Real Analysis Exchange Vol. 18(1), 1992/93, pp. 30-31

A. A. Alikhani-Koopaei, Isfahan University, Isfahan, Iran

On the Baire Class of E–Derivatives and Extreme E–Derivatives

The notion of path derivatives was introduced in [5] to unify the study of certain generalized derivatives. Let $x \in \mathbb{R}$. A path at x is a set $E_x \subseteq \mathbb{R}$ such that $x \in E_x$ and x is a point of accumulation of E_x . A system of paths is a collection $E = \{E_x : x \in \mathbb{R}\}$ where each E_x is a path leading to x. A function $F : \mathbb{R} \to \mathbb{R}$ is *E*-differentiable at x if $F'_E(x) = \lim_{\substack{y \to x \\ y \in E_x}} \frac{F(y) - F(x)}{y - x}$ exists and is finite. The extreme *E*-derivatives are defined in the usual manner. A path system *E* will be said to satisfy condition stated below if there is a positive function δ such that whenever $0 < y - x < \min\{\delta(x), \delta(y)\}$, the paths E_x and E_y intersect in the stated fashion.

- (a) internal intersection condition (I.I.C.) if $E_x \cap E_y \cap (x, y) \neq \emptyset$,
- (b) intersection condition (I.C.) if $E_x \cap E_y \cap [x, y] \neq \emptyset$,
- (c) external intersection condition, parameter m (E.I.C.[m]) if $E_x \cap E_y \cap [x m(y x), x] \neq \emptyset$ and $E_x \cap E_y \cap [y, y + m(y x)] \neq \emptyset$,
- (d) one sided external intersection, parameter m (O.E.I.C. [m]) if $E_x \cap E_y \cap [x m(y x), x] \neq \emptyset$ or $E_x \cap E_y \cap [y, y + m(y x)] \neq \emptyset$.

In [5] it is shown that much of the good behavior of some generalized derivatives is due to the following factors: (i) the thickness of the paths and (ii) the way that the paths E_x and E_y intersect when x and y are sufficiently close. In [1] we studied a third factor: (iii) the closeness of the paths when x and y are sufficiently close. The factors (i) and (iii) have been studied for path derivatives and extreme path derivatives in [1], [2], [5], [3], and [4], but the intersection conditions are studied only for path derivatives [5], [6]. We mention some results from [5] and [6].

Theorem [5] Let $F : \mathbb{R} \to \mathbb{R}$ and $E = \{E_x : x \in \mathbb{R}\}$ be a system of paths.

- 1. If E satisfies the E.I.C. and F is E-differentiable, then $F'_E \in \mathcal{B}_1$.
- 2. If E satisfies the I.I.C. and F is E-differentiable, then there exists a selection S such that $F'_E = F'_S$; hence $F'_E \in \mathcal{B}_2$.

Theorem [6] Let $F : \mathbb{R} \to \mathbb{R}$ and $E = \{E_x : x \in \mathbb{R}\}$ be a system of paths satisfying the E.I.C. If F is E-differentiable, then there is a system of paths E^* which satisfies both the intersection and the external intersections so that F'_E . exists and $F'_E = F'_{E^*}$.

Thus, the following question arises:

Question 1 Suppose $F : \mathbb{R} \to \mathbb{R}$ and $E = \{E_x : x \in \mathbb{R}\}$ is a system of paths satisfying the I.C. If F is E-differentiable, is $F'_E \in \mathcal{B}_2$?

Of course, F'_E need not be in \mathcal{B}_1 . This is shown in [6]. We have the following results which illustrate that the intersection conditions alone are not effective enough to guarantee the Borel measurability of extreme *E*-derivatives.

Theorem 1 There exists a function $F \in DB_2$ and a bilateral system of paths E satisfying the one sided E.I.C. such that \overline{F}'_E is not measurable.

Theorem 2 There exists a function $F \in DB_1$ and a bilateral system of paths E which is nonporous and satisfies all sorts of intersection conditions, but \underline{F}'_E is not measurable.

References

- A. A. Alikhani-Koopaei, Borel measurability of extreme path derivatives, Real Anal. Exch. 12 (1986–87), 216–246.
- [2] A. A. Alikhani-Koopaei, Extreme path derivatives of a function with respect to a nonporous system of paths, Real Anal. Exch. 14 (1988-89), 77-98.
- [3] A. M. Bruckner and K. G. Johnson, Path derivatives and growth control, Proc. Amer. Math. Soc. 91 (1984), 46-48.
- [4] A. M. Bruckner, M. Laczkovich, G. Petruska, and B. S. Thomson, Porosity and approximate derivatives, Can. J. Math. 38 (1986), 1149-1180.
- [5] A. M. Bruckner, R. J. O'Malley, and B. S. Thomson, Path derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 283 (1984), 97-125.
- [6] C. B. Cordy, On the relationship between the external intersection condition and the intersection condition for path derivatives, Real Anal. Exch. 13 (1987–88), 420–431.