
 Real Analysis Exchange
 Vol. 18(1), 1992/93, pp. 169-175

 Jan Mařík,  Department of Mathematics, Michigan State University, East Lans-
 ing, Michigan 48824.

 Derivatives, Continuous Functions and Bounded
 Lebesgue Functions

 It is well-known that the product of a derivative with, say, a continuous
 function need not be a derivative. This fact leads naturally to the following
 problem: Let Q be a class of derivatives. Characterize the multipliers of ÍÍ,
 i.e. the functions / such that fg is a derivative for each g E il. This problem
 has been solved for various classes Q. (See [Fl], [F2], [Ml], ... , [M4].) In
 this note we describe the multipliers, first, of continuous functions (theorem 7)
 and, second, of bounded Lebesgue functions (theorem 12); these multipliers play
 an important role in theorem 5.11 in [MWj. It is well-known that the class of
 bounded Lebesgue functions is identical with the class of bounded approximately
 continuous functions. (The multipliers of all Lebesgue functions are just the
 bounded derivatives; see theorem 4.2 in [M4].)

 1. Notation. We write, as usual, M = (-00,00). The word function means a
 mapping to R. Further we set M+ = (0,oo), I = [0, 1]. The symbol D stands
 for the system of all finite derivatives on I. The words measure and measurable
 refer to Lebesgue measure in IR; the measure of a measurable set S C M will be
 denoted by 'S'. If x G M and if S is a measurable subset of M, then d(S, x) is
 defined as lim(|S fl (x - A, x + h)'/2h) ( h - ► 0+) provided that the limit exists.

 Symbols like J * / or fsf mean the corresponding Perron or Lebesgue inte-
 grals; "integrable" means "Perron integrable". (We need an integral that inte-

 grates every derivative.) If a > 6, then, as usual, we set f*f=z- J® / provided
 that the last integral exists.

 If J is an open interval in R, then C'{J) denotes the class of all functions
 with a continuous derivative on J; C' means Ci(M).

 2. Lemma. Let a, 6 € M, a < 6, J = [a, 6]. Let f be integrable on J and let
 e € M+. Then there is a g £ C' such that g = 0 on M ' J, 0 < g < 1 on J and

 Proof. There is a 6 6 (0, |«7|/2) such that | f* f' < e /2, whenever a < x <
 y < b and y - x <6. Set a = a + ¿, /? = 6 - 6. There is a g € C' such that g = 0
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 on M ' «7, g = 1 on (a, /?), is monotone on (a, a) and on (/?, 6). By the Second
 Mean Value Theorem (see, e.g., [S], p. 246, Theorem (2.6)) there are £ G [a,»]

 and T) £ [ß, 6] such that f(l - g) = /f /, /(1 - p) = /• We see that g
 satisfies our requirements.

 3. Lemma. Let a^b^J^f be as before and let Q be a number less than fj ' f'.
 Then there is a g £ C' such that g = 0 on M ' J, 'g' < 1 on J and fj fg > Q.

 Proof. Let V be the variation of an indefinite integral of / on J. Then
 f l/l = V. (This is well-known, if fj |/| or V is finite; hence it holds even if
 j j j/j = oo.) It follows that there is an e G M+ and xo , . . .,xn G J such that
 a = x0 < xi < • • • < xn = b and that, setting J* = [xjfe-i, £*] and Ak = fJk /,
 we have J2k=i > Q + €- 2 there are functions gk G Ci such that <7* = 0
 onl' Jjk, 0 < gk < 1 on J* and 'Ak - fj fgk ' < e/n> It is easy to see that the
 function g = Ylk=i 9k sSn satisfies our requirements.

 4. Convention. Symbols like lim sup /(x), f(x) 0 etc. will refer to the case
 X - ► 0+ , unless something else is obvious from the context.

 5. Lemma. Let f be a function such that ^ f* f g - ► 0 for each g G Ci(M+)
 with <7(0+) = 0. Then

 lim sup- f l/l < 00. (1)
 X Jo

 Proof. It is easy to see that / is measurable on (0,¿) for some 6 G M+.
 Now suppose that (1) does not hold. Then there are xniyn G M such that
 0 < xn < yn < z„_ 1, yn - ► 0 and that, setting Jn = [arn,yn], we have fJn ' f' >
 nyn (n = 1,2,.. .). By 3 there are gn G C' such that gn = 0 on M' Jn, |^n| < 1
 on Jn nad fJn fgn > nyn. Set g = Y^=i gn/n on M+. Then g G Ci(M+) and
 <7(0+) = 0. By assumption £ f* fg - ► 0. It follows that there are an,/?n G M
 such that |c*n| + 'ßn' -> 0 (n -► 00), /*n fg = anxni /0yn fg = ßnyn . Then
 fjn Í9 < yn(|ofn| + 'ßn')' However, fJn fg= £ fJn fgn > yn for each n which is
 a contradiction.

 6. Proposition. Let f be a measurable function on I. Then the following three
 conditions are equivalent:

 (i) J Sq fg -*0 for each g G Ci (R+) with tf(0+) = 0;

 (ii) lim supi/® |/ļ < oo;

 (iii) ì Jq fg 0 for each measurable function g on I with </(0+) = 0.
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 Proof. The implication (i) => (ii) was proved in 5. The proof of the implica-
 tion (ii) =£> (iii) is left to the reader. The implication (iii) (i) is obvious.

 7. Theorem. Let f G D. Then the following two conditions are equivalent:

 (0 fd € D for each function g continuous on I;

 (ii) lim sup ^ ¡I l/l < oo (y -»■ x, y e I) for each x € I.

 (This follows easily from 6.)

 Remark. It follows from 7 that the product of a nonnegative derivative with
 a continuous function is always a derivative. However, it is easy to prove this
 simple result directly.

 On the other hand it is worth mentioning that the product of a Lebesgue
 integrable derivative with a continuous function need not be a derivative. (A
 Lebesgue integrable derivative need not be the difference of two nonnegative
 derivatives.) To see this it suffices to take f(x) = x"1/2 sin(l/x), g(x) =
 x1/2 sin(l/ x) {x e (0, 1], /(0) = 0(0) = 0.

 8. Lemma. Let 6, A G M+. Let f be a nonnegative measurable function on
 (0,6) such that f* f > 6 A. Then there is an x G (0,6/2] such that f > xA.

 Proof. We may choose x = 8/ 2n for some n G {1,2,...}.

 9. Lemma. Let f be a measurable function on I. Suppose that

 If f-+ 0 (2)
 x J s n(o,x)

 for each measurable set S C I with d(Si 0) = 0. Then

 '' x J S l/l-0 (3) x J S n(o,x)

 for every such S and
 1 fx

 lim sup- / l/l < oo. (4)
 x Jo

 Proof. Let S be as above. Set ^ = / V 0, T = S f) {f > 0}. Since
 d(T, 0) = 0, fsn(0x) g = /Tn(oiJr) / and l/l =2 g-f, we have (3).

 Now suppose that (4) does not hold. Using 8 we find xn G I such that 0 <

 xn < a;„_i/2 and |/| > nxn (n = 1,2, . . .). Set xnk = xn(l + k/n ), Jnk =
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 [xn,k-h Zuk]- For each n there is a k E {l,...,n} such that fj ^ ' f' > xn. Let
 Ln = Jnjb, S = UnLi Ln- It is easy to see that d(S} 0) = 0. For x = 2xn we have

 Jsn( o x) l/l = Il l/l > Xn = so ^at (^) does not hold. This contradiction
 proves (4).

 10. Lemma. Let £, S G (0,1) anrf /e/ / 6e as in 9. Suppose , moreover, that
 Jo l/l < 00 • eac^ c € ® an^ eac^ x € (0) 1) seť M(c, x) = {ť 6 (0, x)' |/(<)l ^
 c}. Then there is a c G M such that fM^c x ^ |/| < ex for each x G (0,6).

 Proof. Suppose that such a c does not exist. By 9 there is a K G M+ such that
 Jo l/l < Kx f°r each x G (0,6). Set cq = 0, xo = 6. We construct by induction
 numbers xn,yn,cn as follows: Let xn_i G (0,<5] and let cn_i G [0,oo). There is

 acnG (cn-i + 1) oo) such that fMçCn 6 ) ' f' < £xn-i/2. By assumption there is a

 yn e (0, ¿) such that fM(CniVn) 'f' > eyn ■ Clearly yn < e"1 fM(Cn ļ) |/| < *„-i/2.
 Now we find an xn G (0,yn) such that fs |/| > eyn) where Sn = M(cnìS) fl
 (xniyn)' Set S = IXLi^n. Let xn < X < xn-i . Since 5fl(0,x) C U*Ln ^ and
 l/l ^ ck ^ k on Sk, we have |5 fl (0, x)| < /* |/|/n < Kx/n. Thus d(5, 0) = 0.
 However, fSn(o,yn) l/l = fsn l/l > ^ which contradicts (3).

 11. Proposition. Let f be a measurable function on I. Then the following
 four conditions are equivalent:

 (0 x fo fu ® /or eac ^ functi°n 9 bounded and continuous on (0, 1] with
 lim ap g(x) = 0;

 (") * fsn(o x) / ® /or eac^ measurable set S C I with d(S , 0) = 0;

 (iii) there is a monotone function y> on [0,oo) such that ^>(0) = 0, <p(t)/t - ►
 oo (ť - ► oo) and lim sup ^ f* <p o ' f' < oo;

 (iv) 'ÍÔ Ï9 -+ 0 for each function g bounded and measurable on I with
 lim ap g(x) = 0.

 Proof. Suppose that (i) holds and let S be as in (ii). It follows from 5 that
 Jo l/l < 00 f°r some S G (0, 1). Let h be the characteristic function of S. It is
 easy to construct a function g continuous on (0, 1] such that 0 < g < 1 and that

 ' x Al + I/DI«/" M -0. (5) x Jo

 Since § /g h - ► 0, we have also ì /Qe g - ► 0 whence lim ap g(x) = 0. By
 assumption i /Qx fg-> 0 so that, by (5), ¿ /Qx fh - ► 0. This proves (ii).



 Derivatives, Continuous Functions and Bounded Lebesgue Functions 173

 Suppose that (ii) holds. By 9 there is a S G (0, 1) such that f* |/| < oo.
 Choose numbers en G (0, 1) such that nen < 1.

 Set co = 0. According to 10 there are cn6l such that cn > cn_i + l and that

 fM(en,x) l/l ^ £nX for each ar G (0, 6) (ti = 1,2,.. .). For t £ [c„, cn+1) set <p(t) =
 nt ( n = 0,1,...). Now let x G (0,6). Define An = {t G (0,x); cn < 'f(t)' <
 cn+i}. Clearly A„ C M(cn,x), <p o |/| = n|/| on An and (0, i) = (J~=o A»-
 Hence /* <p o |/| < £~=0 n /M(CnX) |/| < x ^~=1 nen < x. This proves (iii).

 Suppose that (iii) holds and let g be as in (iv). There is a 6 G (0, 1) and
 A,B G M+ such that 'g' < A on I and that f* ip o ļ/| < Bx for each x G (0, 6).
 Let e G M+ and let Q = AB je. There is a /( G M+ such that <p(v) > Qv for
 each v € (A',00). If |/(<)| > K, then |/(<)| < <p('f(t)')/Q. Thus |/0x/fif| <
 K fo 1^1 + ê ft V ° 1^1 whence lim SUP I ? io /fl ^ AS/Q = e. This proves (iv).

 It is obvious that (i) follows from (iv). This completes the proof.

 12. Theorem. Let f G D. Then the following three conditions are equivalent:

 (i) For each x G I and each measurable set S C I with d(5, x) = 0 we have
 Ž" fsn(r-h,T+h) / - ► 0 (fc - * 0+);

 (ii) for each x G I there is a monotone function <p on [0, oo) such that <p(0) =
 0, <p(t)/t -+ oo (t - ► oo) and

 i ry
 limsup

 y- x Jx

 (iii) fg G D for each bounded Lebesgue function g.

 (This follows easily from 11.)

 13. Remark. Theorem 12 characterizes multipliers of bounded Lebesgue func-
 tions. Now we would like to get an idea about the "size" of this system; let us
 denote it by M . It is easy to prove that the product of a Lebesgue function with
 a bounded derivative is always a derivative; thus all Lebesgue functions are in
 M . From 12 we see that M contains, for example, every derivative / such that
 limsup îx f2 < 00 (y ~ V € J) f°r each x G /. Proposition 5.8 in [MW]
 says that an approximately continuous function is in M if and only if it is a
 Lebesgue function.

 Now let E be the vector space generated by nonnegative derivatives. (It is
 easy to see that a derivative / is in E if and only if |/| < g for some g G D.)
 It has already been mentioned that each nonnegative derivative (and so each
 element of E ) is a multiplier of continuous functions. It may interest the reader
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 that we have neither E C M nor M C E. To show that E (£. M it suffices
 to construct functions / and g such that / ^ 0 and 0 < g < 1 on J, / and
 g are continuous on (0,1], f € D, /(0) = 1, (/(0) = 0 = lim ap g(x) and
 that f(x) = 0, whenever x G (0, 1] and g(x) < 1. Then fg - f on (0, 1] while
 (fg)(0) = 0 so that fg £ D, f G E'M. To show that M <f_ E is not so easy.
 We shall construct an / € M ' E in 15. First we prove a simple lemma.

 14. Lemma. Let f,g be measurable functions on /, |/| < g. Let Q G
 M, Let c G ( l,oo). Then

 i rcx

 iimm*ķ=ī)īj, i rcx m ¿q-

 Proof. Set G(x) = /* g. Then i/rc* |/| < i(G(cx) - G{x)) -► (c - 1 )Q.

 15. Example. There is a function / G D' E such that / is continuous on (0, 1]
 and lim sup | /Qx /2 < oo (hence / G M).

 Proof. Let F be a function continuous and decreasing on (0, 1] such that
 F( 0+) = oo, F (I) = 1 and F 2 < oo. Set A = F. Let n be a positive
 even number. Let Xk be numbers such that 0 = xo < x' < • • • < xn =

 1, F = A/n. Let yk,Zk be numbers such that f** ļ F = f** F = l/n2.
 Since A > 1 and n ^ 2, we have < £ so that x*_i < yk < Zk < £*•
 Let be a function continuous on [xjfe_i,Xfc] such that 0 < gk < F there,
 9k{*k-i = 9k{xk) = 0, 5fjb = F on [j/*,z*], gk = f*kk gk = l/2n2. Now we
 define a function Fn on / setting Fn = £*(- l)*"1 on [x*_i, x*] (k = 1, . . . , n). It
 is easy to see that Fn is continuous on /, |Fn| < F, ^ Fn = 0 (k = 2, . . . , n)
 and 0 < Jq Fn < A/n for each x G I. Let Vn = {x G /; |Fn(x)| < F(x)}, Wn =
 Ufc=i((^ib-i,2/jb) U (z^x*)). Since Vn C Wn, we have fVn F < 2n~2 • n = 2/n.

 Now set Zk = 2~k ( k = 1,2,...). Define a function f on I setting /(0) = 0
 and /(x) = F2k((x-zk)/zk) for x G (z*, 2zk]. For any such x we haveO < f*k f <

 ZkA/2k. Clearly f^*k f2 < Zk /7 F2 and / = 0. Hence lim sup £ /Qx /2 < oo
 and - J0r / - * 0. Since / is continuous on (0, 1], we have, by 12, / G M.

 Let 5 G (1, oo). There is a 6 G (0, 1) such that F(6) = 5. Set Vk = zjt(l + &).

 (Hence vk - zk = z*6.) Then |/| = z* /Q4 |F2/fc|- Define Sk = (0,6) ' V2k.
 Obviously |5fc| ^ 6 - |V2*|; since F ìì 1, we have |V2it| < fVak F < 1/Jfc so

 that |5t| ^ 6 - 1/ Ar . Further /0* |F2fc| ^ fSk |F»| = fSk F Ž 'Sk'F(b ) ^ (6 -
 l/l i Zfc(6-1/¿)B = (wt-zj:)(l-(¿6)-1)B) lim inf JT" |/| ^

 5(Är - ► oo). It follows from 14 that there is no g G D with |/| < g . Hence f & E.
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