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 Algebraic Properties of ^-continuous Functions

 1. Introduction.

 Let i € 1. A path leading to x is a set Ex C M such that x G Ex and x is a
 point of bilateral accumulation of Ex. For x G M let £(x) be a family of paths
 leading to x. A system of paths is a collection £ = {£(2) : x G M} such that
 each Ex G £(x) for every x G M (compare with [1]). Sometimes we shall simply
 refer to Ex as a "path."

 We say that Lx ( Rx ) is a left (right) path leading to x if Lx = Ex fl (-00, x]
 (Rx = Ex fl x, 00)) for some path Ex G £{x)-

 We shall only consider system of paths £ having the property that if Lx is
 a left path leading to x and Rx is a right path leading to x then Lx U Rx is an
 element of £(x), and we shall assume that M G £(x) for each iGi We shall
 classify systems of paths according to the following scheme: a system of paths
 £ = {£{x) : x G M} will be said to be
 - of 6-type , if Ex fl [x - 5, x -f 6] contains a path in £(x) for every Ex G £(x) and
 for every 6 > 0.
 - of <r-type} if £ is a 6-type system of paths, and for each triple of sequences
 of numbers (an)^=1, (xn)^=1 and (6n)2Li such that 6n+i < an < xn < bni
 (an < xn < bn < an+i) bn ' x ( an f x) and for each left or right or bilateral
 paths EXn C [an, 6n] leading to xn for n G N, the set (J^=1 EXn U {x} contains a
 right path Rx (left path Lx ) derived from an Ex G £{x).
 - of c-type , if £ is a (7-system of paths and every Cantor set Cx such that x is a
 bilateral point of accumulation of CXi belongs to £(x).
 Such systems will be called shortly 6-systems , a-systems and c-systems , respec-
 tively. We consider real functions of a real variable, unless otherwise explicitly
 stated.

 Let X be a topological space, let / : M - ► X, and let £ = {£{x) : x G M} be
 a system of paths. We say that function f is £-continuous at x (/ has a path
 at x) if there exists a path Ex G £(x) such that / : Ex is continuous at x. If /
 is ¿-continuous at every point x, then we say that / is £ -continuous.

 We say that function / has a left (right) path at x if there exists a left (right)
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 path Ex G £(x) such that / : Ex fi (-00, x] (/ : Ex H a?, 00)) is continuous at x.
 Let us settle some of the notation used in this article:

 Const - the class of constant functions,

 C - the class of continuous functions,

 use - the class of upper semicontinuous functions,

 Isc - the class of lower semicontinuous functions,

 VR - the class of all functions having a perfect road at each point of the
 domain,

 VC - the class of peripherally continuous functions,

 V - the class of Darboux functions,

 VB' - the class of Darboux functions of the first class of Baire,

 Conn - the class of connectivity functions / for which it is true that for every
 connected subset G of M / : G is a connected subset of M2,

 A - the class of almost continuous functions / (in the sense of Stallings) such
 that for every open set G C M2 containing / there exists a continuous
 functions g : M - ► M contained entirely in G,

 T - the class of functionally connected functions [1],

 M - the class of functions / for which the following condition is satisfied:
 if xq is a right-hand sided (left-hand sided) point of discontinuity of /
 then f(x 0) = 0 and there is a sequence xn ' xo ( xn f #o) such that
 f(xn) = 0.

 Throughout we shall use the symbols K~(f,x) and A'+(/, x) to denote the
 cluster sets from the left-hand side and right-hand side of the function / at the
 point x , respectively. By Prx(A) and Pry(A) we shall denote the x-projection
 and ^-projection of a set A € M2, respectively.

 Notice that if / G M. then the set W of all points of discontinuity of / is
 nowhere dense and f(x) = 0 for each x G W. Consequently / is a function
 of the first class of Baire, hence M Ç V fi B' , since VR fl B' - VC fi Bi =
 V Bi [1, 1, 1]. Let X be an class of real functions. The maximal additive
 (multiplicative, latticelike) class for X we define as the class of all functions
 / G X for which / + g G X ( fg G X , max(/, </) G X and min(/, g) G Xy
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 respectively) whenever g G X. We denote these classes by Ma(X), Mm{X),
 and A4 /(<¥), respectively. Finally, let us define

 Mm**(X) = {/ G X : if g G X, then max(/, g) G X},
 Mm'n{X) = {/ G X : if g G X, then min(/,ý) G <¥}.

 Note that

 Mi(X) = A4 max (X)nMmm(X).

 For real functions of a real variable we know that Ma(Conn) = -Ma(^) =
 Ma{Vr'Bx) - C [1, 1] and Mm(T>nBi) = M [1], moreover M a(2>) = Mm(V) =
 Consť [1] and AM**) = A*m(Corm) = Xm(^) = M , Afj(.4) = A4, (Conn) =
 Ať, (.F) = AíflM) = C [1].

 It is obvious that for any system of paths £ the class of all ¿-continuous
 functions is contained in the class of peripherally continuous functions.

 In the present article we shall prove that:

 Ma{VR) = Ma(VC) = C,
 MmekX(VR) = MmekX(VC) = C,

 >MmÌTì{^PR) - A4 min (^C) =

 Mm(VR) = A4m(7>C) = M.

 In the third section we give examples of some systems of paths. In the next
 sections we shall consider representations of real function as sums, products,
 maximums and minimums, and pointwise limits of ¿-continuous functions. Fi-
 nally we characterize functions which can be represented as the maximum of two
 functions having a perfect road at each point of R.

 2. Some Basic Lemmas.

 Let £ be a system of paths and / a real function. It is obvious that if / has a
 left path Lx at x and a right path Rx at x then it has a path at x.

 Lemma 2.1 Let X be a topological space, f : M - ► M, fi : X - ► M continuous
 functions and g : IR - ► M, <71 : M - ► X £-continuous functions. Then :
 i) h = (/, g) is an £ -continuous function ,
 ii) k = /1 o gì is an £ -continuous function.

 Proof. Let iGl and let EXi Fx be paths leading to x such that g : Ex and
 gi : Fx are continuous at x. Note that h : Ex = (/, g) : Ex = (/ : EXig : Ex)
 and k : Fx = (fi o gx) : Fx = fi o : Fx). Obviously h : Ex and k : Fx are
 continuous at x and therefore h and k are ¿-continuous at x.
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 Corollary 2.2 Let X be the class of all £- continuous functions. Then

 c c Ma(x) n Mm(X) n Mi(X)

 Proof. Suppose that / G X and g G C. In view of Lemma 2.1, h = (/, g) is an £-
 continuous function. Since ki(x, y) = x + y, y) = xy, ks(xi y) = max(x, y)
 and £4(2, y) = min(ar, y) are continuous functions, so / + g = ¿1 o A, /<7 = ¿20/1,
 ma x(/, (/) = o ń and min(/, <7) = ¿4 o /1 are ¿-continuous functions.

 Lemma 2.3 Zeť £ be a c-system of paths, f : R - * R anrf /cť P be the set of
 points of £ -continuity off. If the graph off : P is bilaterally dense in the graph
 of f then f is £ -continuous.

 Proof. Choose an x G R. We shall prove that / has a right path at x. Let (xn)
 be a sequence of real numbers such that xn'xi f(xn) - ► f(x) and xn G P for
 n G N. For each n G N choose a path EXn leading to xn such that / : 2?rn is
 continuous at xn and note that there exists 6n, 1 > 0 such that if : y - xn :< £n 1
 then : f(y) - f(xn) :< l/n for y E EXn. Let Sn = min(6„,i, : xn - xn_i : /2, :
 Zn - £n+i : /2). Since 5 is a ¿--system there exists a path Fn C £(x) such that
 Ç EXn PI ( xn - 6ni xn + 6n) and there exist a right path Ex Ç IXLi Fn U in-
 observe that / : Ex is continuous at x. In the same way we can prove that /
 has a left path at x.

 Theorem 2.4 If £ is a a-system of paths then the limit of a uniformly conver-
 gent sequence of £ -continuous functions is an £-continuous function.

 Proof. Let (fn)™ be a sequence of ¿-continuous functions which converges
 uniformly to function /. Choose any x0 G R. We shall show that / has a right
 path at x0. Let m G N. There exists nm G N such that fn - / < 1/(4 m) for any
 n > nm. Let Em be an element of £(x0) such that : fnm(x) - fnm(x 0) :< 1/(4 m)
 for every x G Em. Notice that there are two sequences of positive numbers
 (7m)' (7m) such that 7m+i < 7m < 7m < 7m-i> Km 0+ and the set Fm =
 ^mniio + Tm'^o + Tm) is nonempty. Let xm G Fm and Km Ç [*o+7m> *o + 7m]
 be a path leading to xm such that : f„m(y) - fnm(xm) :< l/(4m) if y e Km.
 Because £ is a (7-system then there exists a right path RXo Ç |Jm=i /Cm U {ar0}
 leading to xq. Indeed, for e > 0 there exists an m G N such that 1/m < e and
 if x G Rx o and 0 < a? - x0 < 7m then : /(*) - /(*(>) :<: /(*) - fnm(x) : + :
 fnm(x) - /nm(řm) : -h : fnm(xm) - /nm(«o) •* + : /nm (* o) - /(*o) :< e. In a
 similar way we can prove that / has a left path leading to xq.

 3. Examples.

 Many classes of functions can be treated as families of all ¿-continuous functions,
 where £ is some system of paths.
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 (a) The class of continuous (approximately continuous) functions. Let T be the
 Euclidean (the density) topology on M. Put £(x) = { A : x EV C A} and
 £={£(x):xeR).
 (b) The class of almost continuous functions (in the sense of Husain [1]). Put
 £(#) = {A : X E A and 3¿>o (x - 6, x + 6) C 34} and S = {£(x) : x E M}.
 (c) The class of bilaterally quasi-continuous functions. Put £(x) = {^4 : x E
 A and V¿>o(3 a,b,ctd x-6<a<b<x<c<d<x + 6 and (a, b) U (c, d) C A)}
 and £ = {£(x) : x E M}.
 (d) The class ( VR ) of functions having a perfect road everywhere, i.e. functions
 / such that for each x E ® we can find a perfect set Ex such that a: is a
 point of its bilateral accumulation and / : Ex is continuous at x. Let £(x) be
 the set of all perfect sets such that x is a point of bilateral accumulation and
 S = {£(x) : x E M}
 (e) The class (VC) of peripherally continuous functions [1], i.e. functions f such
 that for each iÇl there exist sequences xn ' x, yn /* x and limn_*oo f(xn) =
 lim„->oo f(Vn) = f(x). Let S(x) be the set of all sets containing x such that x
 is a point of bilateral accumulation and S = {£(z) : x G M}
 (f) The class C(m) of functions having the following property:
 V*€]rV¿>o3pck card(P fl (ar, a: 6)) > m, card(P fl (x - 6, x)) > m and / : P is
 continuous at x, where m is a fixed infinite cardinal number less than or equal
 to the continuum. Note that this class is equal to VC if m = uq. If m > u>o then
 VR C C(m) C VC and C(m) ^ VC (consider the characteristic function of
 rationals as example) and C(m) ^ VR (For example, consider the characteristic
 function of a Bernstein set).
 (g) The class of rational-irrational functions (RQ). Let

 Fe f Q H (x - e, x + e) if x E Q
 x ' (R' Q) fi (x - e y x + e) if xER'Q

 for each e > 0, S(x) = { E £ : e > 0} and S = {£(x) : x G M} be a system of
 paths. Then / : R - ► M is rational-irrational function iff / : E% is continuous at
 x for every x G M and e > 0.

 It is easy to see that in all the above cases a function / belongs to the
 mentioned class iff / is ¿-continuous. Note that the path systems in (a), (b)
 and (g) are not (7-systems and the systems of paths in (d), (e), (f) are c-systems.

 Example 3.1 Let S be a c-system of paths and I = [0, 1]. There exists an £-
 continuous function /:/-►/ such that f is discontinuous everywhere , f is a
 bijection and f = /-1 .

 Let (In)?? be a sequence of all open intervals contained in I with rational end-
 points. In each In we choose a Cantor set Cn such that CmnCn = 0 for m ^ n.
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 Such a sequence (Cn)^ exists since for each n 6 N the set In ' Um=' Cm is a G s
 uncountable set and so it contains a Cantor set Cn (see [1], page 387). Put

 ftx' y = / x if « € Un=l Cn or 1 - X £ Un=l
 y ' = ' 1 - x otherwise.

 It is easy to verify that / is satisfy the requirements.

 4. Operations.

 In the present section we shall consider the maximal additive (multiplicative,
 latticelike) class for the class of ¿-continuous functions for a <r-system or a c-
 system of paths ¿.

 Theorem 4.1 If S is a <r-system of paths and X is the class of all S -continuous
 functions then

 Ma{X) = C.

 Proof. In view of Corollary 2.2 we need only to prove that Ma(X) Ç C. Let
 / be an ¿-continuous function and suppose that / is not continuous at xq from
 the right. We shall consider two cases:
 i) There exists a y E ^+(/, xo) ' {/(^o)» - oo, +oo}. Let c = /(x o) - y and put

 9K n(r' ~ _ / c - f(x) for X < x0
 9K n(r' ' _ ~ ' -/(*) for « > co-

 Because the set g : (- oo, xo) U (xo, oo) is bilaterally dense in g then by Lemma
 2.3 the function g is ¿-continuous. Notice that (/ + 0)(x) = c for x < x0 and
 (/ + </)(#) = 0 for x > xo , so then function / + g is not ¿-continuous at xo.
 ii) If K+(f , xo) Ç {f(x o), - oo, +00} then let

 z v Í 0 for x < xo
 »<*> z v = ( e" 0 «*) fot for * x > < Xo. xo

 Since h(y) = e":y: is continuous, from Lemma 2.1 it follows that the function g
 is ¿-continuous at x for every x G (-00, x0)U(x0, +00). Because 0 6 K+{g, x0),
 g : (-00, xo)U(xo, +00) is bilaterally dense in g and by Lemma 2.3 the function g
 is ¿-continuous. Notice that (/ + £)(x0) = f(Xo) and (f+g)(x) = /(x) + e~:^x):
 for x > xo. We shall prove that (/ + g) is not peripherally continuous. Let (xn)n
 be a sequence such that xn ' xo. Two cases may occur:
 a) For every subsequence (x„m)m of the sequence (xn)n we have
 limm_oo : f(xnm) := 00. Then limm_oo : / + 9 : (*nm) = 00.
 b) Suppose that (xnm)m is a subsequence of the sequence (xn)n such that /(x„m)
 is bounded. Therefore /(x„m) -► /(x0) and lim^ooi/ + g)(xnm) = /(x0) +
 e-7(*o): Consequently, (f + g)(xo) £ A'+(/ + gi xq), which completes the proof.



 Algebraic Properties of £- continuous Functions 159

 Theorem 4.2 If £ is a a-system of paths and X is the class of all £ -continuous
 functions then

 Mm(X) = XnM.

 Proof. First we verify that X fi M Ç Mm(X). Let / G M fi X> let g be an
 ¿-continuous function and let xo be arbitrary. Suppose that RXo is a right path
 leading to xq such that g : RXo is continuous at xq. We shall prove that the
 function f g has a right path at xq. We shall consider two cases:

 i) The function / is continuous at xo from the right. Then

 f g : Rx o = (/ • Rxo)(d •' Rx0)

 is continuous at xo.

 ii) The function / is not continuous at xq from the right. Then there exists
 a sequence xn ' aro of points at which / is right-hand sided or left-hand
 sided continuous and f(xn) = 0 [1]. Assume that (£„)$£_! is a sequence of
 points of right-hand sided continuity of /. Let n G N, ¿>n>i =: xn - xn_i :»
 ¿n, 2 =: Xn - tfn+1 en = 1/n if g(xn) = 0 and en = min(l/n, l/(n :
 g(xn) :)) otherwise. There exists a 6n>3 such that if 0 < x - xn < 6ntz then
 : f(x) :< en. Let 6n = min(¿nii/2, 6Uļ 2/2, ¿n,3). Denote by Qn a right path
 leading to xn such that : g(x) - g(xn) :< 1/n for x G Qn- Then there is
 a right path Kn leading to xn contained in the set Qn fi [xnì xn -f ¿n] and
 there exists a right path I<0 Ç IXLi Kn U {a?o} leading to x0.

 We shall prove that function f g : is continuous at xq. Let (2/m)m a
 sequence of points such that ym G A'o ' {#o} for each m G N and ym ' x0.
 Note that for any m G N there exists an nm G N such that ym G Knm
 and m - ► oo implies nm oo. Then : (fg)(ym) '< 2 /nm and hence the
 sequence (fg)(ym) converges to (fg)(x o). In the same way we can prove
 that (fg) has a left path at xo.

 Now we shall prove that Mm(X) Ç X C' M. Assume that / G X'M. Then
 there exists a point x$ of right-hand sided (or left-hand sided) discontinuity of
 / such that one from the following conditions is satisfied:

 i) There exists a 6 > 0 for which f(x) ^ 0 for x G [(x0, x0 + S] and there is a
 y G A'+(/, xo) ' {/(x0), 0}. Let c = l/y if y is finite and c = 0 otherwise.
 Put

 {c l//(x) l//(*o + Ä) if if if x x£ x > < x0 Xo
 l//(x) if x£ [(a;0,a;0 + ¿]
 l//(*o + Ä) if x > x0 + 6.

 Because g is ¿-continuous at each point of the set (- oo,x0) U (x0,oo)
 and g(x0) G x0), so by Lemma 2.3 g is ¿-continuous. Notice that



 160 K. Banaszewski

 (fg)(x) = 1 for all x G (a?0>«o + 6) and ( fg)(x0 ) ^ 1. Hence (fg) g X and
 consequently f & Mm(X).

 ii ) The function / fulfills one of the following two conditions:

 a) K+(f, xo) = {/(xo), 0} and there exists 6 > 0 such that f(x) ^ 0 for
 x e [0po>*o + 6] or

 b) f(x o) ^ 0 and there exists a sequence (xn) such that xn ' a?o and
 f(xn) = 0.

 Then let

 a(x' _ / /(* o) if * < Xo
 9(X)-' a(x' _ f(xo)-f(x) if X > x0.

 By Lemma 2.1 and Theorem 4.1 the function g : (- oo,xo) U (xo,oo) is
 ¿-continuous. Because 0 G A'+(/, z0), the set g : (-oo, x0) U (aro, oo)
 is bilaterally dense in g and, by Lemma 2.3, g is ¿-continuous. Notice
 that (fg)(x o) = f2(x0) > 0. We shall prove that fg £ VC. Let (yn)^=i
 be a sequence of points convergent to xo from the right. If there is a
 subsequence (î/nm)m=i suc^ that f(ynm ) is convergent to some finite real
 number z then limm^oo(/ý)(ynm) = f(xo)z - z2 # f2(x 0) for each z G M.
 If limm_oo : /(î/nm ) := oo then limm^oo fg(ynm ) = Hence fg g VC
 and fg £ X. This implies that / 0 Mm(X).

 If the function / is not continuous at x0 from the left then the proof is similar.

 Corollary 4.3 Since A4 C VR C VC, we have

 Mm(VR) = Mm(VC) = M.

 Theorem 4.4 Let S be a c-system and X the class of all £- continuous func-
 tions. Then the following equalities hold:

 Aťmax(*) = Mmin(X) = C.

 Proof. We shall prove that Mm*x(X) = C (the proof that Mm[n(X) = C is
 similar). In Corollary 2.2 we showed that C Ç Mmax(X). Now we shall prove
 the opposite inclusion. We shall consider two cases.

 P)1 f & usc • Then there exists a point xo such that

 f(x o) < lim sup f(x) or f(x o) < limsup f(x).

 We shall deal only with the first case.
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 a) If there exists y G A'+(/, xo) such that /( xq ) < y < oo, then let
 d = (f(x o) + y)/ 2 and put

 ^ a(x) = { /(* o) if *<xo
 ^ a(x) ' = ļ 2d- /(ar) if x > x o.

 By Lemma 2.1 and Theorem 4.1 the functions g : (x0,oo) and # :
 (- oo,xo] are £- continuous . Because f(x o) G A+(<7, xo), the set g :
 (- oo, xo)U(xo, oo) is dense in g and by Lemma 2.3 g is S- continuous .
 Moreover, max(/, y)(xo) = f(x o) < d and max(/, <7)(x) > d for x >
 xo, so ma x(/, <7) £ VC and consequently f £ Afmax(<¥).

 b) Otherwise -foo G A'+(/, xo). Put

 ( ' _ J /(*) if x <xo
 9'x) ( _ - ļ /(xo) + forx>xo.

 Notice that in view of Lemma 2.1 and Theorem 4.1 the function

 9 l(( - oo, x0) U (x0, oo))

 is £- continuous and the set g : ((- oo,xo) U (xo,oo)) is bilaterally
 dense in g. So by Lemma 2.3 g is £- continuous . Observe that
 ma x(fig) & VC. Indeed , let xn ' x0. If lim siip^^ /(xn) = +oo
 then

 limsupmax(/, (/)(xn) > limsup/(xn) = oo.
 n-foo n-+oo

 Otherwise

 limsupmax(/, <7)(xn) > limsupy(xn) >
 n-*oo n- ►oo

 f (x0) + e~ hmsuPn^oo /(*») > f(x o) = ma x(/, g)(x0).

 Consequently, f £ Aťmax(-V).

 ii) f G use. Assume that f is discontinuous at xo from the right. Then there
 is a point y G A+(/, x0) such that y < f(x o). Let d = (/(x0) + y)/ 2 if
 y is fìnite and d = f(x o) - 1 otherwise. Since f G use , G = {x : /(x) <
 d} fi (x0,oo) is a nonempty open set. Let ( In )^LX be a sequence of all
 open components ofG. Let (In,k)(%>k=i ^ e a sequence °f all open intervals
 with rational endpoint contained in In. In each Intk we choose a Cantor
 set Cntk such that Cn>k fl CmtP = 0 for (?i,m) ^ (&>p). Let us define
 C = ( oo, x0] U U~=1 Ùr=i Cn k and

 , x _ f d if x G C
 9'x) - _ ļ y(^0) -ļ- 1 otherwise.
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 We shall verify that g is 8- continuous at each point. It is obvious at
 each point x £ C. Let x € M ' C and Un = (a? + l/(n + 1), x + 1/n) for
 n G N. Because Un'C is a Gs uncountable set} we can choose a Cantor
 set Kn C Un'C. Hence the set Rx = U^Li Kn U {x} is a right path
 leading to x and g : Rx is continuous. Notice that max(/, </)(xo) = f(x o)
 and max(/, g)(x) = d < f(x o) or max(/, g)(x) > f(x o) + 1 for x > x0.
 This implies that ma x(/, g) £ VC and therefore f £ Mm*x{X).

 Remark 4.1 Note thai for the system of rational-irrational paths defined in
 example (g) of section S the conclusions of each of Theorems Ą.1-Ą. 3 fail to hold
 and, thus , the assumptions that E is a a-system is important .

 5. Representations.

 Throughout whose this section S denotes some fixed c-system. Let
 be a sequence of open intervals endpoints are rationals. Let (gn)£Li be an
 enumeration of rationals different from zero. In the proofs we shall use the fact
 that in each interval we can choose a sequence of Cantor sets in J*
 such that Ck,n H Cm>p = 0 for (A?, n) / (m,p) (cf. Example 3.1).

 Theorem 5.1 For any function f : M - ► M we can find S-continuous functions
 <7, h such that f = g + h. Moreover , iff is measurable (Baire class a for a > 2)
 we can find such a representation that g and h are also measurable (Baire class
 a).
 Proof. Put

 (qn f(x) f(x) -qn otherwise if if X X e e C*,2n> Ckt2n+U fc, MeN n e N
 f(x) -qn if X e Ckt2n+U MeN
 f(x) otherwise

 and

 Íf(x) 0 Çn -qn otherwise. if if X x e e Ckt2n+U Ck>2n , fc, k, n £ TI N E Íf(x) Çn if X e Ckt2n+U k, TI E N 0 otherwise.

 Then g is ¿-continuous at every point of bilateral accumulation of Ckt2m n G
 N, so by Lemma 2.3, g is ¿-continuous. Analogously, h is ¿-continuous. The
 second part of the theorem follows from the following equality:

 oo oo oo oo oo oo

 »= u u g Ck,2n u uu 9 : Ck, 2n+i U/:(R' [j [J Ct,„)
 n=l Ar = l n=l jb = l n=l k = l

 and that remark each of component functions is in this union of the same Baire
 classes / and they are defined on sets of the second Borei class. Analogously, if
 / is measurable then g is measurable too. The similar arguments work for g.
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 Theorem 5.2 Let f : R - ► IR. Then there exist C-continuous functions g , h :
 M - ► M sucĀ that f = í/A. // / is measurable (Baire class a for a > 2) we can
 require g and h to be measurable (Baire class a), too.

 Proof. Put

 {Qn f(x) f(x)/qn otherwise if if X X e G Cjb,2n+i Ckt2ni fc, * fc, n G n N e
 f(x)/qn if X e Cjb,2n+i * fc, n e N
 f(x) otherwise

 and

 ( f(x)/<ln if X G C*,2n> k,n G N
 MX)=S <In if X e Cjb,2n+1, k,n € N

 ( 1 otherwise.
 Proceeding as in the proof of the previous theorem we get that g and h are
 ¿-continuous (measurable and Baire class a provided that / is).

 Theorem 5.3 Every function f : M - ► R can be represented as

 f = min(max(/i , /2), ma x(/3, /4))

 where /i,/2,/3>/4 are £ -continuous functions.

 Proof. Put

 if X G CMn-»+l, MeN
 I /(x) otherwise

 and D, = (JjbLi U^=i Cik,4n-«+i for i = 1,2,3, 4. As above, /,• are ¿-continuous.
 We shall verify that

 / = min(max(/i,/2),max(/3,/4)). (1)

 a)lfx& U-=1 A» then /1(2) = /2(2) = /3(2) = /4(2?) = /(*), so (1) is satisfied.
 b) If X G Di, then x £ (J^=2 D,» so /2(2) = /3(2) = /4(2) = /(*)• Then either
 /1 (a?) < f(x) and hence max(/i, /2)(x) = /(x), so

 /(x) = minmax(/i(x),/2(x)),max(/3(x),/4(x))]

 or f'(x) > /(x) whence

 f(x) = min[max(/i(x),/2(x)),max(/3(x),/4(x))].

 c) If x G D2 U Os U Dą then we proceed analogously.
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 Note 5.1 //(-/) = min(max(/i)/2))max(/3,/4)) then

 f = max(min(-/i , -/2), min(-/3, -/4)),

 so max and min can be interchanged.

 Theorem 5.4 Every real function of real variable is a pointwise limit of ¿-con-
 tinuons functions.

 Proof. Represent each Ckfn as the union Ua<c Ck,nta of pairwise disjoint perfect
 sets (c-denotes the cardinality of R) [1]. Let (za)a<c be a transfinite sequence
 of all reals. Put

 oo

 Dfi,Q t ļ^J Ck,nta
 Jb = l

 and

 t / '

 ' f(x) otherwise
 for n G N. Then /„ is ¿-continuous. We shall show that

 f(x) = lim fn(x). (2)
 n-+oo

 Choose an i G M. Then either x £ UnLi U<*<c fn(x) = /(®) for each
 n G N and (2) holds or x G Dn0)OC for some no G N, a < c, whence x £ Dn a for
 n > no, a < c, so /n(z) = f(x) for n > n o, which completes the proof.

 Theorem 5.5 Let f : M - ► M. Then the following conditions are equivalent :
 ( a ,) there exist Darboux functions g, h having a perfect road everywhere such that

 f = max(<7, A),

 (b) there exist functions g,h having a perfect road everywhere such that

 f = ma x(</,ft),

 (c) for each x G M there exist perfect sets R, L such that x is both a point of
 accumulation of R from the right and a point of accumulation L from the left,
 for which the limits

 lim f(z) and lim f(z)

 exist (maybe infinite ), and

 f(x) < min( lim /(2), lim f(z))>

 (We shall say that R (L) is an upper perfect road of f at x from the right (from
 the left)).
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 Proof, (a) => (6) Obvious.
 (6) => (c) Choose an x G M. Let

 y g = lim sup g(z)
 Z- fX +

 and

 y/j = limsup/i(z).
 2 - >X+

 By an argument like the one used in Lemma 2.3 the functions

 i ' _ / V 9 if z = x
 _ - ļ otherwise

 and

 h _ / Vh if z = x
 1 Mz) otherwise

 have a right perfect road everywhere. Thus there are perfect sets Rgy Rh such
 that x is a point of accumulation of both Rg and Rh from the right and

 lim 0(2:) = yg
 zeRg'{x]

 lim h(z) = yh.
 *- »X+

 z£Rh'{x}

 We can assume that yh < yg . Then

 liminf maix(g(z)1h(z)) > liminf g(z) = ygi

 limsup ma,x(g(z)Ji(z)) = max( lim g(z ), limsup h(z)) <
 *- >x+ VTw 1 *-*x+

 ^€Äff'{x} ^6Ä9'{X} 1 ^€Ä9'{X}

 < max(s/y, limsup h(z)) < ma.x(yg)yh) = yg.

 z6R9X'{X]

 Therefore Rg is an upper perfect road at x from the right. Finding an upper
 perfect road of / at x from the left is analogous.
 (c) => (a) Let S = {5„}^=1 be an enumeration of all open intervals in R2
 of the form (01,02) x (a3,+oo), where ai,a2,a3 are rationals such that there
 exists an nonempty perfect set P C Prx{f D Sn). By Lemma 2 of [1] we can
 find a sequence of pairwise disjoint, nonvoid perfect sets {Pn}£Li such that
 P2T11 P2n-i C Prx(Snr'f). For each n G N we define a family of pairwise disjoint,
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 nonvoid perfect sets {Pn,a}a<c such that Pn = Ua<c^n,« (cf- Theorem 5.4).
 Put an = inf Pry{Sn) for each n G N and let {xnjcr}a<c be a transfinite sequence
 not greater than an. Define

 n(„' _ / *n,a ifxe P2n,a> n G N, a < C
 1 f(x) otherwise

 and

 L/ '

 ^ '

 Then max(<7, h) = /, because
 i) if x g |J~=i then $r(x) = /i(x) = /(x),
 ii) if a: € for some n € N then g(x) < an and h(x) = f(x) > an,
 iii) if X E ?2n+i for some n G N then p(x) = /(x) > an and h(x) < an.

 Choose an i 6 M. We prove now that the function g has a perfect road at
 X. Let (xm)J£=1, (î/m)m=i ke sequences of real numbers such that xm ' x,
 f(xm) > Vm and ym - ► g(x). For m = 2, 3, ... let nm be such that

 Snm Ç ((xm+i + xm)/2, (xm + xm-i)/2) X (ym) +oo)

 and let am < c be such that xnm>am = ym. (Such an nm exists since / has an
 upper perfect road at xm.) Then the set R = (J^=1 P2nm,am U {^} ÌS perfect, x
 is its left point of accumulation from the right and

 lim g{z) = lim ym = g(x).
 *-»*+ m- *oo

 zÇR'{x}

 In a similar way we can prove that g has a perfect road at x from the left.
 Finally we show that g is a Darboux function. Let a < b and g(a) < À < g(b).

 Since / has an upper perfect road at b from the left, there exists a perfect set
 P Q (a>^) such f(x) > A for x G P. Then 5n Ç (a, 6) x (A,oo) for some
 n G N and A = xn>a for some a < c, so for each x G P2n,a we have a < x < b
 and g(x) = A.

 The proof that h is a Darboux function having a perfect road everywhere is
 similar.

 Analogously we can prove the following

 Theorem 5.6 Let £ be a a-system such that if {En : n G N} is a collection of
 paths then there is a family {Pn : n G N} of pairwise disjoint non-empty paths
 such that Pn Ç En for n G N. Let f : M - ► M. Then the following conditions
 are equivalent :
 (a) there exist S-continuous functions g,h such that

 f = max(<7, h)i
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 (b) for each x £ R there exist a right path R leading to x and a left path L
 leading to x, for which the limits

 lim f(z) and lim f(z)
 zÇL'{x]

 exist (maybe infinite), and

 f(x) < min( lim f(z), lim f{z)).
 z€R'{x} zÇ~L'{x}

 Remark 5.1 The classes VC and C(m) for u>o < m < u>i fulfill the conditions
 of Theorem 5.6 .

 Remark 5.2 The assumption that S is a c-system is important in all theorems
 in this section. Consider , for example , the system of all open intervals.
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