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An Introduction to Shell Porosity

Many results of the following form have recently appeared:

THEOREM: A function f : R — R has SOME SPECIFIC PROPERTY

except on a o-porous (or o-symmelrically porous) set.

To understand this theorem we give these definitions:

Definition 1 Let E be a set in R and let = be any point. Then the porosily of
E at z is defined by
ME;z,z+ h)

p(E;z) = limsup
h—0 |h|

where AM(E;a,b) = A(E;b,a) is the length of the largest open subinterval in
(a,b)N E°.
Definition 2 Let E be a set in R and let £ be any point. For R > 0 define

y(F;z, R) as the supremum over

{h>0:3t>0witht+h< R, (z—-t—hz—t)NE=10

and (z+t,z+t+h)NE =0}.
Furthermore, define the symmetric porosity of E at = as

. (E;z, R
p*(E;z) =lim supu—l.
R—0+ R
A set E is called o-porous (o-symmetrically porous) if it can be written as
a countable union of sets E, where for any £ € F, the porosity (symmetric
porosity) of E, at z is positive.

Shell porosity is an extension of symmetric porosity from the real line into
a metric space. We start with the definitions of porosity and shell porosity in a
metric space (X, d).
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Definition 3 Let E be a set in the melric space (X,d). By B,(r) we mean the
open ball centered at = of radius r, i. e. {y € X :d(z,y) <r}. Forz € X and
R > 0 define A(E; z, R) as the supremum of

{h>0:3z€ X with B,(h) C B(R)N E}.

Furthermore, define the porosily of E at x as

p(E;z) = 2limsup M
R—0+ R

Definition 4 Let z € X and 0 < ry < ro. The open shell about z of radii r,
and rs is given by
S,-(?‘l, 1‘2) = B,(rg) \ B,-(T])‘

For R > 0, we define T'(E;z, R) as the supremum of
{h>0:3t>0witht+h< Rand S;(1,t + h)NE = 0}.

The shell porosity of E at z is given by

p’(E;z) =lim supw.
R—0+ R
First in this talk we will note the abundance of shell porous sets in the
following sense (An observation first made by P.M. Gruber):

Theorem 1 Let (X, d) be a complete metric space. The collection of all strongly
shell porous compact subsels of X is a dense G4 subsel of the space of compact
subsets of X endowed with the Hausdor{f metric.

We will next look at the similarities and differences between shell porosity
and porosity by extending results of L. Zajicek and M. J. Evans, P.D. Humke
and K. Saxe. Then we will add S. J. Agronsky and A. M. Bruckner’s idea of a
totally porous set and T. Zamfirescu’s notion of a hyperporous set to the mixture
to see that among these types of porosity, only shell porosity yields the following:

Theorem 2 If E is a closed o-shell porous set in a complete metric space then
E is totally disconnected.

Finally, we will give two open questions from this study of porosities.
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