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 ON THE SYMMETRIC DERIVATIVE

 One of the most interesting problems concerning sym-

 metrically dif ferentiable functions is whether an arbitrary

 symmetric derivative is in the first Baire class of functions .

 The purpose of this note is to indicate an affirmative answer

 to this question and to state some of the interesting results

 which are consequences of this theorem.

 For f , a real-valued function defined on 3R , we denote

 by C(f) the set of points at which f is continuous and by

 D(f) the set of points at which f'(x) exists and is finite.

 stands for the first Baire class of functions and

 is the set of all f€S3^ such that f has the Darboux property.
 g

 f (x) is the symmetric derivative of f at x. The class E

 is defined to consist of all functions, f, such that f s (x)

 exists (finite or infinite) everywhere. In addition, we

 define a*«={f€E: C(f) is dense} and o=(f€o*: f is finite

 everywhere). We denote ES=(fS: f 6L] . a*S and crS are

 defined similarly .

 It follows at once from theorems of Khintchine [6]

 and Preiss [9] that all measurable symmetrically dif feren-

 tiable functions are in a* and f€a iff f is measurable and

 f s (x) exists and is finite everywhere .

 Theorem 1 . Ssc?8^ .

 This extends a result of Filipczak [4], who showed
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 that if f is approximately continuous and symmetrically

 dif ferentiable , then f €33^.
 Let f€a* and x€3R . Since C(f) is residual, there

 exists a sequence, ÍPn^» decreasing to 0, such that both

 x+pn and x-pn are in C(f) for each n. Using this obser-
 vation, we define

 sr f (X+P„) -f (X-P„)
 f (x)=lim

 n-00 2p rn

 if this limit exists and is the same for all such sequences,

 tpn).

 Theorem 2 . Let f€a*. Then there are two sets, A^ and

 each with countable closure, and two functions, g^ and
 both in satisfying:

 se s

 (a) g^ (x) -f (x) everywhere, i=l,2;
 S S - (2

 (b) g^(x)=f (x) everywhere on A^, i=l,2;

 (c) g^ (g2) is upper (lower) semicontinuous on (Ā^) ;
 (d) C(f)cc(gi) and f(x)=gi(x) for each x€C(f), i=l,2;

 (e) D(f)CD(g^) and f'(x)=gļ(x) for each x€D(f), i=l,2;

 (f) If I is a component of Ā?, then g^€5ft_ļ(I) (see Evans
 [3]), i= 1 , 2 .

 This is proved with the help of the following lemma .

 Lemma 3 . If f€a*, then the sets

 Ał=(x: J lim supt^xf(t) 1=®} and A2={x: ļlim inf^^f (t) |=® }
 both have countable closure .

 Thus, given an arbitrary f€ a*, which may be badly

 behaved, theorem 2 gives us a means of associating f with

 another function which retains the desirable properties

 of f and does not possess sane of the less desirable ones.
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 This association allows us to explore the properties of

 f with more precision. We call g^ of the theorem the

 "nice copy" of f and A^ the "essential set" for f . (This

 choice of g^ and A^ over g ^ and is entirely arbitrary.)
 The uniqueness of the nice copy is indicated by the following

 thoerem .

 Theorem 4 . Let f and g be functions in a* and suppose that

 D is any dense subset of 3R . If f (x)=g(x) for every x€D,

 then the essential sets for f and g are equal and the nice

 copies of f and g are equal up to their values on the

 essential set.

 If f €a, then the conclusions of theorem 2 may be

 strengthened .

 Theorem 5 . Let f 6a with A the essential set for f and g

 the nice copy of f . Then A is a symmetric set and g satisfies:
 S s

 (a) g (x) -f (x) everywhere;

 (b) g is upper semicontinuous on A0;

 (c) If I is a component of A°, then g€^8^(I) .
 Further, g is uniquely determined up to an additive constant

 and its values on A by (a) , (b) and (c) .

 Corollary 6 . Let f€aS. Then there is a unique symmetric

 set, A, and a function, F€a, satisfying:

 (a) F (x)=f(x) everywhere;

 (b) F is upper semicontinuous on A ;

 (c) If I is a component of Ā°, then FLÖ®^(I) ;
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 (d) F is unique up to its values on A and an additive con-

 stant .

 Given f€as, we call the function, F, of the theorem

 the "nice primitive" of f.

 Theorem 7 . Let f€a* such that f s (x) ^0 a. e. and f s (x) is

 never -®. Then the nice copy of f is nondecr easing .

 Corollary 8 . Let f€aS such that f (x) a. e.. Then any
 nice primitive for f is continuous and nondecreasing .

 Corollary 9. Let f€a*S such that f has the Darboux property

 and let F be the nice copy of a primitive for f . If f (x) ^0

 a . e . , then F is nondecreasing .

 Corollary 10. If f€a*S, then f is finite a. e..

 Using corollary 10 in conjunction with the main theorem

 contained in [2], we obtain the following theorem.

 Theorem 11. Let f €a* . Then the set of points at which f

 is not dif ferentiable is a -porous and f has a finite ordinary

 derivative a . e . .

 Corollary 12. f€a* iff f is measurable and symmetrically

 dif ferentiable .

 The preceding corollary naturally leads to the question

 of whether there are any nonmeasurable functions in Z. This

 question was posed as long ago as 1928 by Sierpiński and still

 remains open. The following, theorem may be helpful in resolving

 this question .

 Theorem 13 . Let f€£. Then the set [x: ļfs(x)ļ=°°) can contain
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 no interval and f is symmetrically continuous on a dense

 set .

 Using these results, the quasi-mean value theorems of

 Aull [1], Evans [3] and Kundu [6] can be extended to a*.

 Theorem 14 . Let f€a* and a,ß€C(f) with a<ß. Then there

 are nonempty sets, A and B, contained in (a ,ß) such that

 fs(a)ífiÊi^aii£s(b)
 for all a€A and all b€B. Further, if f€a, both A and B

 have positive measure.

 Even though an arbitrary symmetric derivative needt

 not satisfy the Darboux property, there is another "Darboux-

 like" condition which it must satisfy.

 g
 Theorem 15 . Let f€a . Then for each x€3R ,

 iim inf f!x±hl±flxdłl (x) su f ļx+h)+f (x- h)
 h-*0 2 cn-*0 2

 We can also state a condition sufficient to guarantee

 that f s£fi©1.

 Theorem 16 ♦ Let f€E such that f is symmetrically continuous

 and nonangular (see Garg [5]) . Then fs€-fi®^.

 The above results can be used to extend the generalized

 Zahorski class theorems of Kundu [8] to a*. Using Kundu ' s

 notation, the following theorems can be proved.

 Theorem 17 ♦ £o*sc2ī[^.
 g

 Theorem 18 . Let f€a* and suppose F is a primitive for f.

 Then fQT^ (D (F) ) .
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 Actually, a generalized form of Weil's property Z

 ([10]) is shown to hold and theorem 18 follows as a corollary.

 Theorem 19 . Let f€as such that f is bounded. If F is any

 primitive for f, then f 0Ą^ (D (F) ) .

 These Zahorski-type theorems are relatively sharp,

 as the following examples show .

 Example . There is a continuous and nonangular f€a such that

 fS££®ļ and fS is bounded, but fS .

 Example . There is a bounded symmetric derivative,

 which is not a derivative.

 Example . There exists an föflg which is a symmetric derivative,
 but not a derivative.

 I would like to thank Professor C. E. Weil for his

 help in the preparation of this material .
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