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 Typical Approximately Continuous Functions
 Are Surprisingly Thick

 We show that the following properties are typical ones in the space of
 bounded approximately continuous functions: The Hausdorff dimension of
 the graph of / equals two and any level set /_1 ( y ) for inf / < y < sup / has
 HausdorfF dimension one. This example serves as a warning to be careful
 when applying plausible but unproved "interpolation principles".

 1. Introduction

 In [2] several problems concerning the typical behavior of functions in the various
 Zahorski classes were posed. Among them there was the question concerning the
 "metrical" size of level sets; i.e. size with respect to Ilausdorif measures etc. In
 [9] this question was answered for the first Zahorski class bM' = bVD1 , i.e. the
 class of bounded Darboux Baire one functions. In this space "typical level sets"
 are very small. More precisely, for any (continuous) Ilausdorff measure there is a
 residual set of functions / in bVD1 having all level sets f~l(y)iy G M, of measure
 zero. (See Theorem 4 in [9].) The same is true also for typical continuous
 functions, as shown e.g. in [1]. (Also see Corollary 1 in [9] for a different
 approach. Based on these two facts it was conjectured in [9] that this behavior
 is typical also in the intermediate space of all bounded approximately continuous
 functions. It is the goal of the present paper to disprove this conjecture. (See
 Corollary 8 below.) Simultaneously we also show that the graphs of typical
 approximately continuous functions are much bigger (in this metrical sense)
 than those of both typical bVD1 and typical continuous functions.

 First we have to agree on some notation. By M([0, 1]), ([0, 1]), C([0, 1])
 or bA, bVB1 , C we denote the space of bounded approximately continuous, bound-
 ed Darboux Baire one, and continuous functions, respectively, all defined on
 [0, 1]. These spaces are equipped with the supremum norm || ||oo. For any d > 0
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 we define the d-dimensional HausdorfF measure Hd as follows. If A C Mn, n > 1,
 and e > 0, then

 {oo k=l ^2(diam Ak)d ; k=l oo Ak D A and diam Ak < € for k > 1 ļ J {oo ^2(diam Ak)d ; Ak D A and diam Ak < € for k > 1 > . k=l k=l J

 Clearly, Tid > Hd if 0 < e < 77 and hence, we can define

 7ťd(^) = 'imnd£(A).

 Then Hd is a metric outer measure. Moreover, it can be easily shown that
 for any A C Mn there is a unique number D G [0 , n] such that 7íd(A) = 00
 if 0 < d < D and that Hd(A) = 0 for d > D. This number is said to be
 the Ilausdorif dimension of A and denoted by dim^ A. The larger class of
 Ilausdorff measures mentioned above in connection with the level sets of bVB 1 or

 continuous functions is obtained using more general functions <f)(diam A) instead
 of powers only.

 The (outer) Lebesgue measure on the real line, i.e. 7i1, is denoted by | | .
 The upper density of the set M C M at x £ M is defined by D(M , x ) =
 limsupr'^0 |(x - r, x + r) D M'/2r. A very useful tool for the estimation of
 Ilausdorff dimension is net-measure defined by means of dyadic intervals (see
 [5]). For k £ Z let Bk be the system of all right-open dyadic intervals of length
 2~k , i.e. Bk = {[¿ • 2~fc, (¿ -I- 1) • 2~k) ; i G Z}. Further, for any interval I Cl
 we put Bk(I) = {J G Bk ; intl DJ ^0}. And finally, in the long formulae to
 follow it will often be convenient to use the expression exp2(^) instead of 2X .
 Our procedure will be as follows. In the first step we construct sets for which
 the (big) dimension of their boundaries in the density topology is stable under
 certain modifications. This construction is the crucial step of the paper. The
 existence of such sets is the main tool in the second step where it is shown that
 for "sufficiently many" functions all level sets contain density boundaries of such
 sets. Finally, in the last part these results are used to obtain dimension estimates
 for graphs of typical functions.

 2. The Construction of the Set G

 In this section the following theorem is proved.

 Theorem 1 Lei M C [0, 1] be a Lebesgue measurable set with 'M' > 0. Then
 there is a compact set C C M and an open set G C (0, 1) such that U(C, x) > 0
 for all x G C, |C'G| > 0 and for any open U C (0, 1) satisfying CnG C U and



 54 Kirchheim

 |C' U' > 0 we have

 dim* {x g U ; L )(U, x) > |} = 1.

 For the proof of this theorem we use the following "uniformization argument"
 appearing e.g. in [10] and [3].

 Lemma 2 For any M C [0, 1] measurable with 'M' > 0 there is a compact set
 C C M fi (0, 1) of positive measure and a sequence such that for any
 k> 1

 n k > k3 (1)
 iifc+i - fit > 3¿2 + 3¿ + 1 (2)

 for each I € Bn„ < 2"*-4 or 7nC=0. (3)

 Proof Of course, it suffices to find some sequence {m*}]^ oo and compact
 subsets C' D C2 D " of M such that for any k > I > 1 both |G*| > 'M'/2 and
 for I G Bmi either / fl G* = 0 or 1 7 ' | < 2~,-42~m| . Then one can put G =
 HjbLi Ck and choose to be a sufficiently rapidly growing subsequence
 of {nik} jfLļ. But if for some k > 1 admissible mi, . . . , m* and C' D ... D Ck
 are given, then suitable m^+i > m* and Ck+i C G* are easily found using
 Lebesgue's density theorem. More details can be found in [10].

 The set G appearing in the statement of 2 is that used in 1. Note that
 condition (3) implies T3(C, x) > 1/2 for any x € G. Now we describe how to
 obtain the set G.

 Choose and G according to Lemma 2. We define Go = 0 and now
 assume that for some Ar > 0 Go, . . . , G* have been chosen. We put

 CWi = G*U (J (inf /, inf I + 2~n*+1~(fc+1)) , (4)

 where

 B1.+ 1 = {/€ß„Hl ; /nGt = 0 and /nC ^ 0}. (5)
 According to (2), nk+ 1 > nk + k. Thus B'k+1 = {/ £ Bnk+l ; 1 1' G*| #
 0 and I D C ¿ 0}. Finally, let G = (JfcLi <?*•••

 For any / £ B'k+i we have

 ,(Cl KCfc+i ' ' f Gk) ' n n /| ri - _ 2 'cc[i' ^ 0_jt_i l(C ' c*;) n /1
 ,(Cl KCfc+i ' ' Gk) f ' n n /| ri _ - 2 |cn i'/'i'
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 by (3). Since Gk+i ' Gk C (J#i+i> we obtain l^jk+i ' Gk' < 2_*|C' G*|.
 Consequently,

 frļCŅĢ^ļ fW _|Ģ*±i'G*|' fļ (1_2-t)>0 )>0 L' ic'g*i Mv 'c'c>' ;-ļļ(1 (1_2-t)>0 )>0
 and 'C' G' > 0 as required.

 It remains to prove that for any open set U C [0, 1] with Ģ fi C C U and
 'C' U' > 0 the "density boundary" of U does have dimension one.

 Lemma 3 Let C,G and be as constructed above. Further, assume that
 U C [0, 1] 15 open , U DCnG and2~K < 'F' where F = C'U and K >3.
 Define po = 1 and

 Pk+i = exp2(n/c+jk+i - nK+k - 2(I< + k) - 1) for k>0.

 Then there is a system S of closed dyadic intervals

 Ji0

 such that

 + l ' (t)
 Jio H J¡0t„jktii =9 for I ^ l' , (8)

 I = exp2(-nÄ'+]k - (K + k)) , (9)
 l^io, .,/* H F' > exp Ii-K - k)'Ji0t.m.jk I , (10)

 and

 for all X G Ji0t...tik there is a d e (0, 2| |) ' (11)
 with |(x - d,x + d)nU'> |2 d . ' '

 (In (7)-(ll) only Iq, ... JkJk+i according to (6) are considered.)

 Proof. We construct S inductively. Because < |F| there are intervals in
 Btik+k([ 0, 1]) satisfying (10) for k = 0. Denote by J' the left most of them.
 Then the definition of B'K and of Gk ensures that J' also fulfills (11) for k = 0.
 (The argument needed will be presented in detail below.) Now assume that for
 some k > 0 all for 1 < /, < p¡ and 0 < i < k have been selected. Fix an
 arbitrary J = Ji0f. .jk. Denote by N the number of intervals I £ BnK+k+1(J)
 such that

 |/ n f'/'i' > i| j n f'/'j' (> 2-(K+fc+1)) . (12)
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 We infer from the evident inequality

 'JKF' exp2(-ny+t+i) 'N 1*71
 'J' 'J' L 'exp2( - «#r+*r+i

 that

 1 'J O F' ^ exp2(- ritf+Jb+i) „ f, 1 'J n F|'
 2 'J' ^ 'J' V 2 'J' )

 and consequently

 " > ''aļj-f ž - (Ā- + *> + "wwli-'-'-1
 = exp2(nK+k+i - nK+ k - 2(/' + i) - 1) = pk+' .

 But for any I e BnK+h^(J) satisfying (12) there are J' 6 BnK+k+lHK+k+1)(I)
 with 'FC'J'' > 2~(/c+*+1)|t7'|. Denote by the closure of the left most of them.
 Since fnG = 0, 1 G ß^+fc+i • Thus the construction of Gj(+k+i and of G ensures
 that inf I < inf J¡ < sup J¡ < sup I. Therefore, the intervals J¡ are mutually
 disjoint. Next, let x € Ji and put d = (x-inf Ji) + 'Ji' € (0,2|«7/|). Then Ix =
 [x-d, inf Ji) e ônjc+L+i+tf+ib+iU) and therefore 'Ixf)F' < ' Ji' exp2(-A'-fc-l).
 Since /flC^ 0, we infer from (3) that |/*'C| < 'I'C' < 2"K"k'5'I' = jq'Ji'.
 Hence 'IX ' ( C ' F)| < 'Jj'/S and we conclude that |[x - d, x + d] fl U' > 'IxCl
 (C ' F)| > ||t7/| > ^2 d. Summarizing we see that it suffices to pick any p*+i
 of the N intervals Ji to form the collection *7/0 for 1 < / < p*+i- In this
 way we construct the entire family { »7/o,. /fc+1 }» for 1 < l¡ < p,- , 1 < i < k + 1
 by induction.

 We set
 oo

 s = Fnf] (J jl0
 k - 0 /o, •••»'*

 and according to (11) we have S C {x £ U ; ~D(U,x) > |}. We now finish the
 proof of 1 giving the required estimate for S.

 First, note that S = fì^Lo U/0,...,/fc ^'o, . ,/*• Indeed, since F is closed, no
 x £ F can be contained in arbitrary small intervals fulfilling (10).

 Next, assume 7 id(S) = 0 for some positive d < 1. For k > 1 define

 k

 Pk = 11 P* = exp2(n/c+ife - nK - 2 Kk - Ar2), and
 t=0

 h{k) = Pk [exp2(- n/f+* - K - k)]d exp2(-2 (K + k + 2 )d) . (13)
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 The assumptions (1) and (2) made on ensure that there is a K' > K
 satisfying

 h(k) > 1 and (1 - </)(n*+i - n*) > 2(K + & + 1) + for any k > K' - K . (14)

 The definition of Hd implies the existence of a sequence {Uj}jCL1 of open intervals

 of length less than exp2(- tikx - A'i) such that S C Uj and YlJLi 'U}'d < Ļ
 Moreover, since S is compact, there are numbers N and K' > K' with

 U ^
 'o i = l

 Furthermore, because each Uj is contained in the union of three right-open
 dyadic intervals of equal length not longer than 'Uj' and since any systems of
 such dyadic intervals contains a mutually disjoint one with the same union, we
 may assume that there is a A'2 > K' and an M G [N, 3 AT] such that

 T = U/o

 where the C are mutually disjoint. J

 In order to obtain a contradiction it now suffices to prove the following

 Claim . For all k > K' - K and for any J = Ji0l...,ik E S we have

 W exp2(-2 d(K + k + 2))'J'd . (16)
 ltnint J-f.%

 Indeed, since 7,- fi ini Ji0ļ...tiKļ_K ^ 0 iff 7, C Ji0t -.tiKx-K » f°r * = Ki - K
 the inequality (16) contradicts (15), (13) and the first statement of (14).

 Of course, (16) holds for any k > - K since any interval in S of such
 small size is contained in some single interval 7,. Hence, we may restrict our
 attention to the case of an interval J = Ji0)...,iki k > Kx - K such that (16) is
 false for J but is true for any subinterval J' G S of J . We set

 z = card{l < pjt+i ; Ji0t...t¡kt¡ C el 7¿ for some i < M).

 Since (16) does not hold for J and since y/a 4- y/b < 'Ja + b for any a, 6 > 0,
 we infer that

 'J' exp2(- 2(/í + fc + 2)) > Yh l7»l > 2 • l^io, ,/*, il
 Itnint

 = z • |J|exp2(-nif+it+i + riK+k - 1) •
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 Consequently, z < exp2(riic+jfe+i- njo*+l- 2(/ť+ ¿4-2)) < pjb+i/2. Next, let M
 be the family of all intervals Ji0 with 1 < / < pk+ 1, which are not contained
 in the closure of any single interval Then card M = p*+i - z > pk+i/2 and
 for any J' € M we have /,• fi ini J' / 0 iff /,• C J' - Therefore, applying (16) to
 each J' G A4 we get

 E w Ž E E w

 > card M • exp2(-2d(/v + fc + 3))(exp2(n/c+jb - nK+k+i ~ l)'J')d
 > I exp2(nK>fc_|.i - - 2(/ir + A? + 1) - 2d(K + & + 3)

 -d(uK+k+i - w/r+ii- + !))
 = 'J'd exp2((l - d)(nK+k+i - nK+k) - 2(I< + fc + 1) - 3d

 -2d(/r + ł + 2))
 > |,7|dexp2(- 2d(/ť + k -h 2)), by the second part of (14).

 Hence J satisfies (16). This contradiction proves the claim and shows that
 dirrift 5=1.

 3. Main Theorem

 We now turn to the second step.

 Proposition 4 Assume that the sets G and C fulfill the conclusions of Theo-
 rem 1 and that g G .4([0, 1]). If for some t G M either g(C H G) C (- oo,ż)
 and g(C) fi (ť, oo) ^ 0 or g(C fl G) C (t, oo) and g(C) fl (- oo,ť) ^ 0, then
 dim?< g~x(t) = 1 .

 Proof We study only the case g(CC'G) C (- oo ,t) and Cfl oo)) ^ 0, the
 second case being similar. Denote M = p-1^""00» 0) H (0, 1) and for n > 1 let

 Mn = {ïG (0, 1) ; there are a, 6 G (0, 1) with x G (a, 6), 6 - a < -
 n

 and |M fl (a, 6)| > ^ .
 Z

 Since g £ A, M is density open and therefore, for each n > 1 we have Mn is
 an open superset of M . Lebesgue's density theorem implies that 'Mn' ' |Af|
 and hence, also 'Mn H C' - ► |M fl C| for n - ► oo. Néxt, there is an x G C with
 g(x) > t. Since D(C, x) > 0 and g G A, we infer that |C fl g"1((ty oo))| > 0
 and 'C fl M' < 'C'. Consequently, there is an N > 1 with 'Mm fl C' < 'C'.
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 This shows that for U = Mn D M D C HG the inequality 'C'U' > 0 holds.
 According to Theorem 1 the set B = {x £ U ; D(U , x) > |} has dimension one.
 Now we finish the proof showing that the set B' of all x E B fl (0, 1) which are
 not endpoints of any component interval of U fulfills g(B') = {¿}.

 It is a simple observation that any finite system of intervals contains a subsys-
 tem with the same union such that no point belongs to three different intervals
 from this subsystem. This fact and the definition of Ms imply that

 for any component I of U 'M fl I' > i|J|. (17)

 Now, for any x G B' there are sequences r+, r~ ' 0 such that x + r+ U and
 x - r~ £ U for n > 1. Next, given any e > 0 there are n > 1 and r G (0,e)
 with r+, r~ 6 (r, e) and |[a? - r, x + r] fl U' > |2r. Then 'U fl [x, x + r]| >
 or 'U fl [x - r, x]| > |r. Suppose the former. If x + r £ U ì then let y = x + r.
 Otherwise let y = sup{t/; ; [x + r, y') C Í/}. In either case let J7 be the family of
 all components of U fl (x, y). Then y - x < r+ < e and

 i<i|un[i,i + r]| < n(x, #)l = jé7 E l'I
 < - - - y) |M fi J|, according to (17),

 y~x itr

 < _i_|(«,y)n Af| .
 y - x

 Similarly, in the latter case we find r' G (0, e*) with ^ < |(x - r',x) fi M'/r'.
 Consequently, 27(M, x) > 1/72 for any ar G Since p is approximately con-
 tinuous at ar and g(M) C (- oo,ť), we conclude g(x) < t. On the other hand,
 x£U implies x £ M and g(x) > t. Consequently, g(x) = t and g(B') = {t} as
 required.

 Theorem 5 Denote by Q the interior of the set of all f € M([ 0, 1]) fulfilling
 dim?* f"l{y) = 1 whenever inf / < y < sup/. Then Q is dense in 6*4([0, 1]).

 Proof Let / E bA and denote a = inf / and b = sup/. Further, let N > 4 be
 given and put e = (b - a)/N .

 For any i = 1, . . ., N we choose C, C Z""1 ((a + (i - 1)£T, a + i£r)) and C (0, 1)
 fulfilling the conclusion of 1. Hence, we can find two different points xf yxJ of
 density of C« 'G¿. According to the complete regularity of the density topology,
 see e.g. Theorem 6.9(a) in [8], we can select a function hi G bA mapping
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 [0, 1] onto [-1,1] such that hi(xf) = 1, hi(x^) = - 1 and h{(x) = 0 for x G
 [0,l]' (Ci'Gi). We put

 N-l

 h = Sehl + 4e ^ h{ + 8 eh^ and / = / + /i .
 i =2

 Clearly 1/ - /| < 8e. So it suffices to show that / G (7. To this end let g G bA
 with II/ - <7||oo < £ and set a' = inf g and 6' = sup <7. We have to distinguish
 several cases.

 (i) If a' < y < a - e} then g(C' flGi) C (y, 00). As one easily verifies y(xj~ ) <
 a - ße and for x G [0, l]'(Ci'Gi), g(x) > a - 6e. Thus a' = inf g(C' 'G').
 Consequently g(C') fl (-00, y ) is non void and dim^ y_1(y) = 1 by 4.

 (ii) If l)e < y < a+ie for / = 0, . . .,7V - 2, then y(C,+2nG,+2) C (2/, 00)
 and xT12 G C,-+2 H 00, y)). From 4 we infer dim?* g~l(y) = 1.

 (iii) If a + ¿5 < y < a + (¿+ 1)£ for i = 2, ... , AT, then nG,-_i) C (-00, y)
 and G C,-i fl 00)). Hence, 4 implies dim?* 9"1(y) = 1.

 (iv) If 6 -f e < y < b', then similarly to i) we infer y(Cw H Gn) C (- 00, y),
 9(Cn) H (y, 00) í 0, and hence, dim^ y_1(y) = 1.

 Since for any y G (infy,supy) at least one of the cases i),...,iv) occurs, our
 proof is complete.

 Corollary 6 a) For typical f G 6*4([0, 1]) we have

 its has is a empty dimension singleton 1 if if if sup y y = > / sup sup > / f y > or or inf y y / = < . inf/, inf f,
 is a singleton if y = sup / or y = inf/,
 has dimension 1 if sup / > y > inf / .

 b) The functions having all level sets either void or of dimension one form a
 dense subset in 6*4([0, 1]).

 Proof
 a) According to [4] the set Q of all / G bA for which both f~~1(supf) and
 /"1(inf/) are singletons is residual in bA. Obviously, any / G Q fl Q (Ģ from
 Theorem 7) satisfies the conclusion of part a).
 b) Let f E bA and e > 0. Select g G Q with ||/ - y||oo < e/2. Set h(x) =
 minjsupy - |, max{inf g+ y(x)}}. Obviously h G bA , ''h - f ||oo < £ and each
 nonempty level set of h contains g~l(t) for some t G (inf g, supy).
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 4. Consequences

 We start the last part of this paper with a statement describing the dimension of
 the graph of a typical function in both the "large" space bVB 1 and the "small"
 space C. It was shown in [7] that the graph of a typical continuous function has
 dimension 1.

 Lemma 7 Let X = bVBl([ 0, 1]) or X = C([0, 1]). Then for typical f in X
 dim?* graph(f) = 1.

 Proof. Put Mn = if e X ; ({(*, 2/) ; |y - /(*)| < 6}) < i for some 6 >
 0} for n > 1. Obviously, each Mn is open in X and / £ fln=i implies
 7ť1+£(graph(/)) = 0 for each e > 0. Since p roj x( graph (/)) = [0, 1], we conclude
 dim^graph(/) = 1. Hence, it remains to show that each Mn is dense in X.
 For X = C([0, 1]) it may be left to the reader to show (or to believe) that every
 function of bounded variation belongs to each Mn.

 To deal with the case A" = bVB 1 we recall the following fact which is derived
 in [9]. (See the proof of Theorem 4 there.) For e > 0 let Se be the family of all
 / € bVB 1 such that there is a sequence of intervals fulfilling

 (i) /([0, 1] ' (J£i h) is finite, and

 (Ü) ESJAI' <*•

 Then each Se , € > 0 is dense in bVB1 .

 Further, one easily sees that for any interval I C [0, 1] with |7| < 1/2 n

 Wi+r'ao.ljx/) , TťJjt""1 (/ X [0, 1]) < ('Z2|/|)1+n-1 (|i|. + l)
 < 2|/|1+n~l(2/|/|) < 4 VŪĪ •

 From these estimates and the <r-subadditivity of 1 we immediate conclude
 that Sļ/5n C Mn for each n > 1. Consequently, every Mn is dense in 62>jB1([0, 1])
 and our proof is complete.

 The following result demonstrating the quite opposite situation in the inter-
 mediate space bA([0y 1]) is an easy consequence of Theorem 7.

 Corollary 8 The equality dim^ graph(f) = 2 holds for any function f in the
 open dense subset Q o/6*4([0, 1]) occurring in 5.
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 The definition of Q ensures that inf / < sup / for all f e G> Hence, our
 statement is an immediate consequence of the following "Fubini-type" dimension
 estimate which is a special version of Theorem 2.10.25 in [6] using the (1 - £)-th
 power of the Euclidean metric on M and M2:
 For any € G (0, 1)

 f dH'-'it) < W2-2t(graph(/)) ,
 «/(¡nf /,sup/)

 where f* denotes the upper integral.
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