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On the Darboux Property of Restricted
Functions

Let R denote the set of reals. If A C R is a nonempty set, then we say that a
function f : A — R has the Darboux property whenever f(I N A) is a connected
set for every interval I C R. Denote by D(A) (A # 0) the set of all functions
f : A — R having the Darboux property. Let C(A) denote the family of all
continuous functions f : A — R and let p be the uniform metric defined by the
following formula

p(f, 9) = min(1, sup | f(z) — g()]).
z€EA

Theorem 1 If a set A C R containing more than one poini, is not an interval,
then the set C(A)\ D(A) has a nonempty interior (in the metric p).

Proof. There is a point a € R\ A such that (—co0,a)NA # 0 and (a,00)NA #
0. Let b = sup(A N (—00,a)) and ¢ = inf(A N (a,00)). There is a continuous
function f : A — R such that:

lim f(z) =0;
a:l—lvr?-o- f(l‘) =L

For every function g € C(A) with p(f,g) < 1/2 there is r > 0 such that g(z) <
1/2 for every z € AN (b—r,b] and g(y) > 1/2 for every y € AN[c,c+r). Since
1/2 ¢ g(AN(b—r,c+r)), g does not have the Darboux property. This completes
the proof.

Theorem 2 If there exist points a,b € A such that a < b and the intersection
[a,b]N A has cardinality smaller than the continuum, then the set C(A) N D(A)
s nowhere dense in C(A).
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Proof. Let H(A) be the set {f : A — R; f constant on [a,b]NA}. Obviously,
H(A) is uniformly closed. Let f € C(A)NH(A) be a fixed function and let » > 0
be a number < 1. Define

f(z) for £ € AN(—00,aq]
g(x) =< f(z)+r/2 for z € AN[b,00)
linear for £ € AN [a,b).
Then p(f,g9) =r/2 < r, g € C(A), and g ¢ H(A). So H(A) N C(A) is nowhere

dense in C(A). Since D(A) C H(A), the set D(A) N C(A) is nowhere dense in
C(A).

Remark 1 There are sets A C R such that the sets C(A)N D(A) are not closed
in C(A).
Example 3 Let A = [0,1/2) U (1/2,1]. Put f(z) = = for z € A. Obviously
f€C(A)\D(A). Forn=1,2,...letap, =271 = 4" and b,, = (a, +271)/2.
Define
2= for z €[b,,27Y)
(@)= =z for z €[0,a,]U(271,1]

linear in the interval [ay,,b,).

Then all f, € C(A) N D(A) and the sequence (f,) uniformly converges to f.

Theorem 4 If AC R is a nonempty closed set, then C(A) N D(A) is closed in
C(A).

Proof. If a sequence of functions f, € C(A)N D(A) converges uniformly to a
function f, then f € C(A). Assume,to the contrary, that f € D(A). Then there
are points a,b € A with a < b, f(a) # f(b) and

¢ € (min(f(a), £(b)), max(f(a), f(b)))

such that ¢ € f([a,b] N A). We may assume that f(a) < ¢ < f(b). Since the set
[a,b)N A is compact and f is continuous, the set f([a,b] N A) is compact. For
r > 0 there is a function f, such that f,(a) < ¢ < fn(b) and |fa(z) — f(z)| < r
for every z € A. Since f, € D(A), there is a point d € AN (a,b) such that
fn(d) = ¢. Consequently,

1/(d) — el = |£(d) - fa(d)] < 7,

and (c—r,c+r)Nf([a,b]N A) # 0. So ¢ is an accumulation point of the compact
set f([a,b]N A), and ¢ € f([a,b] N A), contrary to ¢ # f([a,b] N A).
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Theorem 5 Suppose thal a nonemply set A C R is such that clA — A is not
closed. Then the set C(A) N D(A) is nowhere dense in C(A).

Proof. If there are points a,b € A such that a < b and the cardinality of the
set [a, b]N A is smaller than continuum, then by Theorem 2 the set C(A)ND(A) is
nowhere dense in C(A4). So we may assume that the set 1N A has the cardinality
of the continuum for every closed interval I with ends belonging to A. Since
cl A — A is not closed, there is a point a € A which is an accumulation point of
the set c1A — A. Fix f € C(A) and 0 < r < 1. From the continuity of f at a
it follows that there is an open interval I 5 a such that oscinaf < r/8. Since
a € A and a is an accumulation point of ¢l A — A, there are points b,d € IN A
and u € cl A — A such that b < u < d. Let us put

(2) = { f(z) for =€ AN(—o0,u)
= f(z)+3r/4 for z€ AN(u,00).

Evidently, g € C(A) and p(f,g) = 3r/4. Let h € C(A) be such that p(g,h) <
r/8. Then p(f,h) < p(f,9) + p(g,h) < 3r/4+ r/8 < r. We shall show that
h & D(A). We have

g9(b) = f(b), 9(d) = f(d) + 3r/4,
h(d) < f(b) +r/8, h(d) > f(d) + 3r/4—r/8 = f(d) + 57/8 >
> f(b) —r/8+45r/8 = f(b) + r/2.

Let c be a number such that f(b)+r/4 < ¢ < f(b)+r/2. Then h(b) < ¢ < h(d),
and for every z € [b,u) N A we have

h(z) < g(z)+r/8=f(z)+r/8 < f(b)+r/8+r/8 < c.
Moreover, for every z € (u,d]N A,
h(z) > g(x) —r/8 = f(z) +3r/4—r/8 > f(b) — r/8+ 5r/8 = f(b) + r/2 > c.
So ¢ & h((b,d) N A), and consequently h ¢ D(A). This completes the proof.

Theorem 6 If a nonempty set A is such that the set clA — A is closed and
there are not points a,b € A with a < b and such that the cardinality of the set
(a,b)N A is smaller than continuum, then the set C(A)ND(A) has the nonempty
interior in C(A).

Proof. If c1 A — A = 0 then A is an interval and C(A4) C D(A). So, we may
assume that c1A— A # 0. Let ((an,bn))n be a sequence with all components of
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the open set R — (cl A— A). From the suppositions of our theorem it follows that
A C U, (an,bn), and every set AN(an,bd,) is connected. If AN(an,bn) = (an,cn]
(or = [en,bn)),then there is a continuous function f, : AN (an,b,) — R such
that fn(cn) = 0 and the cluster set

K*(fn,an) = {y € R: there is a sequence of points zx € AN (an, bn)

with zx \, a, and fp(zx) -y} =R
(K~ (fn,bn) = {y € R : there is a sequence of points zx € AN (an,bn)
with 2 / b, and fp(z:) — y} = R).

If (an, bn) C A, then there is a continuous function f, : (an, bn) — R such that

K+(fman) = I{—(fn,bn) =R

If (an, bn) N A is a singleton set {c,}, then we put f,(cs) =0. If (an,bp)NA =
[en;dn] C (an,bn), then there is a continuous function f, : [cn,dn] — R such
that fn(cn) = fa(dn) = 0 and fn([cn,dn]) = [-n,n]. Let f(z) = fo(z) for
z € (@n,bp) N A, n=1,2,.... Then f € C(A) and if u, = a, or b, is an
accumulation point of the set A from the left (from the right), then K~ (f, u,) =
R (K*(f,un) = R). Let g € C(A) be such that p(f,g) = r < 1. We shall show
that ¢ € D(A). Let a,b € A be points such that a < b and g(a) # g(b), for
example g(a) < g(b). Let us fix a number ¢ with g(a) < ¢ < g(b). If there
is not a point u; = a; or b; belonging to [a, b] then [a,b] C A and g|[a, b] has
the Darboux property. Consequently, there is a point d € (a,b) N A such that
g(d) = c. In the contrary case, if there is a point u; = a; or b; belonging to
[a,b], then there are points u,v € (a,b) such that f(u) < c—r, f(v) >c+r
and [min(u, v), max(u,v)] C A. Since p(f,9) = r < 1, we have g(u) < ¢,
g(v) > c and g/[min(u,v), max(u,v)] is continuous. Consequently, there is a
point d € (min(u, v), max(u, v)) C (a,b) such that g(d) = c. So g € D(A).
Now, for a nonempty set A C R let

Co(A) = {g: A — R; there is f € C(R) such that f/A = g}.

Remark 2 If A C R is a nonempty set such that there is a pointa € clA— A
which is bilateral accumulation point of A, then Co(A) is a nowhere dense closed
set in C(A).

Proof. If a sequence of functions g, € Co(A) converges uniformly to a func-
tion g : A — R, then there are functions f, € C(R) such that f,/A = g, and
the sequence of functions f,/clA, n=1,2,..., converges uniformly on cl A to a
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function h : c1 A — R. Evidently, h € Co(cl A) and h/A = g € Co(A). So Co(A)
is closed in C(A). For a fixed f € C(A) and for a fixed r > 0 (r < 1) we define

| @ for z€(-o0,a)NA
y(x)—{ f(z)+r/2 for z€(a,00)NA.

Then p(f,g9) =r/2 < r and g € C(A) \ Co(A). This completes the proof.

Theorem 7 If a set A C R containing more than one point is not an interval,
then the set Co(A) \ D(A) is dense in Co(A).

Proof. Let a ¢ A be such that (—co,a)N A # 0 and (a,00)N A # 0. Given
a fixed f € Co(A) and 1 > r > 0 there are continuous functions g, h € C(R)
and points ¢,d € A such that h/A = f, p(h,g9) < r, ¢ < a < d, and g/[c,d]
is linear, non constant. Then g|A € Co(A) and g|A ¢ D(A), since g(a) €
(min(g(c), 9(d)), max(g(c), 9(d))) and g(a) ¢ g(AN[c,d]).

Remark 3 Ezample 1 shows that the set Co(A) N D(A) may be not closed in
Co(A). But if a set A C R is nonempty and closed, then Co(A) N D(A) is closed
in Co(A). This follows from Theorem 3.

Theorem 8 If there ezist points a,b € C1 A such that a < b and the cardinality
of the set (a,b) N A is smaller than continuum, then the set Co(A) N D(A) 1is
nowhere dense in Co(A).

Proof. Given a fixed f € Co(A), there is ¢ € C(R) such that g/A = f. Let
1> 7 > 0 be a number. Define

g(z) for z € (—00,d]
h(z) =4 g(z)+c for z €[b,00)

g9(z) + c(z — a)/(b—a) for z € [a,b],
where ¢ € R is such that |¢| < r/2 and g(a) # g(b) + c. We may assume
that g(a) < g(b) + c. Note that h/A € Co(A) and p(h/A, f) < r/2 < r. Put
s = g(b) + c — g(a). Then s > 0. We shall prove that every function k € Co(A)
with p(k, h/A) < min(r/2,s/8) is not in D(A). Indeed, since k € Cy(A), there
is £ € C(R) such that £/A = k. We may assume that p(¢, h) < min(r/2,s/8).

From the continuity of £ and h at a, b it follows that there are points u,v € A
such that u < v, and

[€(z) — £(a)| < s/8, |€(y) — £(b)| < s/8,
|h(z) — h(a)] < s/8, [h(y) — h(b)| < s/8
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for all points z € [min(u, a), max(u, a)]=1 and all y € [min(v, b), max(v,b)] = J.
We have

k(z) = 1(z) < h(z) + /8 < h(a) + s/8 + 5/8 = g(a) + s/4,
k(y) = 1(y) > h(y) — s/8 > h(b) — s/8 — 5/8 = g(b) + c — 5/4

forallz € IN A and all y € J N A. Since g(a) + 5/4 < g(b) + ¢ — s/4 and since
the set [a, 5] N A has cardinality smaller than that of the continuum, there is a

number z € (g(a)+s/4, g(b)+c—s/4) such that k(z) # z for every z € (u,v)NA.
Since p(k, f) < p(k,h/A)+ p(h/A, f) < /2 + r/2 = r, the proof is finished.

Theorem 9 If A C R is a nonempty set such that clA is a nondegenerate
interval and for every open interval I with ANT # O the intersection IN A
contains a nonempty perfect set, then the set Co(A) N D(A) is dense in Co(A).

In the proof of this theorem we apply the following lemma:

Lemma 10 Let f : [a,b] — R be a continuous function and let P C (a,b), Q C
[a,b] be nonempty perfect sets such that PN Q = 0. There is a continuous
function g : [a,b] — R such that (f + g)([a,b]) = f([a,b]) = (f + g)(P) and
g(z) =0 for z € QU {a,b}.

Proof of Lemma 1. There is ([1], p. 224) a continuous function h : P 2%

£([a,b]). Let
h(z) for z € P
f(z) for z € QU {a,b}

linear in the closure of all components

of the set (a,b) - P - Q

k(.’t) =

and
g=k—f.

The function g satisfies all required conditions.

Proof of Theorem 8. Fix f € Co(A) and 1 > r > 0. There is a function
g € C(R) such that f = g|A. We shall prove that there is a function h €
Co(A) N D(A) with p(f,h) < r. If f € D(A), then f = h. Assume that
f & D(A). Since the function g is uniformly continuous on the interval [-1, 1],
there are points

max(—1,infC1 A)) = a1 < a12 < -+ < ay k1) = min(1l,supC1 A)
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such that
a1i41 —a1; <1
and
o Sy 9T

for i = 1,...,k(1) — 1. For each ¢ < k(1) there is a nonempty perfect set
Py; C (ay4,a1,41) N A which is nowhere dense in A. Consequently, by Lemma
1, there are continuous functions g,; : [a1i,a;,i+1] — R such that

(9 + g1:)([a1i, a1,641]) = 9([a14, a1,i41)] = (9 + 91:)(Prs)
and g1i(a1;) = g1i(a1,i+1) = 0. Let

fiz) = { g(z) + g1i(z) for z € [a14,a1,i+1], i < k(1)

g(z) otherwise.

Evidently, fi € C(R) and p(g, f1) < 4~ !r. Since the function f, is uniformly
continuous on the interval [—2, 2], there are points

max(—2,infC1 A) = az < --- < azi(z) = min(2,sup C1 A)

such that
ag,iy1 — ag; < 2~ and osc fi<47%r for i< k(2)

[02-‘,0:,-‘-0-1]

For each i < k(2), there is a nonempty perfect set Py; C (AN (a2, a241)) —
Uick(1) Pri which is nowhere dense in A. By Lemma 1, for each i < k(2) there

are continuous functions gs; : [az;, az,i+1] — R such that (fi+g2:)([azi, a2 i41]) =
fi([azis az,i41]) = (f1 + g2i)(P2i) and g2i(z) = 0 for

z € {azi,az,i41} U ([azi, az,i41] NU{Py; : j < k(1)}).
Let
fa(z) = { fi(z) + g2i(z) for z € [azi, a2,41), i < k(2)
2 - fi(z) otherwise.

Evidently, f, € C(R) and p(f2, f1) < 472r. Generally, for n > 2, there are
points
max(—n,infclA) =a,; < - < @nk(n) = min(n, sup cl A)

with

Anit1 — api < 1/n, osc | fa-1<47"r for i < k(n),

Gni,Gn,i41
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nonempty perfect sets Pni C (ani,@n,it+1) N A — Uj<n U‘~<k(j)P,-,- which are
nowhere dense in A (¢ < k(n)), and continuous function f, € C(R) such
that p(fa, fn=1) < 477, fn(Pni) = fa([@ni, an,i+1]) for i < k(n) and fu(z) =
fn-1(z) for ¢ € Pj; with j < n, i < k(j). Since p(fn, fn-1) < 4~"r and

o147 < 00, the sequence (f,) converges uniformly to a function k € C(R). .
Forevery n =1,2,... p(g, fn) < p(9, f1) + - -+ P(fa=1, fa) < /44 -+ 1[4,
and consequently

[o0)
(g, k) < rz4"‘ =rf3<r.

n=1
Now, we shall show that k/A = h € D(A). For given points a,b € A with a < b
and h(a) # h(b) (for example, h(a) < h(b)) let ¢ € (h(a), h(b)). There are points
ay,b; such that a < a; < b; < b and k(a1) < ¢ < k(by). Since the sequence
(fa) converges uniformly to k, there is an index n such that fp(a1) < ¢ <
fn(b1), [a,8) C (—n,n) and 1/n < min(a; —a,b—b;). From the continuity of f,
it follows that there is a point z € (a1, b1) such that f,(2) = ¢. There is an index
i < k(n) such that z € [ani, an,it1] C (a,b). Since fr(Pni) = fa([ani,an,i+1]),
there is a point w € Py; with fn(w) = fa(z) = c. Consequently, w € AN (a,b),
and h(w) = k(w) = fa(w) = fa(2) = ¢, since frx(w) = fo(w) for k > n. This
completes the proof.

Remark 4 In our discussion with Dr. T. Natkaniec he remarked that if cl A
is a nondegenerate interval and if there is f € D(A) N Co(A) which is non
constant, then A contains a nowhere dense (in R) subset having the cardinality
of the continuum. Since there exrist c-dense (in R) sets A such that for every
set B C R of the first category the intersection BN A is countable (for ezample,
Lusin sets), there are sets A C R such that clA = R and ANI has the cardinality
of the continuum for every open interval I and Co(A) N D(A) is nowhere dense
n Co(A)

Problem 1 Suppose that clA is a nondegenerate interval and for every open
interval I with ANI # O the intersection AN contains a nowhere dense set
having the cardinality of the continuum. Is the set D(A)NCo(A) dense in Co(A)?
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