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Copson Type Inequalities with Weighted Means

1. Introduction

Copson [C] proved the following inequalities:

Theorem A  Letp>1,a,>0,¢.>0, Qun:=qi+...4+qn forn=1,2,...,
and Y071 qnab, < co. Then
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In the special case ¢x = 1, Qn = n, Hardy’s inequality is obtained [HLP,
p.239]. The following theorems give a pair of related inequalities recently ob-
tained by Mohapatra et. al. [MRV].

Theorem B Letp > 1, :—>+’—},—= L,gn>0,Qun:=q1+4...4qn, ap > 0.

Write A Uy, = U, — Un41r. If ngn < AQ,, and n| A @n?'| < Bpgat/?" for some
constants A and By withn=1,2,..., then for each N > 1
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where K(p) < [A + ;P;er]p.

Theorem C  With notation as in Theorem B, suppose ng, < AQ, and
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for some constants A and Cp and n=1,2,.... Then for each N > 1,
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where k(p) < [A+ pCylP.

For example, the assumptions in Theorems B and C are met by ¢, = %, Qn =~
logn. In this paper (Theorems 1 and 2 below) we obtain generalizations of The-
orems B and C by viewing the right side of the stated inequalities to be special
cases of the weighted means 7,, = )};ZZ:I preqr/Pay and 7 = S he1 M‘a;;/—’ﬁ
where py = 1, P, = n.

As another type of generalization of Theorem A, we consider the non-negative
convex function H(u) defined on [0, 00). In the special case H(u) = u, (1.1) could

P P
be expressed as Y oo, qn (H (Ql_,. Yobe1 (Ikak)) < (,—,;Ll) o1 qn(H(an))?.
In Theorem 3 below, we extend this result to arbitrary convex H(u) and
employ a weighted mean. An integral inequality with similar spirit has recently
been obtained by Packpatte [P].

2. Statement of Results

In the following K (p) denotes a positive constant (which may be different at
different occurrences) depending on p alone, where p > 1 and ’l, + ;}7 =

Theorem 1 Assume {an}, {pn}, and {qn} are non-negative sequences for n =

1,2,.... Let Py, = p1+...+pn and Q. = q1+. . .+qn. Denote A up = up—up41
and ¥, ,=1, = p‘;22=1 prqr /Pag. Assume
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where K(p) < (A+ ,-,53,,) .
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Theorem 2 Define & p = & = Ef;n &ﬁ’;:’# forn < N and ony4y = 0.
With notation as in Theorem 1, assume (2.1) and the following:
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where K(p) < (A+ pCp)P.

Theorem 3 Assume p,q > 1 and H(u) a non-negative conver function defined
on [0,00). Then
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Let ¢ > 0 and 0 < a < 1. Then conditions (2.1), (2.2), and (2.4) hold
for qp, = m and p, = L. In this case Q, ~ W%,—_—,— for e # 1 and
Qn =~ log(logn) for € = 1, while P, ~ ,,—;-l:r Corollary 1 illustrates Theorem 1
in the case € = 0.

Corollary 1 If g, = L and p, = L fora > 1 then for ax >0
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A similar corollary can be mentioned for Theorem 2.

We remark that in the case p, = 1, P, ; we obtain Theorems 1 and
2 of [MRV], although the condition in Theorem 2 of that paper differs slightly
from (2.4). Furthermore, the conditions (2.1), (2.2), and (2.4) are satisfied by
qn = n—‘,, Pn = ;;1:; with 0 < a, § < 1. However, the resulting inequalities may
be obtained directly from [MRV] by choosing ¢, = 2.

In Theorem 3, if H(u) = e%/?, p, =1 and p = ¢, we obtain the following;:

Corollary 2 "1_ exp (33 r1ax) < (;,;il) N e

In particular, if ay = logby, b; > 0, then
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3. Proofs

Proof of Theorem 1: Write T, = PoT, = Y., Prqr'/Pay with Tp = 0.
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Using (2.1) and (2.2) we now have
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and hence by Minkowski’s inequality
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Now using Copson’s inequality; that is
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with bx = gz ~1/P¥;, we complete the proof with K(p) < A + B, (;7%)

Proof of Theorem 2: Recall 5y37 = 0 and 7, = Z)]cv p Dbt k‘,,/pak and
hence P A 7% = Pu(3% — 7531) = prgr'/Pai. Then grap = q1/? ( ) ATk

and we have
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Using (2.1) and (2.5) we have

N Qeai N
<C
Qr — P Z

k=n k=n+1 Qk

T

Tk + Agn =77,

We now write, using Minkowski’s inequality,
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We now apply the second Copson’s inequality, namely
N N % P N
> an (2 Q—bk) <PPY_ ab?
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with by = ¢;~1/?5}, to complete the proof with K(p) = (A + pCp)?.
For the proof of Theorem 3, we will require the following lemma:

Lemma 1l ([DP)) Ifp>1land 2, >0, n=1,2,..., then

p—1

Proof of Theorem 3: By Jensen’s inequality, since H(u) is convex,
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Now apply Lemma 1 to the larger side with z; = pi H (a)
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Rearranging and denoting Q@ = Y_;_, pxH(ax), the above inequality may be
written

N N N
ZPnPn-anp < pZPkH(ak)Qkp-l Z PnPn-q-
n=1 k=1 n=k

Observe now that
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by Holder’s inequality. To complete the proof, divide both sides by the last
factor on the right and observe that if this factor is zero, then the theorem is

certainly true.
I would like to thank the referees for their valuable comments which lead to

improvements in the proofs of the theorems.
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