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 The Mountain Climbers' Problem and the

 Complexity of Real Continuous Functions

 The first part of this talk investigated the following problem:

 Two mountain climbers begin at sea level, at opposite ends of a (two-
 dimensional) chain of mountains. Can they find routes along which
 to travel, always maintaining equal altitudes, until they eventually
 meet?

 If we now select a point of maximum altitude and reparametrize, we can formu-
 late it as follows:

 Problem 1) Let / and g be continuous functions mapping [0, 1] to
 [0, 1] with /(0) = #(0) = 0 and /(1) = #(1) = 1. Are there continuous
 functions k and h: [0, 1] - ► [0, 1] satisfying k( 0) = h( 0) = 0, k( 1) =
 h(l) - 1 and / o k = g o hl

 J. V. Whittaker showed in [2] that the answer is "yes" if / and g are piecewise
 monotone but "no" in general. It is easy to construct a counter-example: let /
 be a monotone function which is constant in an interval, and let g be a function
 which oscillates around this value.

 However, typical countinuous functions are climbable. If we assume that
 neither / nor g have an interval of constancy then the answer for Problem 1)
 is "yes". This is the main result1 and in the talk we sketched the elementary
 proof. (The theorem and the proof are going to appear in [1].)

 The talk also considered the following situation.

 Let T = {/I/ : [0, 1] - ► [0, 1] continuous, /(0) = 0, /(1) = 1 and /
 has no interval of constancy }. Let / and g G T. We will say that g is
 more complex than / or / is simpler than g (notation: / •< g) if there
 exists an Agí* such that g = foh. We say that / is equivalent to g

 *The author's participat ion in the conference was sponsored by the Pro Renovanda Cultura
 Htingariae Foundation.

 1 After the conference the author found this result in the paper of T. Homma, A theorem
 on countinuous functions , Ködai Math. Sem. Reports 1 (1952), p. 13-16.
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 if / ^ g and g X /. (This is the case when h is strictly increasing.)
 The X relation is a partial ordering over these equivalence classes.

 The main result of the first part shows that any two element have a common
 upper bound. It is obvious that any two elements have a common lower bound,
 namely the identity function is simpler than any function in T.

 Problem 2) What else can we say about this quite natural struc-
 ture? Is there least upper and (or) greatest lower bound for any 2
 elements? In other words: is this a lattice?
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