Richard Fleissner, Department of Mathematics, WIU, Macomb, Illinois 61455 and James Foran, Department of Mathematics, UMKC, Kansas City, Missouri 64108

A Note on the Garsia-Sawyer Class.

It is known that the Garsia-Sawyer class, GS, defined by $\int \log^+(n_f(y))dy < \infty$, where $n_f(y)$ denotes the Banach indicatrix of f, is not closed under addition. (See [1, p. 73] for background information.) The purpose of this note is to give a simple example of this.

Let E_n^k ; $n = 0, 1, 2, ...; k = 1, 2, ..., 2^n$ denote the closed intervals contiguous to the Cantor middle-thirds set. That is, E_0^1 is the middle third of [0,1], E_1^1 and E_1^2 are the middle thirds of $[0,1]\setminus E_0^1$ and so forth. On E_n^k the Cantor function takes the value $c(x) = (2k-1)/2^{n+1}$ and for all but these countably many values, $n_{c(x)}(y) = 1$. Thus, $c(x) \in GS$.

For a fixed n, define f(x) on E_n^k , $k = 1, 2, ..., 2^n$, to be the piecewise linear function which joins the points (a,0) to $((b+2a)/3, 2^{-n-1})$ to $((a+2b)/3, -2^{-n-1})$ to (b,0)where $E_n^k = [a,b]$. Set f(x) = 0 for all other x in [0,1]. For $y \in (1/4, 1/2)$, $n_f(y) = 2 \cdot 1 = 2(2-1)$; $y \in (1/8, 1/4)$, $n_f(y) = 2 \cdot (1+2) = 2(2^2-1)$; $y \in (1/16, 1/8)$, $n_f(y) = 2(1+2+4) = 2(2^3-1)$; y \boldsymbol{e} $(1/2^{n+1}, 1/2^n)$, $n_f(y) = 2(2^{n}-1)$. Therefore, $\int_{-1/2}^{1/2} \log^+(n_f(y)) dy = 2 \int_{0}^{1/2} \log^+(n_f(y)) dy$ $= 2 \sum_{i=1}^{\infty} \log(2^{n+1}-2) \cdot 2^{-n-1} < \infty$. Thus $f(x) \boldsymbol{\epsilon}$ GS. Noting the values of f(x) and c(x) on E_n^1 , E_n^2 ,..., $E_n^{2^n}$, one sees that for each fixed n, $[f+g] \bigcup_{i=1}^{2^n} E_n^k = [0,1]$. So for each $y \boldsymbol{\epsilon} [0,1]$, $n_{f+g}(y) = \infty$ and the example is complete.

Reference

1. D. Waterman, λ -Bounded Variation: Recent Results and Unsolved Problems, Real Analysis Exchange 4(1978), 69-75.

Received April 1, 1981