

If J is an open interval in \mathbb{R}, then $C_{1}(J)$ denotes the class of all functions with a continuous derivative on $J ; C_{1}$ means $C_{1}(\mathbb{R})$.
2. Lemma. Let $a, b \in \mathbb{R}, a<b, J=[a, b]$. Let f be integrable on J and let $\varepsilon \in \mathbb{R}^{+}$. Then there is a $g \in C_{1}$ such that $g=0$ on $\mathbb{R} \backslash J, 0 \leq g \leq 1$ on J and $\left|\int_{J} f-\int_{J} f g\right|<\varepsilon$.

Proof. There is a $\delta \in(0,|J| / 2)$ such that $\left|\int_{x}^{y} f\right|<\varepsilon / 2$, whenever $a \leq x<$ $y \leq b$ and $y-x \leq \delta$. Set $\alpha=a+\delta, \beta=b-\delta$. There is a $g \in C_{1}$ such that $g=0$
on $\mathbb{R} \backslash J, g=1$ on $(\alpha, \beta), g$ is monotone on (a, α) and on (β, b). By the Second Mean Value Theorem (see, e.g., [S], p. 246, Theorem (2.6)) there are $\xi \in[a, \alpha]$ and $\eta \in[\beta, b]$ such that $\int_{a}^{\alpha} f(1-g)=\int_{a}^{\xi} f, \int_{\beta}^{b} f(1-g)=\int_{\eta}^{b} f$. We see that g satisfies our requirements.
3. Lemma. Let a, b, J, f be as before and let Q be a number less than $\int_{J}|f|$. Then there is a $g \in C_{1}$ such that $g=0$ on $\mathbb{R} \backslash J,|g| \leq 1$ on J and $\int_{J} f g>Q$.

Proof. Let V be the variation of an indefinite integral of f on J. Then $\int_{J}|f|=V$. (This is well-known, if $\int_{J}|f|$ or V is finite; hence it holds even if $\int_{J}|f|=\infty$.) It follows that there is an $\varepsilon \in \mathbb{R}^{+}$and $x_{0}, \ldots, x_{n} \in J$ such that $a=x_{0}<x_{1}<\cdots<x_{n}=b$ and that, setting $J_{k}=\left[x_{k-1}, x_{k}\right]$ and $A_{k}=\int_{J_{k}} f$, we have $\sum_{k=1}^{n}\left|A_{k}\right|>Q+\varepsilon$. By 2 there are functions $g_{k} \in C_{1}$ such that $g_{k}=0$ on $\mathbb{R} \backslash J_{k}, 0 \leq g_{k} \leq 1$ on J_{k} and $\left|A_{k}-\int_{J_{k}} f g_{k}\right|<\varepsilon / n$. It is easy to see that the function $g=\sum_{k=1}^{n} g_{k} \operatorname{sgn} A_{k}$ satisfies our requirements.
4. Convention. Symbols like $\lim \sup f(x), f(x) \rightarrow 0$ etc. will refer to the case $x \rightarrow 0+$, unless something else is obvious from the context.
5. Lemma. Let f be a function such that $\frac{1}{x} \int_{0}^{x} f g \rightarrow 0$ for each $g \in C_{1}\left(\mathbb{R}^{+}\right)$ with $g(0+)=0$. Then

$$
\begin{equation*}
\lim \sup \frac{1}{x} \int_{0}^{x}|f|<\infty \tag{1}
\end{equation*}
$$

Proof. It is easy to see that f is measurable on $(0, \delta)$ for some $\delta \in \mathbb{R}^{+}$. Now suppose that (1) does not hold. Then there are $x_{n}, y_{n} \in \mathbb{R}$ such that $0<x_{n}<y_{n}<x_{n-1}, y_{n} \rightarrow 0$ and that, setting $J_{n}=\left[x_{n}, y_{n}\right]$, we have $\int_{J_{n}}|f|>$ $n y_{n}(n=1,2, \ldots)$. By 3 there are $g_{n} \in C_{1}$ such that $g_{n}=0$ on $\mathbb{R} \backslash J_{n},\left|g_{n}\right| \leq 1$ on J_{n} nad $\int_{J_{n}} f g_{n}>n y_{n}$. Set $g=\sum_{n=1}^{\infty} g_{n} / n$ on \mathbb{R}^{+}. Then $g \in C_{1}\left(\mathbb{R}^{+}\right)$and $g(0+)=0$. By assumption $\frac{1}{x} \int_{0}^{x} f g \rightarrow 0$. It follows that there are $\alpha_{n}, \beta_{n} \in \mathbb{R}$ such that $\left|\alpha_{n}\right|+\left|\beta_{n}\right| \rightarrow 0 \quad(n \rightarrow \infty), \int_{0}^{x_{n}} f g=\alpha_{n} x_{n}, \int_{0}^{y_{n}} f g=\beta_{n} y_{n}$. Then $\int_{J_{n}} f g \leq y_{n}\left(\left|\alpha_{n}\right|+\left|\beta_{n}\right|\right)$. However, $\int_{J_{n}} f g=\frac{1}{n} \int_{J_{n}} f g_{n}>y_{n}$ for each n which is a contradiction.
6. Proposition. Let f be a measurable function on I. Then the following three conditions are equivalent:
(i) $\frac{1}{x} \int_{0}^{x} f g \rightarrow 0$ for each $g \in C_{1}\left(\mathbb{R}^{+}\right)$with $g(0+)=0$;
(ii) $\lim \sup \frac{1}{x} \int_{0}^{x}|f|<\infty$;
(iii) $\frac{1}{x} \int_{0}^{x} f g \rightarrow 0$ for each measurable function g on I with $g(0+)=0$.

Proof. The implication (i) \Rightarrow (ii) was proved in 5 . The proof of the implication (ii) \Rightarrow (iii) is left to the reader. The implication (iii) \Rightarrow (i) is obvious.
7. Theorem. Let $f \in D$. Then the following two conditions are equivalent:
(i) $f g \in D$ for each function g continuous on I;
(ii) $\limsup \frac{1}{y-x} \int_{x}^{y}|f|<\infty(y \rightarrow x, y \in I)$ for each $x \in I$.
(This follows easily from 6.)

Remark. It follows from 7 that the product of a nonnegative derivative with a continuous function is always a derivative. However, it is easy to prove this simple result directly.

On the other hand it is worth mentioning that the product of a Lebesgue integrable derivative with a continuous function need not be a derivative. (A Lebesgue integrable derivative need not be the difference of two nonnegative derivatives.) To see this it suffices to take $f(x)=x^{-1 / 2} \sin (1 / x), g(x)=$ $x^{1 / 2} \sin (1 / x)(x \in(0,1], f(0)=g(0)=0$.
8. Lemma. Let $\delta, A \in \mathbb{R}^{+}$. Let f be a nonnegative measurable function on $(0, \delta)$ such that $\int_{0}^{\delta} f>\delta A$. Then there is an $x \in(0, \delta / 2]$ such that $\int_{x}^{2 x} f>x A$.

Proof. We may choose $x=\delta / 2^{n}$ for some $n \in\{1,2, \ldots\}$.
9. Lemma. Let f be a measurable function on I. Suppose that

$$
\begin{equation*}
\frac{1}{x} \int_{S \cap(0, x)} f \rightarrow 0 \tag{2}
\end{equation*}
$$

for each measurable set $S \subset I$ with $d(S, 0)=0$. Then

$$
\begin{equation*}
\frac{1}{x} \int_{S \cap(0, x)}|f| \rightarrow 0 \tag{3}
\end{equation*}
$$

for every such S and

$$
\begin{equation*}
\limsup \frac{1}{x} \int_{0}^{x}|f|<\infty \tag{4}
\end{equation*}
$$

Proof. Let S be as above. Set $g=f \vee 0, T=S \cap\{f>0\}$. Since $d(T, 0)=0, \int_{S \cap(0, x)} g=\int_{T \cap(0, x)} f$ and $|f|=2 g-f$, we have (3).

Now suppose that (4) does not hold. Using 8 we find $x_{n} \in I$ such that $0<$ $x_{n}<x_{n-1} / 2$ and $\int_{x_{n}}^{2 x_{n}}|f|>n x_{n}(n=1,2, \ldots)$. Set $x_{n k}=x_{n}(1+k / n), J_{n k}=$
$\left[x_{n, k-1}, x_{n k}\right]$. For each n there is a $k \in\{1, \ldots, n\}$ such that $\int_{J_{n k}}|f|>x_{n}$. Let $L_{n}=J_{n k}, S=\bigcup_{n=1}^{\infty} L_{n}$. It is easy to see that $d(S, 0)=0$. For $x=2 x_{n}$ we have $\int_{S \cap(0, x)}|f| \geqq \int_{L_{n}}|f|>x_{n}=x / 2$ so that (3) does not hold. This contradiction proves (4).
10. Lemma. Let $\varepsilon, \delta \in(0,1)$ and let f be as in 9. Suppose, moreover, that $\int_{0}^{\delta}|f|<\infty$. For each $c \in \mathbb{R}$ and each $x \in(0,1)$ set $M(c, x)=\{t \in(0, x) ;|f(t)| \geqq$ $c\}$. Then there is a $c \in \mathbb{R}$ such that $\int_{M(c, x)}|f| \leq \varepsilon x$ for each $x \in(0, \delta)$.

Proof. Suppose that such a c does not exist. By 9 there is a $K \in \mathbb{R}^{+}$such that $\int_{0}^{x}|f|<K x$ for each $x \in(0, \delta)$. Set $c_{0}=0, x_{0}=\delta$. We construct by induction numbers x_{n}, y_{n}, c_{n} as follows: Let $x_{n-1} \in(0, \delta]$ and let $c_{n-1} \in[0, \infty)$. There is a $c_{n} \in\left(c_{n-1}+1, \infty\right)$ such that $\int_{M\left(c_{n}, \delta\right)}|f|<\varepsilon x_{n-1} / 2$. By assumption there is a $y_{n} \in(0, \delta)$ such that $\int_{M\left(c_{n}, y_{n}\right)}|f|>\varepsilon y_{n}$. Clearly $y_{n}<\varepsilon^{-1} \int_{M\left(c_{n}, \delta\right)}|f|<x_{n-1} / 2$. Now we find an $x_{n} \in\left(0, y_{n}\right)$ such that $\int_{S_{n}}|f|>\varepsilon y_{n}$, where $S_{n}=M\left(c_{n}, \delta\right) \cap$ $\left(x_{n}, y_{n}\right)$. Set $S=\bigcup_{n=1}^{\infty} S_{n}$. Let $x_{n}<x \leq x_{n-1}$. Since $S \cap(0, x) \subset \bigcup_{k=n}^{\infty} S_{k}$ and $|f| \geqq c_{k} \geqq k$ on S_{k}, we have $|S \cap(0, x)| \leq \int_{0}^{x}|f| / n<K x / n$. Thus $d(S, 0)=0$. However, $\int_{S \cap\left(0, y_{n}\right)}|f| \geqq \int_{S_{n}}|f|>\varepsilon y_{n}$ which contradicts (3).
11. Proposition. Let f be a measurable function on I. Then the following four conditions are equivalent:
(i) $\frac{1}{x} \int_{0}^{x} f g \rightarrow 0$ for each function g bounded and continuous on $(0,1]$ with $\lim \operatorname{ap} g(x)=0$;
(ii) $\frac{1}{x} \int_{S \cap(0, x)} f \rightarrow 0$ for each measurable set $S \subset I$ with $d(S, 0)=0$;
(iii) there is a monotone function φ on $[0, \infty)$ such that $\varphi(0)=0, \varphi(t) / t \rightarrow$ $\infty(t \rightarrow \infty)$ and $\lim \sup \frac{1}{x} \int_{0}^{x} \varphi \circ|f|<\infty ;$
(iv) $\frac{1}{x} \int_{0}^{x} f g \rightarrow 0$ for each function g bounded and measurable on I with $\lim \operatorname{ap} g(x)=0$.

Proof. Suppose that (i) holds and let S be as in (ii). It follows from 5 that $\int_{0}^{\delta}|f|<\infty$ for some $\delta \in(0,1)$. Let h be the characteristic function of S. It is easy to construct a function g continuous on (0,1] such that $0 \leq g \leq 1$ and that

$$
\begin{equation*}
\frac{1}{x} \int_{0}^{x}(1+|f|)|g-h| \rightarrow 0 \tag{5}
\end{equation*}
$$

Since $\frac{1}{x} \int_{0}^{x} h \rightarrow 0$, we have also $\frac{1}{x} \int_{0}^{x} g \rightarrow 0$ whence lim ap $g(x)=0$. By assumption $\frac{1}{x} \int_{0}^{x} f g \rightarrow 0$ so that, by (5), $\frac{1}{x} \int_{0}^{x} f h \rightarrow 0$. This proves (ii).

Suppose that (ii) holds. By 9 there is a $\delta \in(0,1)$ such that $\int_{0}^{\delta}|f|<\infty$. Choose numbers $\varepsilon_{n} \in(0,1)$ such that $\sum_{n=1}^{\infty} n \varepsilon_{n} \leq 1$.

Set $c_{0}=0$. According to 10 there are $c_{n} \in \mathbb{R}$ such that $c_{n}>c_{n-1}+1$ and that $\int_{M\left(c_{n}, x\right)}|f| \leq \varepsilon_{n} x$ for each $x \in(0, \delta)(n=1,2, \ldots)$. For $t \in\left[c_{n}, c_{n+1}\right)$ set $\varphi(t)=$ $n t(n=0,1, \ldots)$. Now let $x \in(0, \delta)$. Define $A_{n}=\left\{t \in(0, x) ; c_{n} \leq|f(t)|<\right.$ $\left.c_{n+1}\right\}$. Clearly $A_{n} \subset M\left(c_{n}, x\right), \varphi \circ|f|=n|f|$ on A_{n} and $(0, x)=\bigcup_{n=0}^{\infty} A_{n}$. Hence $\int_{0}^{x} \varphi \circ|f| \leq \sum_{n=0}^{\infty} n \int_{M\left(c_{n}, x\right)}|f| \leq x \sum_{n=1}^{\infty} n \varepsilon_{n} \leq x$. This proves (iii).

Suppose that (iii) holds and let g be as in (iv). There is a $\delta \in(0,1)$ and $A, B \in \mathbb{R}^{+}$such that $|g|<A$ on I and that $\int_{0}^{x} \varphi \circ|f|<B x$ for each $x \in(0, \delta)$. Let $\varepsilon \in \mathbb{R}^{+}$and let $Q=A B / \varepsilon$. There is a $K \in \mathbb{R}^{+}$such that $\varphi(v)>Q v$ for each $v \in(K, \infty)$. If $|f(t)|>K$, then $|f(t)|<\varphi(|f(t)|) / Q$. Thus $\left|\int_{0}^{x} f g\right| \leq$ $K \int_{0}^{x}|g|+\frac{A}{Q} \int_{0}^{x} \varphi \circ|f|$ whence $\lim \sup \left|\frac{1}{x} \int_{0}^{x} f g\right| \leq A B / Q=\varepsilon$. This proves (iv).

It is obvious that (i) follows from (iv). This completes the proof.
12. Theorem. Let $f \in D$. Then the following three conditions are equivalent:
(i) For each $x \in I$ and each measurable set $S \subset I$ with $d(S, x)=0$ we have $\frac{1}{h} \int_{S \cap(x-h, x+h)} f \rightarrow 0(h \rightarrow 0+) ;$
(ii) for each $x \in I$ there is a monotone function φ on $[0, \infty)$ such that $\varphi(0)=$ $0, \varphi(t) / t \rightarrow \infty(t \rightarrow \infty)$ and

$$
\lim \sup \frac{1}{y-x} \int_{x}^{y} \varphi \circ|f|<\infty(y \rightarrow x, y \in I)
$$

(iii) $f g \in D$ for each bounded Lebesgue function g.
(This follows easily from 11.)
13. Remark. Theorem 12 characterizes multipliers of bounded Lebesgue functions. Now we would like to get an idea about the "size" of this system; let us denote it by M. It is easy to prove that the product of a Lebesgue function with a bounded derivative is always a derivative; thus all Lebesgue functions are in M. From 12 we see that M contains, for example, every derivative f such that $\lim \sup \frac{1}{y-x} \int_{x}^{y} f^{2}<\infty(y \rightarrow x, y \in I)$ for each $x \in I$. Proposition 5.8 in [MW] says that an approximately continuous function is in M if and only if it is a Lebesgue function.

Now let E be the vector space generated by nonnegative derivatives. (It is easy to see that a derivative f is in E if and only if $|f| \leq g$ for some $g \in D$.) It has already been mentioned that each nonnegative derivative (and so each element of E) is a multiplier of continuous functions. It may interest the reader
that we have neither $E \subset M$ nor $M \subset E$. To show that $E \not \subset M$ it suffices to construct functions f and g such that $f \geqq 0$ and $0 \leq g \leq 1$ on I, f and g are continuous on $(0,1], f \in D, f(0)=1, g(0)=0=\lim$ ap $g(x)$ and that $f(x)=0$, whenever $x \in(0,1]$ and $g(x)<1$. Then $f g=f$ on $(0,1]$ while $(f g)(0)=0$ so that $f g \notin D, f \in E \backslash M$. To show that $M \not \subset E$ is not so easy. We shall construct an $f \in M \backslash E$ in 15 . First we prove a simple lemma.
14. Lemma. Let f, g be measurable functions on $I,|f| \leq g$. Let $Q \in$ $\mathbb{R}, \frac{1}{x} \int_{0}^{x} g \rightarrow Q$. Let $c \in(1, \infty)$. Then

$$
\lim \sup \frac{1}{(c-1) x} \int_{x}^{c x}|f| \leq Q
$$

$$
\text { Proof. Set } G(x)=\int_{0}^{x} g . \text { Then } \frac{1}{x} \int_{x}^{c x}|f| \leq \frac{1}{x}(G(c x)-G(x)) \rightarrow(c-1) Q .
$$

15. Example. There is a function $f \in D \backslash E$ such that f is continuous on $(0,1]$ and limsup $\frac{1}{x} \int_{0}^{x} f^{2}<\infty$ (hence $f \in M$).

Proof. Let F be a function continuous and decreasing on $(0,1]$ such that $F(0+)=\infty, F(1)=1$ and $\int_{0}^{1} F^{2}<\infty$. Set $A=\int_{0}^{1} F$. Let n be a positive even number. Let x_{k} be numbers such that $0=x_{0}<x_{1}<\cdots<x_{n}=$ $1, \int_{x_{k-1}}^{x_{k}} F=A / n$. Let y_{k}, z_{k} be numbers such that $\int_{x_{k-1}}^{y_{k}} F=\int_{z_{k}}^{x_{k}} F=1 / n^{2}$. Since $A>1$ and $n \geqq 2$, we have $\frac{2}{n^{2}}<\frac{A}{n}$ so that $x_{k-1}<y_{k}<z_{k}<x_{k}$. Let g_{k} be a function continuous on $\left[x_{k-1}, x_{k}\right]$ such that $0 \leq g_{k} \leq F$ there, $g_{k}\left(x_{k-1}=g_{k}\left(x_{k}\right)=0, g_{k}=F\right.$ on $\left[y_{k}, z_{k}\right], \int_{x_{k-1}}^{y_{k}} g_{k}=\int_{z_{k}}^{x_{k}} g_{k}=1 / 2 n^{2}$. Now we define a function F_{n} on I setting $F_{n}=g_{k}(-1)^{k-1}$ on $\left[x_{k-1}, x_{k}\right](k=1, \ldots, n)$. It is easy to see that F_{n} is continuous on $I,\left|F_{n}\right| \leq F, \int_{x_{k-2}}^{x_{k}} F_{n}=0(k=2, \ldots, n)$ and $0 \leq \int_{0}^{x} F_{n}<A / n$ for each $x \in I$. Let $V_{n}=\left\{x \in I ;\left|F_{n}(x)\right|<F(x)\right\}, W_{n}=$ $\bigcup_{k=1}^{n}\left(\left(x_{k-1}, y_{k}\right) \cup\left(z_{k}, x_{k}\right)\right)$. Since $V_{n} \subset W_{n}$, we have $\int_{V_{n}} F \leq 2 n^{-2} \cdot n=2 / n$.

Now set $z_{k}=2^{-k}(k=1,2, \ldots)$. Define a function f on I setting $f(0)=0$ and $f(x)=F_{2 k}\left(\left(x-z_{k}\right) / z_{k}\right)$ for $x \in\left(z_{k}, 2 z_{k}\right]$. For any such x we have $0 \leq \int_{z_{k}}^{x} f \leq$ $z_{k} A / 2 k$. Clearly $\int_{z_{k}}^{2 z_{k}} f^{2} \leq z_{k} \int_{I} F^{2}$ and $\int_{z_{k}}^{2 z_{k}} f=0$. Hence limsup $\frac{1}{x} \int_{0}^{x} f^{2}<\infty$ and $\frac{1}{x} \int_{0}^{x} f \rightarrow 0$. Since f is continuous on (0,1], we have, by $12, f \in M$.

Let $B \in(1, \infty)$. There is a $b \in(0,1)$ such that $F(b)=B$. Set $v_{k}=z_{k}(1+b)$. (Hence $v_{k}-z_{k}=z_{k} b$.) Then $\int_{z_{k}}^{v_{k}}|f|=z_{k} \int_{0}^{b}\left|F_{2 k}\right|$. Define $S_{k}=(0, b) \backslash V_{2 k}$. Obviously $\left|S_{k}\right| \geqq b-\left|V_{2 k}\right|$; since $F \geqq 1$, we have $\left|V_{2 k}\right| \leq \int_{V_{2 k}} F \leq 1 / k$ so that $\left|S_{k}\right| \geqq b-1 / k$. Further $\int_{0}^{b}\left|F_{2 k}\right| \geqq \int_{S_{k}}\left|F_{2 k}\right|=\int_{S_{k}} F \geqq\left|S_{k}\right| F(b) \geqq(b-$ $1 / k) B, \int_{z_{k}}^{v_{k}}|f| \geqq z_{k}(b-1 / k) B=\left(v_{k}-z_{k}\right)\left(1-(k b)^{-1}\right) B, \liminf \frac{1}{v_{k}-z_{k}} \int_{z_{k}}^{v_{k}}|f| \geqq$ $B(k \rightarrow \infty)$. It follows from 14 that there is no $g \in D$ with $|f| \leq g$. Hence $f \notin E$.

References

[F1] R.J. Fleissner, Distant bounded variation and products of derivatives, Fund. Math. 94 (1977), 1-11.
[F2] \qquad Multiplication and the fundamental theorem of calculus: A survey, Real Analysis Exchange, Vol. 2, No. 1, 1976, 7-34.
[M1] J. Mařík, Multipliers of summable derivatives, Real Analysis Exchange, Vol. 8, No. 2 (1982-83), 486-493.
[M2] \qquad Some properties of multipliers of summable derivatives, Real Analysis Exchange, Vol. 9, No. 1 (1983-84), 251-257.
[M3] \qquad , Multipliers of nonnegative derivatives, Real Analysis Exchange, Vol. 9, No. 1 (1983-84), 258-272.
[M4] \qquad , Transformation and multiplication of derivatives, Contemporary Mathematics 42 (1985), 119-134.
[MW] J. Mařík and C.E. Weil, Sums of powers of derivatives, Proceedings of the Amer. Math. Soc., Vol. 112, No. 3, 1991, 807-817.
[S] S. Saks, Theory of the integral, Dover Publications, 1964.

